linux_dsm_epyc7002/drivers/net/ethernet/chelsio/cxgb/vsc7326.c
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

727 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* $Date: 2006/04/28 19:20:06 $ $RCSfile: vsc7326.c,v $ $Revision: 1.19 $ */
/* Driver for Vitesse VSC7326 (Schaumburg) MAC */
#include "gmac.h"
#include "elmer0.h"
#include "vsc7326_reg.h"
/* Update fast changing statistics every 15 seconds */
#define STATS_TICK_SECS 15
/* 30 minutes for full statistics update */
#define MAJOR_UPDATE_TICKS (1800 / STATS_TICK_SECS)
/* The egress WM value 0x01a01fff should be used only when the
* interface is down (MAC port disabled). This is a workaround
* for disabling the T2/MAC flow-control. When the interface is
* enabled, the WM value should be set to 0x014a03F0.
*/
#define WM_DISABLE 0x01a01fff
#define WM_ENABLE 0x014a03F0
struct init_table {
u32 addr;
u32 data;
};
struct _cmac_instance {
u32 index;
u32 ticks;
};
#define INITBLOCK_SLEEP 0xffffffff
static void vsc_read(adapter_t *adapter, u32 addr, u32 *val)
{
u32 status, vlo, vhi;
int i;
spin_lock_bh(&adapter->mac_lock);
t1_tpi_read(adapter, (addr << 2) + 4, &vlo);
i = 0;
do {
t1_tpi_read(adapter, (REG_LOCAL_STATUS << 2) + 4, &vlo);
t1_tpi_read(adapter, REG_LOCAL_STATUS << 2, &vhi);
status = (vhi << 16) | vlo;
i++;
} while (((status & 1) == 0) && (i < 50));
if (i == 50)
pr_err("Invalid tpi read from MAC, breaking loop.\n");
t1_tpi_read(adapter, (REG_LOCAL_DATA << 2) + 4, &vlo);
t1_tpi_read(adapter, REG_LOCAL_DATA << 2, &vhi);
*val = (vhi << 16) | vlo;
/* pr_err("rd: block: 0x%x sublock: 0x%x reg: 0x%x data: 0x%x\n",
((addr&0xe000)>>13), ((addr&0x1e00)>>9),
((addr&0x01fe)>>1), *val); */
spin_unlock_bh(&adapter->mac_lock);
}
static void vsc_write(adapter_t *adapter, u32 addr, u32 data)
{
spin_lock_bh(&adapter->mac_lock);
t1_tpi_write(adapter, (addr << 2) + 4, data & 0xFFFF);
t1_tpi_write(adapter, addr << 2, (data >> 16) & 0xFFFF);
/* pr_err("wr: block: 0x%x sublock: 0x%x reg: 0x%x data: 0x%x\n",
((addr&0xe000)>>13), ((addr&0x1e00)>>9),
((addr&0x01fe)>>1), data); */
spin_unlock_bh(&adapter->mac_lock);
}
/* Hard reset the MAC. This wipes out *all* configuration. */
static void vsc7326_full_reset(adapter_t* adapter)
{
u32 val;
u32 result = 0xffff;
t1_tpi_read(adapter, A_ELMER0_GPO, &val);
val &= ~1;
t1_tpi_write(adapter, A_ELMER0_GPO, val);
udelay(2);
val |= 0x1; /* Enable mac MAC itself */
val |= 0x800; /* Turn off the red LED */
t1_tpi_write(adapter, A_ELMER0_GPO, val);
mdelay(1);
vsc_write(adapter, REG_SW_RESET, 0x80000001);
do {
mdelay(1);
vsc_read(adapter, REG_SW_RESET, &result);
} while (result != 0x0);
}
static struct init_table vsc7326_reset[] = {
{ REG_IFACE_MODE, 0x00000000 },
{ REG_CRC_CFG, 0x00000020 },
{ REG_PLL_CLK_SPEED, 0x00050c00 },
{ REG_PLL_CLK_SPEED, 0x00050c00 },
{ REG_MSCH, 0x00002f14 },
{ REG_SPI4_MISC, 0x00040409 },
{ REG_SPI4_DESKEW, 0x00080000 },
{ REG_SPI4_ING_SETUP2, 0x08080004 },
{ REG_SPI4_ING_SETUP0, 0x04111004 },
{ REG_SPI4_EGR_SETUP0, 0x80001a04 },
{ REG_SPI4_ING_SETUP1, 0x02010000 },
{ REG_AGE_INC(0), 0x00000000 },
{ REG_AGE_INC(1), 0x00000000 },
{ REG_ING_CONTROL, 0x0a200011 },
{ REG_EGR_CONTROL, 0xa0010091 },
};
static struct init_table vsc7326_portinit[4][22] = {
{ /* Port 0 */
/* FIFO setup */
{ REG_DBG(0), 0x000004f0 },
{ REG_HDX(0), 0x00073101 },
{ REG_TEST(0,0), 0x00000022 },
{ REG_TEST(1,0), 0x00000022 },
{ REG_TOP_BOTTOM(0,0), 0x003f0000 },
{ REG_TOP_BOTTOM(1,0), 0x00120000 },
{ REG_HIGH_LOW_WM(0,0), 0x07460757 },
{ REG_HIGH_LOW_WM(1,0), WM_DISABLE },
{ REG_CT_THRHLD(0,0), 0x00000000 },
{ REG_CT_THRHLD(1,0), 0x00000000 },
{ REG_BUCKE(0), 0x0002ffff },
{ REG_BUCKI(0), 0x0002ffff },
{ REG_TEST(0,0), 0x00000020 },
{ REG_TEST(1,0), 0x00000020 },
/* Port config */
{ REG_MAX_LEN(0), 0x00002710 },
{ REG_PORT_FAIL(0), 0x00000002 },
{ REG_NORMALIZER(0), 0x00000a64 },
{ REG_DENORM(0), 0x00000010 },
{ REG_STICK_BIT(0), 0x03baa370 },
{ REG_DEV_SETUP(0), 0x00000083 },
{ REG_DEV_SETUP(0), 0x00000082 },
{ REG_MODE_CFG(0), 0x0200259f },
},
{ /* Port 1 */
/* FIFO setup */
{ REG_DBG(1), 0x000004f0 },
{ REG_HDX(1), 0x00073101 },
{ REG_TEST(0,1), 0x00000022 },
{ REG_TEST(1,1), 0x00000022 },
{ REG_TOP_BOTTOM(0,1), 0x007e003f },
{ REG_TOP_BOTTOM(1,1), 0x00240012 },
{ REG_HIGH_LOW_WM(0,1), 0x07460757 },
{ REG_HIGH_LOW_WM(1,1), WM_DISABLE },
{ REG_CT_THRHLD(0,1), 0x00000000 },
{ REG_CT_THRHLD(1,1), 0x00000000 },
{ REG_BUCKE(1), 0x0002ffff },
{ REG_BUCKI(1), 0x0002ffff },
{ REG_TEST(0,1), 0x00000020 },
{ REG_TEST(1,1), 0x00000020 },
/* Port config */
{ REG_MAX_LEN(1), 0x00002710 },
{ REG_PORT_FAIL(1), 0x00000002 },
{ REG_NORMALIZER(1), 0x00000a64 },
{ REG_DENORM(1), 0x00000010 },
{ REG_STICK_BIT(1), 0x03baa370 },
{ REG_DEV_SETUP(1), 0x00000083 },
{ REG_DEV_SETUP(1), 0x00000082 },
{ REG_MODE_CFG(1), 0x0200259f },
},
{ /* Port 2 */
/* FIFO setup */
{ REG_DBG(2), 0x000004f0 },
{ REG_HDX(2), 0x00073101 },
{ REG_TEST(0,2), 0x00000022 },
{ REG_TEST(1,2), 0x00000022 },
{ REG_TOP_BOTTOM(0,2), 0x00bd007e },
{ REG_TOP_BOTTOM(1,2), 0x00360024 },
{ REG_HIGH_LOW_WM(0,2), 0x07460757 },
{ REG_HIGH_LOW_WM(1,2), WM_DISABLE },
{ REG_CT_THRHLD(0,2), 0x00000000 },
{ REG_CT_THRHLD(1,2), 0x00000000 },
{ REG_BUCKE(2), 0x0002ffff },
{ REG_BUCKI(2), 0x0002ffff },
{ REG_TEST(0,2), 0x00000020 },
{ REG_TEST(1,2), 0x00000020 },
/* Port config */
{ REG_MAX_LEN(2), 0x00002710 },
{ REG_PORT_FAIL(2), 0x00000002 },
{ REG_NORMALIZER(2), 0x00000a64 },
{ REG_DENORM(2), 0x00000010 },
{ REG_STICK_BIT(2), 0x03baa370 },
{ REG_DEV_SETUP(2), 0x00000083 },
{ REG_DEV_SETUP(2), 0x00000082 },
{ REG_MODE_CFG(2), 0x0200259f },
},
{ /* Port 3 */
/* FIFO setup */
{ REG_DBG(3), 0x000004f0 },
{ REG_HDX(3), 0x00073101 },
{ REG_TEST(0,3), 0x00000022 },
{ REG_TEST(1,3), 0x00000022 },
{ REG_TOP_BOTTOM(0,3), 0x00fc00bd },
{ REG_TOP_BOTTOM(1,3), 0x00480036 },
{ REG_HIGH_LOW_WM(0,3), 0x07460757 },
{ REG_HIGH_LOW_WM(1,3), WM_DISABLE },
{ REG_CT_THRHLD(0,3), 0x00000000 },
{ REG_CT_THRHLD(1,3), 0x00000000 },
{ REG_BUCKE(3), 0x0002ffff },
{ REG_BUCKI(3), 0x0002ffff },
{ REG_TEST(0,3), 0x00000020 },
{ REG_TEST(1,3), 0x00000020 },
/* Port config */
{ REG_MAX_LEN(3), 0x00002710 },
{ REG_PORT_FAIL(3), 0x00000002 },
{ REG_NORMALIZER(3), 0x00000a64 },
{ REG_DENORM(3), 0x00000010 },
{ REG_STICK_BIT(3), 0x03baa370 },
{ REG_DEV_SETUP(3), 0x00000083 },
{ REG_DEV_SETUP(3), 0x00000082 },
{ REG_MODE_CFG(3), 0x0200259f },
},
};
static void run_table(adapter_t *adapter, struct init_table *ib, int len)
{
int i;
for (i = 0; i < len; i++) {
if (ib[i].addr == INITBLOCK_SLEEP) {
udelay( ib[i].data );
pr_err("sleep %d us\n",ib[i].data);
} else
vsc_write( adapter, ib[i].addr, ib[i].data );
}
}
static int bist_rd(adapter_t *adapter, int moduleid, int address)
{
int data = 0;
u32 result = 0;
if ((address != 0x0) &&
(address != 0x1) &&
(address != 0x2) &&
(address != 0xd) &&
(address != 0xe))
pr_err("No bist address: 0x%x\n", address);
data = ((0x00 << 24) | ((address & 0xff) << 16) | (0x00 << 8) |
((moduleid & 0xff) << 0));
vsc_write(adapter, REG_RAM_BIST_CMD, data);
udelay(10);
vsc_read(adapter, REG_RAM_BIST_RESULT, &result);
if ((result & (1 << 9)) != 0x0)
pr_err("Still in bist read: 0x%x\n", result);
else if ((result & (1 << 8)) != 0x0)
pr_err("bist read error: 0x%x\n", result);
return result & 0xff;
}
static int bist_wr(adapter_t *adapter, int moduleid, int address, int value)
{
int data = 0;
u32 result = 0;
if ((address != 0x0) &&
(address != 0x1) &&
(address != 0x2) &&
(address != 0xd) &&
(address != 0xe))
pr_err("No bist address: 0x%x\n", address);
if (value > 255)
pr_err("Suspicious write out of range value: 0x%x\n", value);
data = ((0x01 << 24) | ((address & 0xff) << 16) | (value << 8) |
((moduleid & 0xff) << 0));
vsc_write(adapter, REG_RAM_BIST_CMD, data);
udelay(5);
vsc_read(adapter, REG_RAM_BIST_CMD, &result);
if ((result & (1 << 27)) != 0x0)
pr_err("Still in bist write: 0x%x\n", result);
else if ((result & (1 << 26)) != 0x0)
pr_err("bist write error: 0x%x\n", result);
return 0;
}
static int run_bist(adapter_t *adapter, int moduleid)
{
/*run bist*/
(void) bist_wr(adapter,moduleid, 0x00, 0x02);
(void) bist_wr(adapter,moduleid, 0x01, 0x01);
return 0;
}
static int check_bist(adapter_t *adapter, int moduleid)
{
int result=0;
int column=0;
/*check bist*/
result = bist_rd(adapter,moduleid, 0x02);
column = ((bist_rd(adapter,moduleid, 0x0e)<<8) +
(bist_rd(adapter,moduleid, 0x0d)));
if ((result & 3) != 0x3)
pr_err("Result: 0x%x BIST error in ram %d, column: 0x%04x\n",
result, moduleid, column);
return 0;
}
static int enable_mem(adapter_t *adapter, int moduleid)
{
/*enable mem*/
(void) bist_wr(adapter,moduleid, 0x00, 0x00);
return 0;
}
static int run_bist_all(adapter_t *adapter)
{
int port = 0;
u32 val = 0;
vsc_write(adapter, REG_MEM_BIST, 0x5);
vsc_read(adapter, REG_MEM_BIST, &val);
for (port = 0; port < 12; port++)
vsc_write(adapter, REG_DEV_SETUP(port), 0x0);
udelay(300);
vsc_write(adapter, REG_SPI4_MISC, 0x00040409);
udelay(300);
(void) run_bist(adapter,13);
(void) run_bist(adapter,14);
(void) run_bist(adapter,20);
(void) run_bist(adapter,21);
mdelay(200);
(void) check_bist(adapter,13);
(void) check_bist(adapter,14);
(void) check_bist(adapter,20);
(void) check_bist(adapter,21);
udelay(100);
(void) enable_mem(adapter,13);
(void) enable_mem(adapter,14);
(void) enable_mem(adapter,20);
(void) enable_mem(adapter,21);
udelay(300);
vsc_write(adapter, REG_SPI4_MISC, 0x60040400);
udelay(300);
for (port = 0; port < 12; port++)
vsc_write(adapter, REG_DEV_SETUP(port), 0x1);
udelay(300);
vsc_write(adapter, REG_MEM_BIST, 0x0);
mdelay(10);
return 0;
}
static int mac_intr_handler(struct cmac *mac)
{
return 0;
}
static int mac_intr_enable(struct cmac *mac)
{
return 0;
}
static int mac_intr_disable(struct cmac *mac)
{
return 0;
}
static int mac_intr_clear(struct cmac *mac)
{
return 0;
}
/* Expect MAC address to be in network byte order. */
static int mac_set_address(struct cmac* mac, u8 addr[6])
{
u32 val;
int port = mac->instance->index;
vsc_write(mac->adapter, REG_MAC_LOW_ADDR(port),
(addr[3] << 16) | (addr[4] << 8) | addr[5]);
vsc_write(mac->adapter, REG_MAC_HIGH_ADDR(port),
(addr[0] << 16) | (addr[1] << 8) | addr[2]);
vsc_read(mac->adapter, REG_ING_FFILT_UM_EN, &val);
val &= ~0xf0000000;
vsc_write(mac->adapter, REG_ING_FFILT_UM_EN, val | (port << 28));
vsc_write(mac->adapter, REG_ING_FFILT_MASK0,
0xffff0000 | (addr[4] << 8) | addr[5]);
vsc_write(mac->adapter, REG_ING_FFILT_MASK1,
0xffff0000 | (addr[2] << 8) | addr[3]);
vsc_write(mac->adapter, REG_ING_FFILT_MASK2,
0xffff0000 | (addr[0] << 8) | addr[1]);
return 0;
}
static int mac_get_address(struct cmac *mac, u8 addr[6])
{
u32 addr_lo, addr_hi;
int port = mac->instance->index;
vsc_read(mac->adapter, REG_MAC_LOW_ADDR(port), &addr_lo);
vsc_read(mac->adapter, REG_MAC_HIGH_ADDR(port), &addr_hi);
addr[0] = (u8) (addr_hi >> 16);
addr[1] = (u8) (addr_hi >> 8);
addr[2] = (u8) addr_hi;
addr[3] = (u8) (addr_lo >> 16);
addr[4] = (u8) (addr_lo >> 8);
addr[5] = (u8) addr_lo;
return 0;
}
/* This is intended to reset a port, not the whole MAC */
static int mac_reset(struct cmac *mac)
{
int index = mac->instance->index;
run_table(mac->adapter, vsc7326_portinit[index],
ARRAY_SIZE(vsc7326_portinit[index]));
return 0;
}
static int mac_set_rx_mode(struct cmac *mac, struct t1_rx_mode *rm)
{
u32 v;
int port = mac->instance->index;
vsc_read(mac->adapter, REG_ING_FFILT_UM_EN, &v);
v |= 1 << 12;
if (t1_rx_mode_promisc(rm))
v &= ~(1 << (port + 16));
else
v |= 1 << (port + 16);
vsc_write(mac->adapter, REG_ING_FFILT_UM_EN, v);
return 0;
}
static int mac_set_mtu(struct cmac *mac, int mtu)
{
int port = mac->instance->index;
/* max_len includes header and FCS */
vsc_write(mac->adapter, REG_MAX_LEN(port), mtu + 14 + 4);
return 0;
}
static int mac_set_speed_duplex_fc(struct cmac *mac, int speed, int duplex,
int fc)
{
u32 v;
int enable, port = mac->instance->index;
if (speed >= 0 && speed != SPEED_10 && speed != SPEED_100 &&
speed != SPEED_1000)
return -1;
if (duplex > 0 && duplex != DUPLEX_FULL)
return -1;
if (speed >= 0) {
vsc_read(mac->adapter, REG_MODE_CFG(port), &v);
enable = v & 3; /* save tx/rx enables */
v &= ~0xf;
v |= 4; /* full duplex */
if (speed == SPEED_1000)
v |= 8; /* GigE */
enable |= v;
vsc_write(mac->adapter, REG_MODE_CFG(port), v);
if (speed == SPEED_1000)
v = 0x82;
else if (speed == SPEED_100)
v = 0x84;
else /* SPEED_10 */
v = 0x86;
vsc_write(mac->adapter, REG_DEV_SETUP(port), v | 1); /* reset */
vsc_write(mac->adapter, REG_DEV_SETUP(port), v);
vsc_read(mac->adapter, REG_DBG(port), &v);
v &= ~0xff00;
if (speed == SPEED_1000)
v |= 0x400;
else if (speed == SPEED_100)
v |= 0x2000;
else /* SPEED_10 */
v |= 0xff00;
vsc_write(mac->adapter, REG_DBG(port), v);
vsc_write(mac->adapter, REG_TX_IFG(port),
speed == SPEED_1000 ? 5 : 0x11);
if (duplex == DUPLEX_HALF)
enable = 0x0; /* 100 or 10 */
else if (speed == SPEED_1000)
enable = 0xc;
else /* SPEED_100 or 10 */
enable = 0x4;
enable |= 0x9 << 10; /* IFG1 */
enable |= 0x6 << 6; /* IFG2 */
enable |= 0x1 << 4; /* VLAN */
enable |= 0x3; /* RX/TX EN */
vsc_write(mac->adapter, REG_MODE_CFG(port), enable);
}
vsc_read(mac->adapter, REG_PAUSE_CFG(port), &v);
v &= 0xfff0ffff;
v |= 0x20000; /* xon/xoff */
if (fc & PAUSE_RX)
v |= 0x40000;
if (fc & PAUSE_TX)
v |= 0x80000;
if (fc == (PAUSE_RX | PAUSE_TX))
v |= 0x10000;
vsc_write(mac->adapter, REG_PAUSE_CFG(port), v);
return 0;
}
static int mac_enable(struct cmac *mac, int which)
{
u32 val;
int port = mac->instance->index;
/* Write the correct WM value when the port is enabled. */
vsc_write(mac->adapter, REG_HIGH_LOW_WM(1,port), WM_ENABLE);
vsc_read(mac->adapter, REG_MODE_CFG(port), &val);
if (which & MAC_DIRECTION_RX)
val |= 0x2;
if (which & MAC_DIRECTION_TX)
val |= 1;
vsc_write(mac->adapter, REG_MODE_CFG(port), val);
return 0;
}
static int mac_disable(struct cmac *mac, int which)
{
u32 val;
int i, port = mac->instance->index;
/* Reset the port, this also writes the correct WM value */
mac_reset(mac);
vsc_read(mac->adapter, REG_MODE_CFG(port), &val);
if (which & MAC_DIRECTION_RX)
val &= ~0x2;
if (which & MAC_DIRECTION_TX)
val &= ~0x1;
vsc_write(mac->adapter, REG_MODE_CFG(port), val);
vsc_read(mac->adapter, REG_MODE_CFG(port), &val);
/* Clear stats */
for (i = 0; i <= 0x3a; ++i)
vsc_write(mac->adapter, CRA(4, port, i), 0);
/* Clear software counters */
memset(&mac->stats, 0, sizeof(struct cmac_statistics));
return 0;
}
static void rmon_update(struct cmac *mac, unsigned int addr, u64 *stat)
{
u32 v, lo;
vsc_read(mac->adapter, addr, &v);
lo = *stat;
*stat = *stat - lo + v;
if (v == 0)
return;
if (v < lo)
*stat += (1ULL << 32);
}
static void port_stats_update(struct cmac *mac)
{
struct {
unsigned int reg;
unsigned int offset;
} hw_stats[] = {
#define HW_STAT(reg, stat_name) \
{ reg, (&((struct cmac_statistics *)NULL)->stat_name) - (u64 *)NULL }
/* Rx stats */
HW_STAT(RxUnicast, RxUnicastFramesOK),
HW_STAT(RxMulticast, RxMulticastFramesOK),
HW_STAT(RxBroadcast, RxBroadcastFramesOK),
HW_STAT(Crc, RxFCSErrors),
HW_STAT(RxAlignment, RxAlignErrors),
HW_STAT(RxOversize, RxFrameTooLongErrors),
HW_STAT(RxPause, RxPauseFrames),
HW_STAT(RxJabbers, RxJabberErrors),
HW_STAT(RxFragments, RxRuntErrors),
HW_STAT(RxUndersize, RxRuntErrors),
HW_STAT(RxSymbolCarrier, RxSymbolErrors),
HW_STAT(RxSize1519ToMax, RxJumboFramesOK),
/* Tx stats (skip collision stats as we are full-duplex only) */
HW_STAT(TxUnicast, TxUnicastFramesOK),
HW_STAT(TxMulticast, TxMulticastFramesOK),
HW_STAT(TxBroadcast, TxBroadcastFramesOK),
HW_STAT(TxPause, TxPauseFrames),
HW_STAT(TxUnderrun, TxUnderrun),
HW_STAT(TxSize1519ToMax, TxJumboFramesOK),
}, *p = hw_stats;
unsigned int port = mac->instance->index;
u64 *stats = (u64 *)&mac->stats;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(hw_stats); i++)
rmon_update(mac, CRA(0x4, port, p->reg), stats + p->offset);
rmon_update(mac, REG_TX_OK_BYTES(port), &mac->stats.TxOctetsOK);
rmon_update(mac, REG_RX_OK_BYTES(port), &mac->stats.RxOctetsOK);
rmon_update(mac, REG_RX_BAD_BYTES(port), &mac->stats.RxOctetsBad);
}
/*
* This function is called periodically to accumulate the current values of the
* RMON counters into the port statistics. Since the counters are only 32 bits
* some of them can overflow in less than a minute at GigE speeds, so this
* function should be called every 30 seconds or so.
*
* To cut down on reading costs we update only the octet counters at each tick
* and do a full update at major ticks, which can be every 30 minutes or more.
*/
static const struct cmac_statistics *mac_update_statistics(struct cmac *mac,
int flag)
{
if (flag == MAC_STATS_UPDATE_FULL ||
mac->instance->ticks >= MAJOR_UPDATE_TICKS) {
port_stats_update(mac);
mac->instance->ticks = 0;
} else {
int port = mac->instance->index;
rmon_update(mac, REG_RX_OK_BYTES(port),
&mac->stats.RxOctetsOK);
rmon_update(mac, REG_RX_BAD_BYTES(port),
&mac->stats.RxOctetsBad);
rmon_update(mac, REG_TX_OK_BYTES(port),
&mac->stats.TxOctetsOK);
mac->instance->ticks++;
}
return &mac->stats;
}
static void mac_destroy(struct cmac *mac)
{
kfree(mac);
}
static const struct cmac_ops vsc7326_ops = {
.destroy = mac_destroy,
.reset = mac_reset,
.interrupt_handler = mac_intr_handler,
.interrupt_enable = mac_intr_enable,
.interrupt_disable = mac_intr_disable,
.interrupt_clear = mac_intr_clear,
.enable = mac_enable,
.disable = mac_disable,
.set_mtu = mac_set_mtu,
.set_rx_mode = mac_set_rx_mode,
.set_speed_duplex_fc = mac_set_speed_duplex_fc,
.statistics_update = mac_update_statistics,
.macaddress_get = mac_get_address,
.macaddress_set = mac_set_address,
};
static struct cmac *vsc7326_mac_create(adapter_t *adapter, int index)
{
struct cmac *mac;
u32 val;
int i;
mac = kzalloc(sizeof(*mac) + sizeof(cmac_instance), GFP_KERNEL);
if (!mac)
return NULL;
mac->ops = &vsc7326_ops;
mac->instance = (cmac_instance *)(mac + 1);
mac->adapter = adapter;
mac->instance->index = index;
mac->instance->ticks = 0;
i = 0;
do {
u32 vhi, vlo;
vhi = vlo = 0;
t1_tpi_read(adapter, (REG_LOCAL_STATUS << 2) + 4, &vlo);
udelay(1);
t1_tpi_read(adapter, REG_LOCAL_STATUS << 2, &vhi);
udelay(5);
val = (vhi << 16) | vlo;
} while ((++i < 10000) && (val == 0xffffffff));
return mac;
}
static int vsc7326_mac_reset(adapter_t *adapter)
{
vsc7326_full_reset(adapter);
(void) run_bist_all(adapter);
run_table(adapter, vsc7326_reset, ARRAY_SIZE(vsc7326_reset));
return 0;
}
const struct gmac t1_vsc7326_ops = {
.stats_update_period = STATS_TICK_SECS,
.create = vsc7326_mac_create,
.reset = vsc7326_mac_reset,
};