linux_dsm_epyc7002/arch/sh/kernel/setup.c
Paul Mundt dfbb904280 sh: sparsemem support.
This implements basic sparsemem support for SH. Presently this only
uses static sparsemem, and we still permit explicit selection of
flatmem. Those boards that want sparsemem can select it as usual.

Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2007-06-08 02:43:43 +00:00

397 lines
10 KiB
C

/*
* arch/sh/kernel/setup.c
*
* This file handles the architecture-dependent parts of initialization
*
* Copyright (C) 1999 Niibe Yutaka
* Copyright (C) 2002 - 2007 Paul Mundt
*/
#include <linux/screen_info.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/console.h>
#include <linux/seq_file.h>
#include <linux/root_dev.h>
#include <linux/utsname.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/pfn.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/kexec.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/page.h>
#include <asm/sections.h>
#include <asm/irq.h>
#include <asm/setup.h>
#include <asm/clock.h>
#include <asm/mmu_context.h>
extern void * __rd_start, * __rd_end;
/*
* Machine setup..
*/
/*
* Initialize loops_per_jiffy as 10000000 (1000MIPS).
* This value will be used at the very early stage of serial setup.
* The bigger value means no problem.
*/
struct sh_cpuinfo boot_cpu_data = { CPU_SH_NONE, 10000000, };
/*
* The machine vector. First entry in .machvec.init, or clobbered by
* sh_mv= on the command line, prior to .machvec.init teardown.
*/
struct sh_machine_vector sh_mv = { .mv_name = "generic", };
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
extern int root_mountflags;
/*
* This is set up by the setup-routine at boot-time
*/
#define PARAM ((unsigned char *)empty_zero_page)
#define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000))
#define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004))
#define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008))
#define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c))
#define INITRD_START (*(unsigned long *) (PARAM+0x010))
#define INITRD_SIZE (*(unsigned long *) (PARAM+0x014))
/* ... */
#define COMMAND_LINE ((char *) (PARAM+0x100))
#define RAMDISK_IMAGE_START_MASK 0x07FF
#define RAMDISK_PROMPT_FLAG 0x8000
#define RAMDISK_LOAD_FLAG 0x4000
static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
static struct resource code_resource = { .name = "Kernel code", };
static struct resource data_resource = { .name = "Kernel data", };
unsigned long memory_start, memory_end;
static int __init early_parse_mem(char *p)
{
unsigned long size;
memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
size = memparse(p, &p);
memory_end = memory_start + size;
return 0;
}
early_param("mem", early_parse_mem);
/*
* Register fully available low RAM pages with the bootmem allocator.
*/
static void __init register_bootmem_low_pages(void)
{
unsigned long curr_pfn, last_pfn, pages;
/*
* We are rounding up the start address of usable memory:
*/
curr_pfn = PFN_UP(__MEMORY_START);
/*
* ... and at the end of the usable range downwards:
*/
last_pfn = PFN_DOWN(__pa(memory_end));
if (last_pfn > max_low_pfn)
last_pfn = max_low_pfn;
pages = last_pfn - curr_pfn;
free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
}
void __init setup_bootmem_allocator(unsigned long start_pfn)
{
unsigned long bootmap_size;
/*
* Find a proper area for the bootmem bitmap. After this
* bootstrap step all allocations (until the page allocator
* is intact) must be done via bootmem_alloc().
*/
bootmap_size = init_bootmem_node(NODE_DATA(0), start_pfn,
min_low_pfn, max_low_pfn);
add_active_range(0, min_low_pfn, max_low_pfn);
register_bootmem_low_pages();
node_set_online(0);
/*
* Reserve the kernel text and
* Reserve the bootmem bitmap. We do this in two steps (first step
* was init_bootmem()), because this catches the (definitely buggy)
* case of us accidentally initializing the bootmem allocator with
* an invalid RAM area.
*/
reserve_bootmem(__MEMORY_START+PAGE_SIZE,
(PFN_PHYS(start_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
/*
* reserve physical page 0 - it's a special BIOS page on many boxes,
* enabling clean reboots, SMP operation, laptop functions.
*/
reserve_bootmem(__MEMORY_START, PAGE_SIZE);
#ifdef CONFIG_BLK_DEV_INITRD
ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
if (&__rd_start != &__rd_end) {
LOADER_TYPE = 1;
INITRD_START = PHYSADDR((unsigned long)&__rd_start) -
__MEMORY_START;
INITRD_SIZE = (unsigned long)&__rd_end -
(unsigned long)&__rd_start;
}
if (LOADER_TYPE && INITRD_START) {
if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
reserve_bootmem(INITRD_START + __MEMORY_START,
INITRD_SIZE);
initrd_start = INITRD_START + PAGE_OFFSET +
__MEMORY_START;
initrd_end = initrd_start + INITRD_SIZE;
} else {
printk("initrd extends beyond end of memory "
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
INITRD_START + INITRD_SIZE,
max_low_pfn << PAGE_SHIFT);
initrd_start = 0;
}
}
#endif
#ifdef CONFIG_KEXEC
if (crashk_res.start != crashk_res.end)
reserve_bootmem(crashk_res.start,
crashk_res.end - crashk_res.start + 1);
#endif
}
#ifndef CONFIG_NEED_MULTIPLE_NODES
static void __init setup_memory(void)
{
unsigned long start_pfn;
/*
* Partially used pages are not usable - thus
* we are rounding upwards:
*/
start_pfn = PFN_UP(__pa(_end));
setup_bootmem_allocator(start_pfn);
sparse_memory_present_with_active_regions(0);
}
#else
extern void __init setup_memory(void);
#endif
void __init setup_arch(char **cmdline_p)
{
enable_mmu();
ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
#endif
if (!MOUNT_ROOT_RDONLY)
root_mountflags &= ~MS_RDONLY;
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
code_resource.start = virt_to_phys(_text);
code_resource.end = virt_to_phys(_etext)-1;
data_resource.start = virt_to_phys(_etext);
data_resource.end = virt_to_phys(_edata)-1;
memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
memory_end = memory_start + __MEMORY_SIZE;
#ifdef CONFIG_CMDLINE_BOOL
strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
#else
strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
#endif
/* Save unparsed command line copy for /proc/cmdline */
memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
parse_early_param();
sh_mv_setup();
/*
* Find the highest page frame number we have available
*/
max_pfn = PFN_DOWN(__pa(memory_end));
/*
* Determine low and high memory ranges:
*/
max_low_pfn = max_pfn;
min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
nodes_clear(node_online_map);
/* Setup bootmem with available RAM */
setup_memory();
sparse_init();
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#endif
/* Perform the machine specific initialisation */
if (likely(sh_mv.mv_setup))
sh_mv.mv_setup(cmdline_p);
paging_init();
}
static const char *cpu_name[] = {
[CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
[CPU_SH7604] = "SH7604", [CPU_SH7300] = "SH7300",
[CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
[CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
[CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
[CPU_SH7712] = "SH7712",
[CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750",
[CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R",
[CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R",
[CPU_SH7760] = "SH7760", [CPU_SH73180] = "SH73180",
[CPU_ST40RA] = "ST40RA", [CPU_ST40GX1] = "ST40GX1",
[CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
[CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780",
[CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343",
[CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722",
[CPU_SH_NONE] = "Unknown"
};
const char *get_cpu_subtype(struct sh_cpuinfo *c)
{
return cpu_name[c->type];
}
#ifdef CONFIG_PROC_FS
/* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
static const char *cpu_flags[] = {
"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
"ptea", "llsc", "l2", "op32", NULL
};
static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
{
unsigned long i;
seq_printf(m, "cpu flags\t:");
if (!c->flags) {
seq_printf(m, " %s\n", cpu_flags[0]);
return;
}
for (i = 0; cpu_flags[i]; i++)
if ((c->flags & (1 << i)))
seq_printf(m, " %s", cpu_flags[i+1]);
seq_printf(m, "\n");
}
static void show_cacheinfo(struct seq_file *m, const char *type,
struct cache_info info)
{
unsigned int cache_size;
cache_size = info.ways * info.sets * info.linesz;
seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
type, cache_size >> 10, info.ways);
}
/*
* Get CPU information for use by the procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
struct sh_cpuinfo *c = v;
unsigned int cpu = c - cpu_data;
if (!cpu_online(cpu))
return 0;
if (cpu == 0)
seq_printf(m, "machine\t\t: %s\n", get_system_type());
seq_printf(m, "processor\t: %d\n", cpu);
seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
show_cpuflags(m, c);
seq_printf(m, "cache type\t: ");
/*
* Check for what type of cache we have, we support both the
* unified cache on the SH-2 and SH-3, as well as the harvard
* style cache on the SH-4.
*/
if (c->icache.flags & SH_CACHE_COMBINED) {
seq_printf(m, "unified\n");
show_cacheinfo(m, "cache", c->icache);
} else {
seq_printf(m, "split (harvard)\n");
show_cacheinfo(m, "icache", c->icache);
show_cacheinfo(m, "dcache", c->dcache);
}
/* Optional secondary cache */
if (c->flags & CPU_HAS_L2_CACHE)
show_cacheinfo(m, "scache", c->scache);
seq_printf(m, "bogomips\t: %lu.%02lu\n",
c->loops_per_jiffy/(500000/HZ),
(c->loops_per_jiffy/(5000/HZ)) % 100);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < NR_CPUS ? cpu_data + *pos : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
#endif /* CONFIG_PROC_FS */