linux_dsm_epyc7002/Documentation/cpu-freq/governors.txt
Nico Golde 594dd2c981 [PATCH] cpufreq: governors documentation fixes
I corrected a small error and enhanced the govenor.txt file with the
ondemand daemon because the kernel configs link to the documentation but
ondemand wasn't documentated.  Feel free to include the patch in the
attachment.

Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25 16:24:55 -07:00

166 lines
5.6 KiB
Plaintext

CPU frequency and voltage scaling code in the Linux(TM) kernel
L i n u x C P U F r e q
C P U F r e q G o v e r n o r s
- information for users and developers -
Dominik Brodowski <linux@brodo.de>
some additions and corrections by Nico Golde <nico@ngolde.de>
Clock scaling allows you to change the clock speed of the CPUs on the
fly. This is a nice method to save battery power, because the lower
the clock speed, the less power the CPU consumes.
Contents:
---------
1. What is a CPUFreq Governor?
2. Governors In the Linux Kernel
2.1 Performance
2.2 Powersave
2.3 Userspace
2.4 Ondemand
3. The Governor Interface in the CPUfreq Core
1. What Is A CPUFreq Governor?
==============================
Most cpufreq drivers (in fact, all except one, longrun) or even most
cpu frequency scaling algorithms only offer the CPU to be set to one
frequency. In order to offer dynamic frequency scaling, the cpufreq
core must be able to tell these drivers of a "target frequency". So
these specific drivers will be transformed to offer a "->target"
call instead of the existing "->setpolicy" call. For "longrun", all
stays the same, though.
How to decide what frequency within the CPUfreq policy should be used?
That's done using "cpufreq governors". Two are already in this patch
-- they're the already existing "powersave" and "performance" which
set the frequency statically to the lowest or highest frequency,
respectively. At least two more such governors will be ready for
addition in the near future, but likely many more as there are various
different theories and models about dynamic frequency scaling
around. Using such a generic interface as cpufreq offers to scaling
governors, these can be tested extensively, and the best one can be
selected for each specific use.
Basically, it's the following flow graph:
CPU can be set to switch independetly | CPU can only be set
within specific "limits" | to specific frequencies
"CPUfreq policy"
consists of frequency limits (policy->{min,max})
and CPUfreq governor to be used
/ \
/ \
/ the cpufreq governor decides
/ (dynamically or statically)
/ what target_freq to set within
/ the limits of policy->{min,max}
/ \
/ \
Using the ->setpolicy call, Using the ->target call,
the limits and the the frequency closest
"policy" is set. to target_freq is set.
It is assured that it
is within policy->{min,max}
2. Governors In the Linux Kernel
================================
2.1 Performance
---------------
The CPUfreq governor "performance" sets the CPU statically to the
highest frequency within the borders of scaling_min_freq and
scaling_max_freq.
2.2 Powersave
-------------
The CPUfreq governor "powersave" sets the CPU statically to the
lowest frequency within the borders of scaling_min_freq and
scaling_max_freq.
2.3 Userspace
-------------
The CPUfreq governor "userspace" allows the user, or any userspace
program running with UID "root", to set the CPU to a specific frequency
by making a sysfs file "scaling_setspeed" available in the CPU-device
directory.
2.4 Ondemand
------------
The CPUfreq govenor "ondemand" sets the CPU depending on the
current usage. To do this the CPU must have the capability to
switch the frequency very fast.
3. The Governor Interface in the CPUfreq Core
=============================================
A new governor must register itself with the CPUfreq core using
"cpufreq_register_governor". The struct cpufreq_governor, which has to
be passed to that function, must contain the following values:
governor->name - A unique name for this governor
governor->governor - The governor callback function
governor->owner - .THIS_MODULE for the governor module (if
appropriate)
The governor->governor callback is called with the current (or to-be-set)
cpufreq_policy struct for that CPU, and an unsigned int event. The
following events are currently defined:
CPUFREQ_GOV_START: This governor shall start its duty for the CPU
policy->cpu
CPUFREQ_GOV_STOP: This governor shall end its duty for the CPU
policy->cpu
CPUFREQ_GOV_LIMITS: The limits for CPU policy->cpu have changed to
policy->min and policy->max.
If you need other "events" externally of your driver, _only_ use the
cpufreq_governor_l(unsigned int cpu, unsigned int event) call to the
CPUfreq core to ensure proper locking.
The CPUfreq governor may call the CPU processor driver using one of
these two functions:
int cpufreq_driver_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation);
int __cpufreq_driver_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation);
target_freq must be within policy->min and policy->max, of course.
What's the difference between these two functions? When your governor
still is in a direct code path of a call to governor->governor, the
per-CPU cpufreq lock is still held in the cpufreq core, and there's
no need to lock it again (in fact, this would cause a deadlock). So
use __cpufreq_driver_target only in these cases. In all other cases
(for example, when there's a "daemonized" function that wakes up
every second), use cpufreq_driver_target to lock the cpufreq per-CPU
lock before the command is passed to the cpufreq processor driver.