mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
bdebd6a283
remap_vmalloc_range() has had various issues with the bounds checks it promises to perform ("This function checks that addr is a valid vmalloc'ed area, and that it is big enough to cover the vma") over time, e.g.: - not detecting pgoff<<PAGE_SHIFT overflow - not detecting (pgoff<<PAGE_SHIFT)+usize overflow - not checking whether addr and addr+(pgoff<<PAGE_SHIFT) are the same vmalloc allocation - comparing a potentially wildly out-of-bounds pointer with the end of the vmalloc region In particular, since commitfc9702273e
("bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY"), unprivileged users can cause kernel null pointer dereferences by calling mmap() on a BPF map with a size that is bigger than the distance from the start of the BPF map to the end of the address space. This could theoretically be used as a kernel ASLR bypass, by using whether mmap() with a given offset oopses or returns an error code to perform a binary search over the possible address range. To allow remap_vmalloc_range_partial() to verify that addr and addr+(pgoff<<PAGE_SHIFT) are in the same vmalloc region, pass the offset to remap_vmalloc_range_partial() instead of adding it to the pointer in remap_vmalloc_range(). In remap_vmalloc_range_partial(), fix the check against get_vm_area_size() by using size comparisons instead of pointer comparisons, and add checks for pgoff. Fixes:833423143c
("[PATCH] mm: introduce remap_vmalloc_range()") Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: stable@vger.kernel.org Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Song Liu <songliubraving@fb.com> Cc: Yonghong Song <yhs@fb.com> Cc: Andrii Nakryiko <andriin@fb.com> Cc: John Fastabend <john.fastabend@gmail.com> Cc: KP Singh <kpsingh@chromium.org> Link: http://lkml.kernel.org/r/20200415222312.236431-1-jannh@google.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1587 lines
40 KiB
C
1587 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* fs/proc/vmcore.c Interface for accessing the crash
|
|
* dump from the system's previous life.
|
|
* Heavily borrowed from fs/proc/kcore.c
|
|
* Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
|
|
* Copyright (C) IBM Corporation, 2004. All rights reserved
|
|
*
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/kcore.h>
|
|
#include <linux/user.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/init.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/list.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/mem_encrypt.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/io.h>
|
|
#include "internal.h"
|
|
|
|
/* List representing chunks of contiguous memory areas and their offsets in
|
|
* vmcore file.
|
|
*/
|
|
static LIST_HEAD(vmcore_list);
|
|
|
|
/* Stores the pointer to the buffer containing kernel elf core headers. */
|
|
static char *elfcorebuf;
|
|
static size_t elfcorebuf_sz;
|
|
static size_t elfcorebuf_sz_orig;
|
|
|
|
static char *elfnotes_buf;
|
|
static size_t elfnotes_sz;
|
|
/* Size of all notes minus the device dump notes */
|
|
static size_t elfnotes_orig_sz;
|
|
|
|
/* Total size of vmcore file. */
|
|
static u64 vmcore_size;
|
|
|
|
static struct proc_dir_entry *proc_vmcore;
|
|
|
|
#ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
|
|
/* Device Dump list and mutex to synchronize access to list */
|
|
static LIST_HEAD(vmcoredd_list);
|
|
static DEFINE_MUTEX(vmcoredd_mutex);
|
|
|
|
static bool vmcoredd_disabled;
|
|
core_param(novmcoredd, vmcoredd_disabled, bool, 0);
|
|
#endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
|
|
|
|
/* Device Dump Size */
|
|
static size_t vmcoredd_orig_sz;
|
|
|
|
/*
|
|
* Returns > 0 for RAM pages, 0 for non-RAM pages, < 0 on error
|
|
* The called function has to take care of module refcounting.
|
|
*/
|
|
static int (*oldmem_pfn_is_ram)(unsigned long pfn);
|
|
|
|
int register_oldmem_pfn_is_ram(int (*fn)(unsigned long pfn))
|
|
{
|
|
if (oldmem_pfn_is_ram)
|
|
return -EBUSY;
|
|
oldmem_pfn_is_ram = fn;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_oldmem_pfn_is_ram);
|
|
|
|
void unregister_oldmem_pfn_is_ram(void)
|
|
{
|
|
oldmem_pfn_is_ram = NULL;
|
|
wmb();
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_oldmem_pfn_is_ram);
|
|
|
|
static int pfn_is_ram(unsigned long pfn)
|
|
{
|
|
int (*fn)(unsigned long pfn);
|
|
/* pfn is ram unless fn() checks pagetype */
|
|
int ret = 1;
|
|
|
|
/*
|
|
* Ask hypervisor if the pfn is really ram.
|
|
* A ballooned page contains no data and reading from such a page
|
|
* will cause high load in the hypervisor.
|
|
*/
|
|
fn = oldmem_pfn_is_ram;
|
|
if (fn)
|
|
ret = fn(pfn);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Reads a page from the oldmem device from given offset. */
|
|
ssize_t read_from_oldmem(char *buf, size_t count,
|
|
u64 *ppos, int userbuf,
|
|
bool encrypted)
|
|
{
|
|
unsigned long pfn, offset;
|
|
size_t nr_bytes;
|
|
ssize_t read = 0, tmp;
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
offset = (unsigned long)(*ppos % PAGE_SIZE);
|
|
pfn = (unsigned long)(*ppos / PAGE_SIZE);
|
|
|
|
do {
|
|
if (count > (PAGE_SIZE - offset))
|
|
nr_bytes = PAGE_SIZE - offset;
|
|
else
|
|
nr_bytes = count;
|
|
|
|
/* If pfn is not ram, return zeros for sparse dump files */
|
|
if (pfn_is_ram(pfn) == 0)
|
|
memset(buf, 0, nr_bytes);
|
|
else {
|
|
if (encrypted)
|
|
tmp = copy_oldmem_page_encrypted(pfn, buf,
|
|
nr_bytes,
|
|
offset,
|
|
userbuf);
|
|
else
|
|
tmp = copy_oldmem_page(pfn, buf, nr_bytes,
|
|
offset, userbuf);
|
|
|
|
if (tmp < 0)
|
|
return tmp;
|
|
}
|
|
*ppos += nr_bytes;
|
|
count -= nr_bytes;
|
|
buf += nr_bytes;
|
|
read += nr_bytes;
|
|
++pfn;
|
|
offset = 0;
|
|
} while (count);
|
|
|
|
return read;
|
|
}
|
|
|
|
/*
|
|
* Architectures may override this function to allocate ELF header in 2nd kernel
|
|
*/
|
|
int __weak elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Architectures may override this function to free header
|
|
*/
|
|
void __weak elfcorehdr_free(unsigned long long addr)
|
|
{}
|
|
|
|
/*
|
|
* Architectures may override this function to read from ELF header
|
|
*/
|
|
ssize_t __weak elfcorehdr_read(char *buf, size_t count, u64 *ppos)
|
|
{
|
|
return read_from_oldmem(buf, count, ppos, 0, false);
|
|
}
|
|
|
|
/*
|
|
* Architectures may override this function to read from notes sections
|
|
*/
|
|
ssize_t __weak elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
|
|
{
|
|
return read_from_oldmem(buf, count, ppos, 0, mem_encrypt_active());
|
|
}
|
|
|
|
/*
|
|
* Architectures may override this function to map oldmem
|
|
*/
|
|
int __weak remap_oldmem_pfn_range(struct vm_area_struct *vma,
|
|
unsigned long from, unsigned long pfn,
|
|
unsigned long size, pgprot_t prot)
|
|
{
|
|
prot = pgprot_encrypted(prot);
|
|
return remap_pfn_range(vma, from, pfn, size, prot);
|
|
}
|
|
|
|
/*
|
|
* Architectures which support memory encryption override this.
|
|
*/
|
|
ssize_t __weak
|
|
copy_oldmem_page_encrypted(unsigned long pfn, char *buf, size_t csize,
|
|
unsigned long offset, int userbuf)
|
|
{
|
|
return copy_oldmem_page(pfn, buf, csize, offset, userbuf);
|
|
}
|
|
|
|
/*
|
|
* Copy to either kernel or user space
|
|
*/
|
|
static int copy_to(void *target, void *src, size_t size, int userbuf)
|
|
{
|
|
if (userbuf) {
|
|
if (copy_to_user((char __user *) target, src, size))
|
|
return -EFAULT;
|
|
} else {
|
|
memcpy(target, src, size);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
|
|
static int vmcoredd_copy_dumps(void *dst, u64 start, size_t size, int userbuf)
|
|
{
|
|
struct vmcoredd_node *dump;
|
|
u64 offset = 0;
|
|
int ret = 0;
|
|
size_t tsz;
|
|
char *buf;
|
|
|
|
mutex_lock(&vmcoredd_mutex);
|
|
list_for_each_entry(dump, &vmcoredd_list, list) {
|
|
if (start < offset + dump->size) {
|
|
tsz = min(offset + (u64)dump->size - start, (u64)size);
|
|
buf = dump->buf + start - offset;
|
|
if (copy_to(dst, buf, tsz, userbuf)) {
|
|
ret = -EFAULT;
|
|
goto out_unlock;
|
|
}
|
|
|
|
size -= tsz;
|
|
start += tsz;
|
|
dst += tsz;
|
|
|
|
/* Leave now if buffer filled already */
|
|
if (!size)
|
|
goto out_unlock;
|
|
}
|
|
offset += dump->size;
|
|
}
|
|
|
|
out_unlock:
|
|
mutex_unlock(&vmcoredd_mutex);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
static int vmcoredd_mmap_dumps(struct vm_area_struct *vma, unsigned long dst,
|
|
u64 start, size_t size)
|
|
{
|
|
struct vmcoredd_node *dump;
|
|
u64 offset = 0;
|
|
int ret = 0;
|
|
size_t tsz;
|
|
char *buf;
|
|
|
|
mutex_lock(&vmcoredd_mutex);
|
|
list_for_each_entry(dump, &vmcoredd_list, list) {
|
|
if (start < offset + dump->size) {
|
|
tsz = min(offset + (u64)dump->size - start, (u64)size);
|
|
buf = dump->buf + start - offset;
|
|
if (remap_vmalloc_range_partial(vma, dst, buf, 0,
|
|
tsz)) {
|
|
ret = -EFAULT;
|
|
goto out_unlock;
|
|
}
|
|
|
|
size -= tsz;
|
|
start += tsz;
|
|
dst += tsz;
|
|
|
|
/* Leave now if buffer filled already */
|
|
if (!size)
|
|
goto out_unlock;
|
|
}
|
|
offset += dump->size;
|
|
}
|
|
|
|
out_unlock:
|
|
mutex_unlock(&vmcoredd_mutex);
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_MMU */
|
|
#endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
|
|
|
|
/* Read from the ELF header and then the crash dump. On error, negative value is
|
|
* returned otherwise number of bytes read are returned.
|
|
*/
|
|
static ssize_t __read_vmcore(char *buffer, size_t buflen, loff_t *fpos,
|
|
int userbuf)
|
|
{
|
|
ssize_t acc = 0, tmp;
|
|
size_t tsz;
|
|
u64 start;
|
|
struct vmcore *m = NULL;
|
|
|
|
if (buflen == 0 || *fpos >= vmcore_size)
|
|
return 0;
|
|
|
|
/* trim buflen to not go beyond EOF */
|
|
if (buflen > vmcore_size - *fpos)
|
|
buflen = vmcore_size - *fpos;
|
|
|
|
/* Read ELF core header */
|
|
if (*fpos < elfcorebuf_sz) {
|
|
tsz = min(elfcorebuf_sz - (size_t)*fpos, buflen);
|
|
if (copy_to(buffer, elfcorebuf + *fpos, tsz, userbuf))
|
|
return -EFAULT;
|
|
buflen -= tsz;
|
|
*fpos += tsz;
|
|
buffer += tsz;
|
|
acc += tsz;
|
|
|
|
/* leave now if filled buffer already */
|
|
if (buflen == 0)
|
|
return acc;
|
|
}
|
|
|
|
/* Read Elf note segment */
|
|
if (*fpos < elfcorebuf_sz + elfnotes_sz) {
|
|
void *kaddr;
|
|
|
|
/* We add device dumps before other elf notes because the
|
|
* other elf notes may not fill the elf notes buffer
|
|
* completely and we will end up with zero-filled data
|
|
* between the elf notes and the device dumps. Tools will
|
|
* then try to decode this zero-filled data as valid notes
|
|
* and we don't want that. Hence, adding device dumps before
|
|
* the other elf notes ensure that zero-filled data can be
|
|
* avoided.
|
|
*/
|
|
#ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
|
|
/* Read device dumps */
|
|
if (*fpos < elfcorebuf_sz + vmcoredd_orig_sz) {
|
|
tsz = min(elfcorebuf_sz + vmcoredd_orig_sz -
|
|
(size_t)*fpos, buflen);
|
|
start = *fpos - elfcorebuf_sz;
|
|
if (vmcoredd_copy_dumps(buffer, start, tsz, userbuf))
|
|
return -EFAULT;
|
|
|
|
buflen -= tsz;
|
|
*fpos += tsz;
|
|
buffer += tsz;
|
|
acc += tsz;
|
|
|
|
/* leave now if filled buffer already */
|
|
if (!buflen)
|
|
return acc;
|
|
}
|
|
#endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
|
|
|
|
/* Read remaining elf notes */
|
|
tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)*fpos, buflen);
|
|
kaddr = elfnotes_buf + *fpos - elfcorebuf_sz - vmcoredd_orig_sz;
|
|
if (copy_to(buffer, kaddr, tsz, userbuf))
|
|
return -EFAULT;
|
|
|
|
buflen -= tsz;
|
|
*fpos += tsz;
|
|
buffer += tsz;
|
|
acc += tsz;
|
|
|
|
/* leave now if filled buffer already */
|
|
if (buflen == 0)
|
|
return acc;
|
|
}
|
|
|
|
list_for_each_entry(m, &vmcore_list, list) {
|
|
if (*fpos < m->offset + m->size) {
|
|
tsz = (size_t)min_t(unsigned long long,
|
|
m->offset + m->size - *fpos,
|
|
buflen);
|
|
start = m->paddr + *fpos - m->offset;
|
|
tmp = read_from_oldmem(buffer, tsz, &start,
|
|
userbuf, mem_encrypt_active());
|
|
if (tmp < 0)
|
|
return tmp;
|
|
buflen -= tsz;
|
|
*fpos += tsz;
|
|
buffer += tsz;
|
|
acc += tsz;
|
|
|
|
/* leave now if filled buffer already */
|
|
if (buflen == 0)
|
|
return acc;
|
|
}
|
|
}
|
|
|
|
return acc;
|
|
}
|
|
|
|
static ssize_t read_vmcore(struct file *file, char __user *buffer,
|
|
size_t buflen, loff_t *fpos)
|
|
{
|
|
return __read_vmcore((__force char *) buffer, buflen, fpos, 1);
|
|
}
|
|
|
|
/*
|
|
* The vmcore fault handler uses the page cache and fills data using the
|
|
* standard __vmcore_read() function.
|
|
*
|
|
* On s390 the fault handler is used for memory regions that can't be mapped
|
|
* directly with remap_pfn_range().
|
|
*/
|
|
static vm_fault_t mmap_vmcore_fault(struct vm_fault *vmf)
|
|
{
|
|
#ifdef CONFIG_S390
|
|
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
|
|
pgoff_t index = vmf->pgoff;
|
|
struct page *page;
|
|
loff_t offset;
|
|
char *buf;
|
|
int rc;
|
|
|
|
page = find_or_create_page(mapping, index, GFP_KERNEL);
|
|
if (!page)
|
|
return VM_FAULT_OOM;
|
|
if (!PageUptodate(page)) {
|
|
offset = (loff_t) index << PAGE_SHIFT;
|
|
buf = __va((page_to_pfn(page) << PAGE_SHIFT));
|
|
rc = __read_vmcore(buf, PAGE_SIZE, &offset, 0);
|
|
if (rc < 0) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return vmf_error(rc);
|
|
}
|
|
SetPageUptodate(page);
|
|
}
|
|
unlock_page(page);
|
|
vmf->page = page;
|
|
return 0;
|
|
#else
|
|
return VM_FAULT_SIGBUS;
|
|
#endif
|
|
}
|
|
|
|
static const struct vm_operations_struct vmcore_mmap_ops = {
|
|
.fault = mmap_vmcore_fault,
|
|
};
|
|
|
|
/**
|
|
* vmcore_alloc_buf - allocate buffer in vmalloc memory
|
|
* @sizez: size of buffer
|
|
*
|
|
* If CONFIG_MMU is defined, use vmalloc_user() to allow users to mmap
|
|
* the buffer to user-space by means of remap_vmalloc_range().
|
|
*
|
|
* If CONFIG_MMU is not defined, use vzalloc() since mmap_vmcore() is
|
|
* disabled and there's no need to allow users to mmap the buffer.
|
|
*/
|
|
static inline char *vmcore_alloc_buf(size_t size)
|
|
{
|
|
#ifdef CONFIG_MMU
|
|
return vmalloc_user(size);
|
|
#else
|
|
return vzalloc(size);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Disable mmap_vmcore() if CONFIG_MMU is not defined. MMU is
|
|
* essential for mmap_vmcore() in order to map physically
|
|
* non-contiguous objects (ELF header, ELF note segment and memory
|
|
* regions in the 1st kernel pointed to by PT_LOAD entries) into
|
|
* virtually contiguous user-space in ELF layout.
|
|
*/
|
|
#ifdef CONFIG_MMU
|
|
/*
|
|
* remap_oldmem_pfn_checked - do remap_oldmem_pfn_range replacing all pages
|
|
* reported as not being ram with the zero page.
|
|
*
|
|
* @vma: vm_area_struct describing requested mapping
|
|
* @from: start remapping from
|
|
* @pfn: page frame number to start remapping to
|
|
* @size: remapping size
|
|
* @prot: protection bits
|
|
*
|
|
* Returns zero on success, -EAGAIN on failure.
|
|
*/
|
|
static int remap_oldmem_pfn_checked(struct vm_area_struct *vma,
|
|
unsigned long from, unsigned long pfn,
|
|
unsigned long size, pgprot_t prot)
|
|
{
|
|
unsigned long map_size;
|
|
unsigned long pos_start, pos_end, pos;
|
|
unsigned long zeropage_pfn = my_zero_pfn(0);
|
|
size_t len = 0;
|
|
|
|
pos_start = pfn;
|
|
pos_end = pfn + (size >> PAGE_SHIFT);
|
|
|
|
for (pos = pos_start; pos < pos_end; ++pos) {
|
|
if (!pfn_is_ram(pos)) {
|
|
/*
|
|
* We hit a page which is not ram. Remap the continuous
|
|
* region between pos_start and pos-1 and replace
|
|
* the non-ram page at pos with the zero page.
|
|
*/
|
|
if (pos > pos_start) {
|
|
/* Remap continuous region */
|
|
map_size = (pos - pos_start) << PAGE_SHIFT;
|
|
if (remap_oldmem_pfn_range(vma, from + len,
|
|
pos_start, map_size,
|
|
prot))
|
|
goto fail;
|
|
len += map_size;
|
|
}
|
|
/* Remap the zero page */
|
|
if (remap_oldmem_pfn_range(vma, from + len,
|
|
zeropage_pfn,
|
|
PAGE_SIZE, prot))
|
|
goto fail;
|
|
len += PAGE_SIZE;
|
|
pos_start = pos + 1;
|
|
}
|
|
}
|
|
if (pos > pos_start) {
|
|
/* Remap the rest */
|
|
map_size = (pos - pos_start) << PAGE_SHIFT;
|
|
if (remap_oldmem_pfn_range(vma, from + len, pos_start,
|
|
map_size, prot))
|
|
goto fail;
|
|
}
|
|
return 0;
|
|
fail:
|
|
do_munmap(vma->vm_mm, from, len, NULL);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static int vmcore_remap_oldmem_pfn(struct vm_area_struct *vma,
|
|
unsigned long from, unsigned long pfn,
|
|
unsigned long size, pgprot_t prot)
|
|
{
|
|
/*
|
|
* Check if oldmem_pfn_is_ram was registered to avoid
|
|
* looping over all pages without a reason.
|
|
*/
|
|
if (oldmem_pfn_is_ram)
|
|
return remap_oldmem_pfn_checked(vma, from, pfn, size, prot);
|
|
else
|
|
return remap_oldmem_pfn_range(vma, from, pfn, size, prot);
|
|
}
|
|
|
|
static int mmap_vmcore(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
size_t size = vma->vm_end - vma->vm_start;
|
|
u64 start, end, len, tsz;
|
|
struct vmcore *m;
|
|
|
|
start = (u64)vma->vm_pgoff << PAGE_SHIFT;
|
|
end = start + size;
|
|
|
|
if (size > vmcore_size || end > vmcore_size)
|
|
return -EINVAL;
|
|
|
|
if (vma->vm_flags & (VM_WRITE | VM_EXEC))
|
|
return -EPERM;
|
|
|
|
vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
|
|
vma->vm_flags |= VM_MIXEDMAP;
|
|
vma->vm_ops = &vmcore_mmap_ops;
|
|
|
|
len = 0;
|
|
|
|
if (start < elfcorebuf_sz) {
|
|
u64 pfn;
|
|
|
|
tsz = min(elfcorebuf_sz - (size_t)start, size);
|
|
pfn = __pa(elfcorebuf + start) >> PAGE_SHIFT;
|
|
if (remap_pfn_range(vma, vma->vm_start, pfn, tsz,
|
|
vma->vm_page_prot))
|
|
return -EAGAIN;
|
|
size -= tsz;
|
|
start += tsz;
|
|
len += tsz;
|
|
|
|
if (size == 0)
|
|
return 0;
|
|
}
|
|
|
|
if (start < elfcorebuf_sz + elfnotes_sz) {
|
|
void *kaddr;
|
|
|
|
/* We add device dumps before other elf notes because the
|
|
* other elf notes may not fill the elf notes buffer
|
|
* completely and we will end up with zero-filled data
|
|
* between the elf notes and the device dumps. Tools will
|
|
* then try to decode this zero-filled data as valid notes
|
|
* and we don't want that. Hence, adding device dumps before
|
|
* the other elf notes ensure that zero-filled data can be
|
|
* avoided. This also ensures that the device dumps and
|
|
* other elf notes can be properly mmaped at page aligned
|
|
* address.
|
|
*/
|
|
#ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
|
|
/* Read device dumps */
|
|
if (start < elfcorebuf_sz + vmcoredd_orig_sz) {
|
|
u64 start_off;
|
|
|
|
tsz = min(elfcorebuf_sz + vmcoredd_orig_sz -
|
|
(size_t)start, size);
|
|
start_off = start - elfcorebuf_sz;
|
|
if (vmcoredd_mmap_dumps(vma, vma->vm_start + len,
|
|
start_off, tsz))
|
|
goto fail;
|
|
|
|
size -= tsz;
|
|
start += tsz;
|
|
len += tsz;
|
|
|
|
/* leave now if filled buffer already */
|
|
if (!size)
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
|
|
|
|
/* Read remaining elf notes */
|
|
tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)start, size);
|
|
kaddr = elfnotes_buf + start - elfcorebuf_sz - vmcoredd_orig_sz;
|
|
if (remap_vmalloc_range_partial(vma, vma->vm_start + len,
|
|
kaddr, 0, tsz))
|
|
goto fail;
|
|
|
|
size -= tsz;
|
|
start += tsz;
|
|
len += tsz;
|
|
|
|
if (size == 0)
|
|
return 0;
|
|
}
|
|
|
|
list_for_each_entry(m, &vmcore_list, list) {
|
|
if (start < m->offset + m->size) {
|
|
u64 paddr = 0;
|
|
|
|
tsz = (size_t)min_t(unsigned long long,
|
|
m->offset + m->size - start, size);
|
|
paddr = m->paddr + start - m->offset;
|
|
if (vmcore_remap_oldmem_pfn(vma, vma->vm_start + len,
|
|
paddr >> PAGE_SHIFT, tsz,
|
|
vma->vm_page_prot))
|
|
goto fail;
|
|
size -= tsz;
|
|
start += tsz;
|
|
len += tsz;
|
|
|
|
if (size == 0)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
do_munmap(vma->vm_mm, vma->vm_start, len, NULL);
|
|
return -EAGAIN;
|
|
}
|
|
#else
|
|
static int mmap_vmcore(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#endif
|
|
|
|
static const struct proc_ops vmcore_proc_ops = {
|
|
.proc_read = read_vmcore,
|
|
.proc_lseek = default_llseek,
|
|
.proc_mmap = mmap_vmcore,
|
|
};
|
|
|
|
static struct vmcore* __init get_new_element(void)
|
|
{
|
|
return kzalloc(sizeof(struct vmcore), GFP_KERNEL);
|
|
}
|
|
|
|
static u64 get_vmcore_size(size_t elfsz, size_t elfnotesegsz,
|
|
struct list_head *vc_list)
|
|
{
|
|
u64 size;
|
|
struct vmcore *m;
|
|
|
|
size = elfsz + elfnotesegsz;
|
|
list_for_each_entry(m, vc_list, list) {
|
|
size += m->size;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* update_note_header_size_elf64 - update p_memsz member of each PT_NOTE entry
|
|
*
|
|
* @ehdr_ptr: ELF header
|
|
*
|
|
* This function updates p_memsz member of each PT_NOTE entry in the
|
|
* program header table pointed to by @ehdr_ptr to real size of ELF
|
|
* note segment.
|
|
*/
|
|
static int __init update_note_header_size_elf64(const Elf64_Ehdr *ehdr_ptr)
|
|
{
|
|
int i, rc=0;
|
|
Elf64_Phdr *phdr_ptr;
|
|
Elf64_Nhdr *nhdr_ptr;
|
|
|
|
phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1);
|
|
for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
|
|
void *notes_section;
|
|
u64 offset, max_sz, sz, real_sz = 0;
|
|
if (phdr_ptr->p_type != PT_NOTE)
|
|
continue;
|
|
max_sz = phdr_ptr->p_memsz;
|
|
offset = phdr_ptr->p_offset;
|
|
notes_section = kmalloc(max_sz, GFP_KERNEL);
|
|
if (!notes_section)
|
|
return -ENOMEM;
|
|
rc = elfcorehdr_read_notes(notes_section, max_sz, &offset);
|
|
if (rc < 0) {
|
|
kfree(notes_section);
|
|
return rc;
|
|
}
|
|
nhdr_ptr = notes_section;
|
|
while (nhdr_ptr->n_namesz != 0) {
|
|
sz = sizeof(Elf64_Nhdr) +
|
|
(((u64)nhdr_ptr->n_namesz + 3) & ~3) +
|
|
(((u64)nhdr_ptr->n_descsz + 3) & ~3);
|
|
if ((real_sz + sz) > max_sz) {
|
|
pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n",
|
|
nhdr_ptr->n_namesz, nhdr_ptr->n_descsz);
|
|
break;
|
|
}
|
|
real_sz += sz;
|
|
nhdr_ptr = (Elf64_Nhdr*)((char*)nhdr_ptr + sz);
|
|
}
|
|
kfree(notes_section);
|
|
phdr_ptr->p_memsz = real_sz;
|
|
if (real_sz == 0) {
|
|
pr_warn("Warning: Zero PT_NOTE entries found\n");
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* get_note_number_and_size_elf64 - get the number of PT_NOTE program
|
|
* headers and sum of real size of their ELF note segment headers and
|
|
* data.
|
|
*
|
|
* @ehdr_ptr: ELF header
|
|
* @nr_ptnote: buffer for the number of PT_NOTE program headers
|
|
* @sz_ptnote: buffer for size of unique PT_NOTE program header
|
|
*
|
|
* This function is used to merge multiple PT_NOTE program headers
|
|
* into a unique single one. The resulting unique entry will have
|
|
* @sz_ptnote in its phdr->p_mem.
|
|
*
|
|
* It is assumed that program headers with PT_NOTE type pointed to by
|
|
* @ehdr_ptr has already been updated by update_note_header_size_elf64
|
|
* and each of PT_NOTE program headers has actual ELF note segment
|
|
* size in its p_memsz member.
|
|
*/
|
|
static int __init get_note_number_and_size_elf64(const Elf64_Ehdr *ehdr_ptr,
|
|
int *nr_ptnote, u64 *sz_ptnote)
|
|
{
|
|
int i;
|
|
Elf64_Phdr *phdr_ptr;
|
|
|
|
*nr_ptnote = *sz_ptnote = 0;
|
|
|
|
phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1);
|
|
for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
|
|
if (phdr_ptr->p_type != PT_NOTE)
|
|
continue;
|
|
*nr_ptnote += 1;
|
|
*sz_ptnote += phdr_ptr->p_memsz;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* copy_notes_elf64 - copy ELF note segments in a given buffer
|
|
*
|
|
* @ehdr_ptr: ELF header
|
|
* @notes_buf: buffer into which ELF note segments are copied
|
|
*
|
|
* This function is used to copy ELF note segment in the 1st kernel
|
|
* into the buffer @notes_buf in the 2nd kernel. It is assumed that
|
|
* size of the buffer @notes_buf is equal to or larger than sum of the
|
|
* real ELF note segment headers and data.
|
|
*
|
|
* It is assumed that program headers with PT_NOTE type pointed to by
|
|
* @ehdr_ptr has already been updated by update_note_header_size_elf64
|
|
* and each of PT_NOTE program headers has actual ELF note segment
|
|
* size in its p_memsz member.
|
|
*/
|
|
static int __init copy_notes_elf64(const Elf64_Ehdr *ehdr_ptr, char *notes_buf)
|
|
{
|
|
int i, rc=0;
|
|
Elf64_Phdr *phdr_ptr;
|
|
|
|
phdr_ptr = (Elf64_Phdr*)(ehdr_ptr + 1);
|
|
|
|
for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
|
|
u64 offset;
|
|
if (phdr_ptr->p_type != PT_NOTE)
|
|
continue;
|
|
offset = phdr_ptr->p_offset;
|
|
rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz,
|
|
&offset);
|
|
if (rc < 0)
|
|
return rc;
|
|
notes_buf += phdr_ptr->p_memsz;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Merges all the PT_NOTE headers into one. */
|
|
static int __init merge_note_headers_elf64(char *elfptr, size_t *elfsz,
|
|
char **notes_buf, size_t *notes_sz)
|
|
{
|
|
int i, nr_ptnote=0, rc=0;
|
|
char *tmp;
|
|
Elf64_Ehdr *ehdr_ptr;
|
|
Elf64_Phdr phdr;
|
|
u64 phdr_sz = 0, note_off;
|
|
|
|
ehdr_ptr = (Elf64_Ehdr *)elfptr;
|
|
|
|
rc = update_note_header_size_elf64(ehdr_ptr);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = get_note_number_and_size_elf64(ehdr_ptr, &nr_ptnote, &phdr_sz);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
*notes_sz = roundup(phdr_sz, PAGE_SIZE);
|
|
*notes_buf = vmcore_alloc_buf(*notes_sz);
|
|
if (!*notes_buf)
|
|
return -ENOMEM;
|
|
|
|
rc = copy_notes_elf64(ehdr_ptr, *notes_buf);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Prepare merged PT_NOTE program header. */
|
|
phdr.p_type = PT_NOTE;
|
|
phdr.p_flags = 0;
|
|
note_off = sizeof(Elf64_Ehdr) +
|
|
(ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf64_Phdr);
|
|
phdr.p_offset = roundup(note_off, PAGE_SIZE);
|
|
phdr.p_vaddr = phdr.p_paddr = 0;
|
|
phdr.p_filesz = phdr.p_memsz = phdr_sz;
|
|
phdr.p_align = 0;
|
|
|
|
/* Add merged PT_NOTE program header*/
|
|
tmp = elfptr + sizeof(Elf64_Ehdr);
|
|
memcpy(tmp, &phdr, sizeof(phdr));
|
|
tmp += sizeof(phdr);
|
|
|
|
/* Remove unwanted PT_NOTE program headers. */
|
|
i = (nr_ptnote - 1) * sizeof(Elf64_Phdr);
|
|
*elfsz = *elfsz - i;
|
|
memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf64_Ehdr)-sizeof(Elf64_Phdr)));
|
|
memset(elfptr + *elfsz, 0, i);
|
|
*elfsz = roundup(*elfsz, PAGE_SIZE);
|
|
|
|
/* Modify e_phnum to reflect merged headers. */
|
|
ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1;
|
|
|
|
/* Store the size of all notes. We need this to update the note
|
|
* header when the device dumps will be added.
|
|
*/
|
|
elfnotes_orig_sz = phdr.p_memsz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* update_note_header_size_elf32 - update p_memsz member of each PT_NOTE entry
|
|
*
|
|
* @ehdr_ptr: ELF header
|
|
*
|
|
* This function updates p_memsz member of each PT_NOTE entry in the
|
|
* program header table pointed to by @ehdr_ptr to real size of ELF
|
|
* note segment.
|
|
*/
|
|
static int __init update_note_header_size_elf32(const Elf32_Ehdr *ehdr_ptr)
|
|
{
|
|
int i, rc=0;
|
|
Elf32_Phdr *phdr_ptr;
|
|
Elf32_Nhdr *nhdr_ptr;
|
|
|
|
phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1);
|
|
for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
|
|
void *notes_section;
|
|
u64 offset, max_sz, sz, real_sz = 0;
|
|
if (phdr_ptr->p_type != PT_NOTE)
|
|
continue;
|
|
max_sz = phdr_ptr->p_memsz;
|
|
offset = phdr_ptr->p_offset;
|
|
notes_section = kmalloc(max_sz, GFP_KERNEL);
|
|
if (!notes_section)
|
|
return -ENOMEM;
|
|
rc = elfcorehdr_read_notes(notes_section, max_sz, &offset);
|
|
if (rc < 0) {
|
|
kfree(notes_section);
|
|
return rc;
|
|
}
|
|
nhdr_ptr = notes_section;
|
|
while (nhdr_ptr->n_namesz != 0) {
|
|
sz = sizeof(Elf32_Nhdr) +
|
|
(((u64)nhdr_ptr->n_namesz + 3) & ~3) +
|
|
(((u64)nhdr_ptr->n_descsz + 3) & ~3);
|
|
if ((real_sz + sz) > max_sz) {
|
|
pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n",
|
|
nhdr_ptr->n_namesz, nhdr_ptr->n_descsz);
|
|
break;
|
|
}
|
|
real_sz += sz;
|
|
nhdr_ptr = (Elf32_Nhdr*)((char*)nhdr_ptr + sz);
|
|
}
|
|
kfree(notes_section);
|
|
phdr_ptr->p_memsz = real_sz;
|
|
if (real_sz == 0) {
|
|
pr_warn("Warning: Zero PT_NOTE entries found\n");
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* get_note_number_and_size_elf32 - get the number of PT_NOTE program
|
|
* headers and sum of real size of their ELF note segment headers and
|
|
* data.
|
|
*
|
|
* @ehdr_ptr: ELF header
|
|
* @nr_ptnote: buffer for the number of PT_NOTE program headers
|
|
* @sz_ptnote: buffer for size of unique PT_NOTE program header
|
|
*
|
|
* This function is used to merge multiple PT_NOTE program headers
|
|
* into a unique single one. The resulting unique entry will have
|
|
* @sz_ptnote in its phdr->p_mem.
|
|
*
|
|
* It is assumed that program headers with PT_NOTE type pointed to by
|
|
* @ehdr_ptr has already been updated by update_note_header_size_elf32
|
|
* and each of PT_NOTE program headers has actual ELF note segment
|
|
* size in its p_memsz member.
|
|
*/
|
|
static int __init get_note_number_and_size_elf32(const Elf32_Ehdr *ehdr_ptr,
|
|
int *nr_ptnote, u64 *sz_ptnote)
|
|
{
|
|
int i;
|
|
Elf32_Phdr *phdr_ptr;
|
|
|
|
*nr_ptnote = *sz_ptnote = 0;
|
|
|
|
phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1);
|
|
for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
|
|
if (phdr_ptr->p_type != PT_NOTE)
|
|
continue;
|
|
*nr_ptnote += 1;
|
|
*sz_ptnote += phdr_ptr->p_memsz;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* copy_notes_elf32 - copy ELF note segments in a given buffer
|
|
*
|
|
* @ehdr_ptr: ELF header
|
|
* @notes_buf: buffer into which ELF note segments are copied
|
|
*
|
|
* This function is used to copy ELF note segment in the 1st kernel
|
|
* into the buffer @notes_buf in the 2nd kernel. It is assumed that
|
|
* size of the buffer @notes_buf is equal to or larger than sum of the
|
|
* real ELF note segment headers and data.
|
|
*
|
|
* It is assumed that program headers with PT_NOTE type pointed to by
|
|
* @ehdr_ptr has already been updated by update_note_header_size_elf32
|
|
* and each of PT_NOTE program headers has actual ELF note segment
|
|
* size in its p_memsz member.
|
|
*/
|
|
static int __init copy_notes_elf32(const Elf32_Ehdr *ehdr_ptr, char *notes_buf)
|
|
{
|
|
int i, rc=0;
|
|
Elf32_Phdr *phdr_ptr;
|
|
|
|
phdr_ptr = (Elf32_Phdr*)(ehdr_ptr + 1);
|
|
|
|
for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
|
|
u64 offset;
|
|
if (phdr_ptr->p_type != PT_NOTE)
|
|
continue;
|
|
offset = phdr_ptr->p_offset;
|
|
rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz,
|
|
&offset);
|
|
if (rc < 0)
|
|
return rc;
|
|
notes_buf += phdr_ptr->p_memsz;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Merges all the PT_NOTE headers into one. */
|
|
static int __init merge_note_headers_elf32(char *elfptr, size_t *elfsz,
|
|
char **notes_buf, size_t *notes_sz)
|
|
{
|
|
int i, nr_ptnote=0, rc=0;
|
|
char *tmp;
|
|
Elf32_Ehdr *ehdr_ptr;
|
|
Elf32_Phdr phdr;
|
|
u64 phdr_sz = 0, note_off;
|
|
|
|
ehdr_ptr = (Elf32_Ehdr *)elfptr;
|
|
|
|
rc = update_note_header_size_elf32(ehdr_ptr);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
rc = get_note_number_and_size_elf32(ehdr_ptr, &nr_ptnote, &phdr_sz);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
*notes_sz = roundup(phdr_sz, PAGE_SIZE);
|
|
*notes_buf = vmcore_alloc_buf(*notes_sz);
|
|
if (!*notes_buf)
|
|
return -ENOMEM;
|
|
|
|
rc = copy_notes_elf32(ehdr_ptr, *notes_buf);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Prepare merged PT_NOTE program header. */
|
|
phdr.p_type = PT_NOTE;
|
|
phdr.p_flags = 0;
|
|
note_off = sizeof(Elf32_Ehdr) +
|
|
(ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf32_Phdr);
|
|
phdr.p_offset = roundup(note_off, PAGE_SIZE);
|
|
phdr.p_vaddr = phdr.p_paddr = 0;
|
|
phdr.p_filesz = phdr.p_memsz = phdr_sz;
|
|
phdr.p_align = 0;
|
|
|
|
/* Add merged PT_NOTE program header*/
|
|
tmp = elfptr + sizeof(Elf32_Ehdr);
|
|
memcpy(tmp, &phdr, sizeof(phdr));
|
|
tmp += sizeof(phdr);
|
|
|
|
/* Remove unwanted PT_NOTE program headers. */
|
|
i = (nr_ptnote - 1) * sizeof(Elf32_Phdr);
|
|
*elfsz = *elfsz - i;
|
|
memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf32_Ehdr)-sizeof(Elf32_Phdr)));
|
|
memset(elfptr + *elfsz, 0, i);
|
|
*elfsz = roundup(*elfsz, PAGE_SIZE);
|
|
|
|
/* Modify e_phnum to reflect merged headers. */
|
|
ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1;
|
|
|
|
/* Store the size of all notes. We need this to update the note
|
|
* header when the device dumps will be added.
|
|
*/
|
|
elfnotes_orig_sz = phdr.p_memsz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Add memory chunks represented by program headers to vmcore list. Also update
|
|
* the new offset fields of exported program headers. */
|
|
static int __init process_ptload_program_headers_elf64(char *elfptr,
|
|
size_t elfsz,
|
|
size_t elfnotes_sz,
|
|
struct list_head *vc_list)
|
|
{
|
|
int i;
|
|
Elf64_Ehdr *ehdr_ptr;
|
|
Elf64_Phdr *phdr_ptr;
|
|
loff_t vmcore_off;
|
|
struct vmcore *new;
|
|
|
|
ehdr_ptr = (Elf64_Ehdr *)elfptr;
|
|
phdr_ptr = (Elf64_Phdr*)(elfptr + sizeof(Elf64_Ehdr)); /* PT_NOTE hdr */
|
|
|
|
/* Skip Elf header, program headers and Elf note segment. */
|
|
vmcore_off = elfsz + elfnotes_sz;
|
|
|
|
for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
|
|
u64 paddr, start, end, size;
|
|
|
|
if (phdr_ptr->p_type != PT_LOAD)
|
|
continue;
|
|
|
|
paddr = phdr_ptr->p_offset;
|
|
start = rounddown(paddr, PAGE_SIZE);
|
|
end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE);
|
|
size = end - start;
|
|
|
|
/* Add this contiguous chunk of memory to vmcore list.*/
|
|
new = get_new_element();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
new->paddr = start;
|
|
new->size = size;
|
|
list_add_tail(&new->list, vc_list);
|
|
|
|
/* Update the program header offset. */
|
|
phdr_ptr->p_offset = vmcore_off + (paddr - start);
|
|
vmcore_off = vmcore_off + size;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __init process_ptload_program_headers_elf32(char *elfptr,
|
|
size_t elfsz,
|
|
size_t elfnotes_sz,
|
|
struct list_head *vc_list)
|
|
{
|
|
int i;
|
|
Elf32_Ehdr *ehdr_ptr;
|
|
Elf32_Phdr *phdr_ptr;
|
|
loff_t vmcore_off;
|
|
struct vmcore *new;
|
|
|
|
ehdr_ptr = (Elf32_Ehdr *)elfptr;
|
|
phdr_ptr = (Elf32_Phdr*)(elfptr + sizeof(Elf32_Ehdr)); /* PT_NOTE hdr */
|
|
|
|
/* Skip Elf header, program headers and Elf note segment. */
|
|
vmcore_off = elfsz + elfnotes_sz;
|
|
|
|
for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) {
|
|
u64 paddr, start, end, size;
|
|
|
|
if (phdr_ptr->p_type != PT_LOAD)
|
|
continue;
|
|
|
|
paddr = phdr_ptr->p_offset;
|
|
start = rounddown(paddr, PAGE_SIZE);
|
|
end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE);
|
|
size = end - start;
|
|
|
|
/* Add this contiguous chunk of memory to vmcore list.*/
|
|
new = get_new_element();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
new->paddr = start;
|
|
new->size = size;
|
|
list_add_tail(&new->list, vc_list);
|
|
|
|
/* Update the program header offset */
|
|
phdr_ptr->p_offset = vmcore_off + (paddr - start);
|
|
vmcore_off = vmcore_off + size;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Sets offset fields of vmcore elements. */
|
|
static void set_vmcore_list_offsets(size_t elfsz, size_t elfnotes_sz,
|
|
struct list_head *vc_list)
|
|
{
|
|
loff_t vmcore_off;
|
|
struct vmcore *m;
|
|
|
|
/* Skip Elf header, program headers and Elf note segment. */
|
|
vmcore_off = elfsz + elfnotes_sz;
|
|
|
|
list_for_each_entry(m, vc_list, list) {
|
|
m->offset = vmcore_off;
|
|
vmcore_off += m->size;
|
|
}
|
|
}
|
|
|
|
static void free_elfcorebuf(void)
|
|
{
|
|
free_pages((unsigned long)elfcorebuf, get_order(elfcorebuf_sz_orig));
|
|
elfcorebuf = NULL;
|
|
vfree(elfnotes_buf);
|
|
elfnotes_buf = NULL;
|
|
}
|
|
|
|
static int __init parse_crash_elf64_headers(void)
|
|
{
|
|
int rc=0;
|
|
Elf64_Ehdr ehdr;
|
|
u64 addr;
|
|
|
|
addr = elfcorehdr_addr;
|
|
|
|
/* Read Elf header */
|
|
rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf64_Ehdr), &addr);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Do some basic Verification. */
|
|
if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 ||
|
|
(ehdr.e_type != ET_CORE) ||
|
|
!vmcore_elf64_check_arch(&ehdr) ||
|
|
ehdr.e_ident[EI_CLASS] != ELFCLASS64 ||
|
|
ehdr.e_ident[EI_VERSION] != EV_CURRENT ||
|
|
ehdr.e_version != EV_CURRENT ||
|
|
ehdr.e_ehsize != sizeof(Elf64_Ehdr) ||
|
|
ehdr.e_phentsize != sizeof(Elf64_Phdr) ||
|
|
ehdr.e_phnum == 0) {
|
|
pr_warn("Warning: Core image elf header is not sane\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Read in all elf headers. */
|
|
elfcorebuf_sz_orig = sizeof(Elf64_Ehdr) +
|
|
ehdr.e_phnum * sizeof(Elf64_Phdr);
|
|
elfcorebuf_sz = elfcorebuf_sz_orig;
|
|
elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
|
|
get_order(elfcorebuf_sz_orig));
|
|
if (!elfcorebuf)
|
|
return -ENOMEM;
|
|
addr = elfcorehdr_addr;
|
|
rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr);
|
|
if (rc < 0)
|
|
goto fail;
|
|
|
|
/* Merge all PT_NOTE headers into one. */
|
|
rc = merge_note_headers_elf64(elfcorebuf, &elfcorebuf_sz,
|
|
&elfnotes_buf, &elfnotes_sz);
|
|
if (rc)
|
|
goto fail;
|
|
rc = process_ptload_program_headers_elf64(elfcorebuf, elfcorebuf_sz,
|
|
elfnotes_sz, &vmcore_list);
|
|
if (rc)
|
|
goto fail;
|
|
set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list);
|
|
return 0;
|
|
fail:
|
|
free_elfcorebuf();
|
|
return rc;
|
|
}
|
|
|
|
static int __init parse_crash_elf32_headers(void)
|
|
{
|
|
int rc=0;
|
|
Elf32_Ehdr ehdr;
|
|
u64 addr;
|
|
|
|
addr = elfcorehdr_addr;
|
|
|
|
/* Read Elf header */
|
|
rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf32_Ehdr), &addr);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Do some basic Verification. */
|
|
if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 ||
|
|
(ehdr.e_type != ET_CORE) ||
|
|
!vmcore_elf32_check_arch(&ehdr) ||
|
|
ehdr.e_ident[EI_CLASS] != ELFCLASS32||
|
|
ehdr.e_ident[EI_VERSION] != EV_CURRENT ||
|
|
ehdr.e_version != EV_CURRENT ||
|
|
ehdr.e_ehsize != sizeof(Elf32_Ehdr) ||
|
|
ehdr.e_phentsize != sizeof(Elf32_Phdr) ||
|
|
ehdr.e_phnum == 0) {
|
|
pr_warn("Warning: Core image elf header is not sane\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Read in all elf headers. */
|
|
elfcorebuf_sz_orig = sizeof(Elf32_Ehdr) + ehdr.e_phnum * sizeof(Elf32_Phdr);
|
|
elfcorebuf_sz = elfcorebuf_sz_orig;
|
|
elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
|
|
get_order(elfcorebuf_sz_orig));
|
|
if (!elfcorebuf)
|
|
return -ENOMEM;
|
|
addr = elfcorehdr_addr;
|
|
rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr);
|
|
if (rc < 0)
|
|
goto fail;
|
|
|
|
/* Merge all PT_NOTE headers into one. */
|
|
rc = merge_note_headers_elf32(elfcorebuf, &elfcorebuf_sz,
|
|
&elfnotes_buf, &elfnotes_sz);
|
|
if (rc)
|
|
goto fail;
|
|
rc = process_ptload_program_headers_elf32(elfcorebuf, elfcorebuf_sz,
|
|
elfnotes_sz, &vmcore_list);
|
|
if (rc)
|
|
goto fail;
|
|
set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list);
|
|
return 0;
|
|
fail:
|
|
free_elfcorebuf();
|
|
return rc;
|
|
}
|
|
|
|
static int __init parse_crash_elf_headers(void)
|
|
{
|
|
unsigned char e_ident[EI_NIDENT];
|
|
u64 addr;
|
|
int rc=0;
|
|
|
|
addr = elfcorehdr_addr;
|
|
rc = elfcorehdr_read(e_ident, EI_NIDENT, &addr);
|
|
if (rc < 0)
|
|
return rc;
|
|
if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) {
|
|
pr_warn("Warning: Core image elf header not found\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (e_ident[EI_CLASS] == ELFCLASS64) {
|
|
rc = parse_crash_elf64_headers();
|
|
if (rc)
|
|
return rc;
|
|
} else if (e_ident[EI_CLASS] == ELFCLASS32) {
|
|
rc = parse_crash_elf32_headers();
|
|
if (rc)
|
|
return rc;
|
|
} else {
|
|
pr_warn("Warning: Core image elf header is not sane\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Determine vmcore size. */
|
|
vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz,
|
|
&vmcore_list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
|
|
/**
|
|
* vmcoredd_write_header - Write vmcore device dump header at the
|
|
* beginning of the dump's buffer.
|
|
* @buf: Output buffer where the note is written
|
|
* @data: Dump info
|
|
* @size: Size of the dump
|
|
*
|
|
* Fills beginning of the dump's buffer with vmcore device dump header.
|
|
*/
|
|
static void vmcoredd_write_header(void *buf, struct vmcoredd_data *data,
|
|
u32 size)
|
|
{
|
|
struct vmcoredd_header *vdd_hdr = (struct vmcoredd_header *)buf;
|
|
|
|
vdd_hdr->n_namesz = sizeof(vdd_hdr->name);
|
|
vdd_hdr->n_descsz = size + sizeof(vdd_hdr->dump_name);
|
|
vdd_hdr->n_type = NT_VMCOREDD;
|
|
|
|
strncpy((char *)vdd_hdr->name, VMCOREDD_NOTE_NAME,
|
|
sizeof(vdd_hdr->name));
|
|
memcpy(vdd_hdr->dump_name, data->dump_name, sizeof(vdd_hdr->dump_name));
|
|
}
|
|
|
|
/**
|
|
* vmcoredd_update_program_headers - Update all Elf program headers
|
|
* @elfptr: Pointer to elf header
|
|
* @elfnotesz: Size of elf notes aligned to page size
|
|
* @vmcoreddsz: Size of device dumps to be added to elf note header
|
|
*
|
|
* Determine type of Elf header (Elf64 or Elf32) and update the elf note size.
|
|
* Also update the offsets of all the program headers after the elf note header.
|
|
*/
|
|
static void vmcoredd_update_program_headers(char *elfptr, size_t elfnotesz,
|
|
size_t vmcoreddsz)
|
|
{
|
|
unsigned char *e_ident = (unsigned char *)elfptr;
|
|
u64 start, end, size;
|
|
loff_t vmcore_off;
|
|
u32 i;
|
|
|
|
vmcore_off = elfcorebuf_sz + elfnotesz;
|
|
|
|
if (e_ident[EI_CLASS] == ELFCLASS64) {
|
|
Elf64_Ehdr *ehdr = (Elf64_Ehdr *)elfptr;
|
|
Elf64_Phdr *phdr = (Elf64_Phdr *)(elfptr + sizeof(Elf64_Ehdr));
|
|
|
|
/* Update all program headers */
|
|
for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
|
|
if (phdr->p_type == PT_NOTE) {
|
|
/* Update note size */
|
|
phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz;
|
|
phdr->p_filesz = phdr->p_memsz;
|
|
continue;
|
|
}
|
|
|
|
start = rounddown(phdr->p_offset, PAGE_SIZE);
|
|
end = roundup(phdr->p_offset + phdr->p_memsz,
|
|
PAGE_SIZE);
|
|
size = end - start;
|
|
phdr->p_offset = vmcore_off + (phdr->p_offset - start);
|
|
vmcore_off += size;
|
|
}
|
|
} else {
|
|
Elf32_Ehdr *ehdr = (Elf32_Ehdr *)elfptr;
|
|
Elf32_Phdr *phdr = (Elf32_Phdr *)(elfptr + sizeof(Elf32_Ehdr));
|
|
|
|
/* Update all program headers */
|
|
for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
|
|
if (phdr->p_type == PT_NOTE) {
|
|
/* Update note size */
|
|
phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz;
|
|
phdr->p_filesz = phdr->p_memsz;
|
|
continue;
|
|
}
|
|
|
|
start = rounddown(phdr->p_offset, PAGE_SIZE);
|
|
end = roundup(phdr->p_offset + phdr->p_memsz,
|
|
PAGE_SIZE);
|
|
size = end - start;
|
|
phdr->p_offset = vmcore_off + (phdr->p_offset - start);
|
|
vmcore_off += size;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* vmcoredd_update_size - Update the total size of the device dumps and update
|
|
* Elf header
|
|
* @dump_size: Size of the current device dump to be added to total size
|
|
*
|
|
* Update the total size of all the device dumps and update the Elf program
|
|
* headers. Calculate the new offsets for the vmcore list and update the
|
|
* total vmcore size.
|
|
*/
|
|
static void vmcoredd_update_size(size_t dump_size)
|
|
{
|
|
vmcoredd_orig_sz += dump_size;
|
|
elfnotes_sz = roundup(elfnotes_orig_sz, PAGE_SIZE) + vmcoredd_orig_sz;
|
|
vmcoredd_update_program_headers(elfcorebuf, elfnotes_sz,
|
|
vmcoredd_orig_sz);
|
|
|
|
/* Update vmcore list offsets */
|
|
set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list);
|
|
|
|
vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz,
|
|
&vmcore_list);
|
|
proc_vmcore->size = vmcore_size;
|
|
}
|
|
|
|
/**
|
|
* vmcore_add_device_dump - Add a buffer containing device dump to vmcore
|
|
* @data: dump info.
|
|
*
|
|
* Allocate a buffer and invoke the calling driver's dump collect routine.
|
|
* Write Elf note at the beginning of the buffer to indicate vmcore device
|
|
* dump and add the dump to global list.
|
|
*/
|
|
int vmcore_add_device_dump(struct vmcoredd_data *data)
|
|
{
|
|
struct vmcoredd_node *dump;
|
|
void *buf = NULL;
|
|
size_t data_size;
|
|
int ret;
|
|
|
|
if (vmcoredd_disabled) {
|
|
pr_err_once("Device dump is disabled\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!data || !strlen(data->dump_name) ||
|
|
!data->vmcoredd_callback || !data->size)
|
|
return -EINVAL;
|
|
|
|
dump = vzalloc(sizeof(*dump));
|
|
if (!dump) {
|
|
ret = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
|
|
/* Keep size of the buffer page aligned so that it can be mmaped */
|
|
data_size = roundup(sizeof(struct vmcoredd_header) + data->size,
|
|
PAGE_SIZE);
|
|
|
|
/* Allocate buffer for driver's to write their dumps */
|
|
buf = vmcore_alloc_buf(data_size);
|
|
if (!buf) {
|
|
ret = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
|
|
vmcoredd_write_header(buf, data, data_size -
|
|
sizeof(struct vmcoredd_header));
|
|
|
|
/* Invoke the driver's dump collection routing */
|
|
ret = data->vmcoredd_callback(data, buf +
|
|
sizeof(struct vmcoredd_header));
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
dump->buf = buf;
|
|
dump->size = data_size;
|
|
|
|
/* Add the dump to driver sysfs list */
|
|
mutex_lock(&vmcoredd_mutex);
|
|
list_add_tail(&dump->list, &vmcoredd_list);
|
|
mutex_unlock(&vmcoredd_mutex);
|
|
|
|
vmcoredd_update_size(data_size);
|
|
return 0;
|
|
|
|
out_err:
|
|
if (buf)
|
|
vfree(buf);
|
|
|
|
if (dump)
|
|
vfree(dump);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(vmcore_add_device_dump);
|
|
#endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
|
|
|
|
/* Free all dumps in vmcore device dump list */
|
|
static void vmcore_free_device_dumps(void)
|
|
{
|
|
#ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP
|
|
mutex_lock(&vmcoredd_mutex);
|
|
while (!list_empty(&vmcoredd_list)) {
|
|
struct vmcoredd_node *dump;
|
|
|
|
dump = list_first_entry(&vmcoredd_list, struct vmcoredd_node,
|
|
list);
|
|
list_del(&dump->list);
|
|
vfree(dump->buf);
|
|
vfree(dump);
|
|
}
|
|
mutex_unlock(&vmcoredd_mutex);
|
|
#endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */
|
|
}
|
|
|
|
/* Init function for vmcore module. */
|
|
static int __init vmcore_init(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
/* Allow architectures to allocate ELF header in 2nd kernel */
|
|
rc = elfcorehdr_alloc(&elfcorehdr_addr, &elfcorehdr_size);
|
|
if (rc)
|
|
return rc;
|
|
/*
|
|
* If elfcorehdr= has been passed in cmdline or created in 2nd kernel,
|
|
* then capture the dump.
|
|
*/
|
|
if (!(is_vmcore_usable()))
|
|
return rc;
|
|
rc = parse_crash_elf_headers();
|
|
if (rc) {
|
|
pr_warn("Kdump: vmcore not initialized\n");
|
|
return rc;
|
|
}
|
|
elfcorehdr_free(elfcorehdr_addr);
|
|
elfcorehdr_addr = ELFCORE_ADDR_ERR;
|
|
|
|
proc_vmcore = proc_create("vmcore", S_IRUSR, NULL, &vmcore_proc_ops);
|
|
if (proc_vmcore)
|
|
proc_vmcore->size = vmcore_size;
|
|
return 0;
|
|
}
|
|
fs_initcall(vmcore_init);
|
|
|
|
/* Cleanup function for vmcore module. */
|
|
void vmcore_cleanup(void)
|
|
{
|
|
if (proc_vmcore) {
|
|
proc_remove(proc_vmcore);
|
|
proc_vmcore = NULL;
|
|
}
|
|
|
|
/* clear the vmcore list. */
|
|
while (!list_empty(&vmcore_list)) {
|
|
struct vmcore *m;
|
|
|
|
m = list_first_entry(&vmcore_list, struct vmcore, list);
|
|
list_del(&m->list);
|
|
kfree(m);
|
|
}
|
|
free_elfcorebuf();
|
|
|
|
/* clear vmcore device dump list */
|
|
vmcore_free_device_dumps();
|
|
}
|