linux_dsm_epyc7002/drivers/gpu/drm/i915/display/intel_dsb.c
Tvrtko Ursulin a096883dda drm/i915/dsb: Remove PIN_MAPPABLE from the DSB object VMA
It sounds like the hardware only needs the DSB object to be in global GTT
and not in the mappable region.

Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Animesh Manna <animesh.manna@intel.com>
Reviewed-by: Animesh Manna <animesh.manna@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191017155810.21654-1-tvrtko.ursulin@linux.intel.com
2019-11-06 09:27:27 +00:00

333 lines
9.0 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*
*/
#include "i915_drv.h"
#include "intel_display_types.h"
#define DSB_BUF_SIZE (2 * PAGE_SIZE)
/**
* DOC: DSB
*
* A DSB (Display State Buffer) is a queue of MMIO instructions in the memory
* which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA
* engine that can be programmed to download the DSB from memory.
* It allows driver to batch submit display HW programming. This helps to
* reduce loading time and CPU activity, thereby making the context switch
* faster. DSB Support added from Gen12 Intel graphics based platform.
*
* DSB's can access only the pipe, plane, and transcoder Data Island Packet
* registers.
*
* DSB HW can support only register writes (both indexed and direct MMIO
* writes). There are no registers reads possible with DSB HW engine.
*/
/* DSB opcodes. */
#define DSB_OPCODE_SHIFT 24
#define DSB_OPCODE_MMIO_WRITE 0x1
#define DSB_OPCODE_INDEXED_WRITE 0x9
#define DSB_BYTE_EN 0xF
#define DSB_BYTE_EN_SHIFT 20
#define DSB_REG_VALUE_MASK 0xfffff
static inline bool is_dsb_busy(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = container_of(dsb, typeof(*crtc), dsb);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
return DSB_STATUS & I915_READ(DSB_CTRL(pipe, dsb->id));
}
static inline bool intel_dsb_enable_engine(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = container_of(dsb, typeof(*crtc), dsb);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 dsb_ctrl;
dsb_ctrl = I915_READ(DSB_CTRL(pipe, dsb->id));
if (DSB_STATUS & dsb_ctrl) {
DRM_DEBUG_KMS("DSB engine is busy.\n");
return false;
}
dsb_ctrl |= DSB_ENABLE;
I915_WRITE(DSB_CTRL(pipe, dsb->id), dsb_ctrl);
POSTING_READ(DSB_CTRL(pipe, dsb->id));
return true;
}
static inline bool intel_dsb_disable_engine(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = container_of(dsb, typeof(*crtc), dsb);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
u32 dsb_ctrl;
dsb_ctrl = I915_READ(DSB_CTRL(pipe, dsb->id));
if (DSB_STATUS & dsb_ctrl) {
DRM_DEBUG_KMS("DSB engine is busy.\n");
return false;
}
dsb_ctrl &= ~DSB_ENABLE;
I915_WRITE(DSB_CTRL(pipe, dsb->id), dsb_ctrl);
POSTING_READ(DSB_CTRL(pipe, dsb->id));
return true;
}
/**
* intel_dsb_get() - Allocate DSB context and return a DSB instance.
* @crtc: intel_crtc structure to get pipe info.
*
* This function provides handle of a DSB instance, for the further DSB
* operations.
*
* Returns: address of Intel_dsb instance requested for.
* Failure: Returns the same DSB instance, but without a command buffer.
*/
struct intel_dsb *
intel_dsb_get(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *i915 = to_i915(dev);
struct intel_dsb *dsb = &crtc->dsb;
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
intel_wakeref_t wakeref;
if (!HAS_DSB(i915))
return dsb;
if (atomic_add_return(1, &dsb->refcount) != 1)
return dsb;
dsb->id = DSB1;
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
obj = i915_gem_object_create_internal(i915, DSB_BUF_SIZE);
if (IS_ERR(obj)) {
DRM_ERROR("Gem object creation failed\n");
goto err;
}
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
if (IS_ERR(vma)) {
DRM_ERROR("Vma creation failed\n");
i915_gem_object_put(obj);
atomic_dec(&dsb->refcount);
goto err;
}
dsb->cmd_buf = i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
if (IS_ERR(dsb->cmd_buf)) {
DRM_ERROR("Command buffer creation failed\n");
i915_vma_unpin_and_release(&vma, 0);
dsb->cmd_buf = NULL;
atomic_dec(&dsb->refcount);
goto err;
}
dsb->vma = vma;
err:
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
return dsb;
}
/**
* intel_dsb_put() - To destroy DSB context.
* @dsb: intel_dsb structure.
*
* This function destroys the DSB context allocated by a dsb_get(), by
* unpinning and releasing the VMA object associated with it.
*/
void intel_dsb_put(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = container_of(dsb, typeof(*crtc), dsb);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
if (!HAS_DSB(i915))
return;
if (WARN_ON(atomic_read(&dsb->refcount) == 0))
return;
if (atomic_dec_and_test(&dsb->refcount)) {
i915_vma_unpin_and_release(&dsb->vma, I915_VMA_RELEASE_MAP);
dsb->cmd_buf = NULL;
dsb->free_pos = 0;
dsb->ins_start_offset = 0;
}
}
/**
* intel_dsb_indexed_reg_write() -Write to the DSB context for auto
* increment register.
* @dsb: intel_dsb structure.
* @reg: register address.
* @val: value.
*
* This function is used for writing register-value pair in command
* buffer of DSB for auto-increment register. During command buffer overflow,
* a warning is thrown and rest all erroneous condition register programming
* is done through mmio write.
*/
void intel_dsb_indexed_reg_write(struct intel_dsb *dsb, i915_reg_t reg,
u32 val)
{
struct intel_crtc *crtc = container_of(dsb, typeof(*crtc), dsb);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 *buf = dsb->cmd_buf;
u32 reg_val;
if (!buf) {
I915_WRITE(reg, val);
return;
}
if (WARN_ON(dsb->free_pos >= DSB_BUF_SIZE)) {
DRM_DEBUG_KMS("DSB buffer overflow\n");
return;
}
/*
* For example the buffer will look like below for 3 dwords for auto
* increment register:
* +--------------------------------------------------------+
* | size = 3 | offset &| value1 | value2 | value3 | zero |
* | | opcode | | | | |
* +--------------------------------------------------------+
* + + + + + + +
* 0 4 8 12 16 20 24
* Byte
*
* As every instruction is 8 byte aligned the index of dsb instruction
* will start always from even number while dealing with u32 array. If
* we are writing odd no of dwords, Zeros will be added in the end for
* padding.
*/
reg_val = buf[dsb->ins_start_offset + 1] & DSB_REG_VALUE_MASK;
if (reg_val != i915_mmio_reg_offset(reg)) {
/* Every instruction should be 8 byte aligned. */
dsb->free_pos = ALIGN(dsb->free_pos, 2);
dsb->ins_start_offset = dsb->free_pos;
/* Update the size. */
buf[dsb->free_pos++] = 1;
/* Update the opcode and reg. */
buf[dsb->free_pos++] = (DSB_OPCODE_INDEXED_WRITE <<
DSB_OPCODE_SHIFT) |
i915_mmio_reg_offset(reg);
/* Update the value. */
buf[dsb->free_pos++] = val;
} else {
/* Update the new value. */
buf[dsb->free_pos++] = val;
/* Update the size. */
buf[dsb->ins_start_offset]++;
}
/* if number of data words is odd, then the last dword should be 0.*/
if (dsb->free_pos & 0x1)
buf[dsb->free_pos] = 0;
}
/**
* intel_dsb_reg_write() -Write to the DSB context for normal
* register.
* @dsb: intel_dsb structure.
* @reg: register address.
* @val: value.
*
* This function is used for writing register-value pair in command
* buffer of DSB. During command buffer overflow, a warning is thrown
* and rest all erroneous condition register programming is done
* through mmio write.
*/
void intel_dsb_reg_write(struct intel_dsb *dsb, i915_reg_t reg, u32 val)
{
struct intel_crtc *crtc = container_of(dsb, typeof(*crtc), dsb);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 *buf = dsb->cmd_buf;
if (!buf) {
I915_WRITE(reg, val);
return;
}
if (WARN_ON(dsb->free_pos >= DSB_BUF_SIZE)) {
DRM_DEBUG_KMS("DSB buffer overflow\n");
return;
}
dsb->ins_start_offset = dsb->free_pos;
buf[dsb->free_pos++] = val;
buf[dsb->free_pos++] = (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) |
(DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) |
i915_mmio_reg_offset(reg);
}
/**
* intel_dsb_commit() - Trigger workload execution of DSB.
* @dsb: intel_dsb structure.
*
* This function is used to do actual write to hardware using DSB.
* On errors, fall back to MMIO. Also this function help to reset the context.
*/
void intel_dsb_commit(struct intel_dsb *dsb)
{
struct intel_crtc *crtc = container_of(dsb, typeof(*crtc), dsb);
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = crtc->pipe;
u32 tail;
if (!dsb->free_pos)
return;
if (!intel_dsb_enable_engine(dsb))
goto reset;
if (is_dsb_busy(dsb)) {
DRM_ERROR("HEAD_PTR write failed - dsb engine is busy.\n");
goto reset;
}
I915_WRITE(DSB_HEAD(pipe, dsb->id), i915_ggtt_offset(dsb->vma));
tail = ALIGN(dsb->free_pos * 4, CACHELINE_BYTES);
if (tail > dsb->free_pos * 4)
memset(&dsb->cmd_buf[dsb->free_pos], 0,
(tail - dsb->free_pos * 4));
if (is_dsb_busy(dsb)) {
DRM_ERROR("TAIL_PTR write failed - dsb engine is busy.\n");
goto reset;
}
DRM_DEBUG_KMS("DSB execution started - head 0x%x, tail 0x%x\n",
i915_ggtt_offset(dsb->vma), tail);
I915_WRITE(DSB_TAIL(pipe, dsb->id), i915_ggtt_offset(dsb->vma) + tail);
if (wait_for(!is_dsb_busy(dsb), 1)) {
DRM_ERROR("Timed out waiting for DSB workload completion.\n");
goto reset;
}
reset:
dsb->free_pos = 0;
dsb->ins_start_offset = 0;
intel_dsb_disable_engine(dsb);
}