linux_dsm_epyc7002/include/linux/pagemap.h
Martin Hicks 0c35bbadc5 [PATCH] VM: add __GFP_NORECLAIM
When using the early zone reclaim, it was noticed that allocating new pages
that should be spread across the whole system caused eviction of local pages.

This adds a new GFP flag to prevent early reclaim from happening during
certain allocation attempts.  The example that is implemented here is for page
cache pages.  We want page cache pages to be spread across the whole system,
and we don't want page cache pages to evict other pages to get local memory.

Signed-off-by:  Martin Hicks <mort@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21 18:46:14 -07:00

247 lines
6.7 KiB
C

#ifndef _LINUX_PAGEMAP_H
#define _LINUX_PAGEMAP_H
/*
* Copyright 1995 Linus Torvalds
*/
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/compiler.h>
#include <asm/uaccess.h>
#include <linux/gfp.h>
/*
* Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
* allocation mode flags.
*/
#define AS_EIO (__GFP_BITS_SHIFT + 0) /* IO error on async write */
#define AS_ENOSPC (__GFP_BITS_SHIFT + 1) /* ENOSPC on async write */
static inline unsigned int __nocast mapping_gfp_mask(struct address_space * mapping)
{
return mapping->flags & __GFP_BITS_MASK;
}
/*
* This is non-atomic. Only to be used before the mapping is activated.
* Probably needs a barrier...
*/
static inline void mapping_set_gfp_mask(struct address_space *m, int mask)
{
m->flags = (m->flags & ~__GFP_BITS_MASK) | mask;
}
/*
* The page cache can done in larger chunks than
* one page, because it allows for more efficient
* throughput (it can then be mapped into user
* space in smaller chunks for same flexibility).
*
* Or rather, it _will_ be done in larger chunks.
*/
#define PAGE_CACHE_SHIFT PAGE_SHIFT
#define PAGE_CACHE_SIZE PAGE_SIZE
#define PAGE_CACHE_MASK PAGE_MASK
#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
#define page_cache_get(page) get_page(page)
#define page_cache_release(page) put_page(page)
void release_pages(struct page **pages, int nr, int cold);
static inline struct page *page_cache_alloc(struct address_space *x)
{
return alloc_pages(mapping_gfp_mask(x)|__GFP_NORECLAIM, 0);
}
static inline struct page *page_cache_alloc_cold(struct address_space *x)
{
return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD|__GFP_NORECLAIM, 0);
}
typedef int filler_t(void *, struct page *);
extern struct page * find_get_page(struct address_space *mapping,
unsigned long index);
extern struct page * find_lock_page(struct address_space *mapping,
unsigned long index);
extern struct page * find_trylock_page(struct address_space *mapping,
unsigned long index);
extern struct page * find_or_create_page(struct address_space *mapping,
unsigned long index, unsigned int gfp_mask);
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
unsigned int nr_pages, struct page **pages);
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
int tag, unsigned int nr_pages, struct page **pages);
/*
* Returns locked page at given index in given cache, creating it if needed.
*/
static inline struct page *grab_cache_page(struct address_space *mapping, unsigned long index)
{
return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
}
extern struct page * grab_cache_page_nowait(struct address_space *mapping,
unsigned long index);
extern struct page * read_cache_page(struct address_space *mapping,
unsigned long index, filler_t *filler,
void *data);
extern int read_cache_pages(struct address_space *mapping,
struct list_head *pages, filler_t *filler, void *data);
int add_to_page_cache(struct page *page, struct address_space *mapping,
unsigned long index, int gfp_mask);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
unsigned long index, int gfp_mask);
extern void remove_from_page_cache(struct page *page);
extern void __remove_from_page_cache(struct page *page);
extern atomic_t nr_pagecache;
#ifdef CONFIG_SMP
#define PAGECACHE_ACCT_THRESHOLD max(16, NR_CPUS * 2)
DECLARE_PER_CPU(long, nr_pagecache_local);
/*
* pagecache_acct implements approximate accounting for pagecache.
* vm_enough_memory() do not need high accuracy. Writers will keep
* an offset in their per-cpu arena and will spill that into the
* global count whenever the absolute value of the local count
* exceeds the counter's threshold.
*
* MUST be protected from preemption.
* current protection is mapping->page_lock.
*/
static inline void pagecache_acct(int count)
{
long *local;
local = &__get_cpu_var(nr_pagecache_local);
*local += count;
if (*local > PAGECACHE_ACCT_THRESHOLD || *local < -PAGECACHE_ACCT_THRESHOLD) {
atomic_add(*local, &nr_pagecache);
*local = 0;
}
}
#else
static inline void pagecache_acct(int count)
{
atomic_add(count, &nr_pagecache);
}
#endif
static inline unsigned long get_page_cache_size(void)
{
int ret = atomic_read(&nr_pagecache);
if (unlikely(ret < 0))
ret = 0;
return ret;
}
/*
* Return byte-offset into filesystem object for page.
*/
static inline loff_t page_offset(struct page *page)
{
return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
}
static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
unsigned long address)
{
pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
pgoff += vma->vm_pgoff;
return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
}
extern void FASTCALL(__lock_page(struct page *page));
extern void FASTCALL(unlock_page(struct page *page));
static inline void lock_page(struct page *page)
{
might_sleep();
if (TestSetPageLocked(page))
__lock_page(page);
}
/*
* This is exported only for wait_on_page_locked/wait_on_page_writeback.
* Never use this directly!
*/
extern void FASTCALL(wait_on_page_bit(struct page *page, int bit_nr));
/*
* Wait for a page to be unlocked.
*
* This must be called with the caller "holding" the page,
* ie with increased "page->count" so that the page won't
* go away during the wait..
*/
static inline void wait_on_page_locked(struct page *page)
{
if (PageLocked(page))
wait_on_page_bit(page, PG_locked);
}
/*
* Wait for a page to complete writeback
*/
static inline void wait_on_page_writeback(struct page *page)
{
if (PageWriteback(page))
wait_on_page_bit(page, PG_writeback);
}
extern void end_page_writeback(struct page *page);
/*
* Fault a userspace page into pagetables. Return non-zero on a fault.
*
* This assumes that two userspace pages are always sufficient. That's
* not true if PAGE_CACHE_SIZE > PAGE_SIZE.
*/
static inline int fault_in_pages_writeable(char __user *uaddr, int size)
{
int ret;
/*
* Writing zeroes into userspace here is OK, because we know that if
* the zero gets there, we'll be overwriting it.
*/
ret = __put_user(0, uaddr);
if (ret == 0) {
char __user *end = uaddr + size - 1;
/*
* If the page was already mapped, this will get a cache miss
* for sure, so try to avoid doing it.
*/
if (((unsigned long)uaddr & PAGE_MASK) !=
((unsigned long)end & PAGE_MASK))
ret = __put_user(0, end);
}
return ret;
}
static inline void fault_in_pages_readable(const char __user *uaddr, int size)
{
volatile char c;
int ret;
ret = __get_user(c, uaddr);
if (ret == 0) {
const char __user *end = uaddr + size - 1;
if (((unsigned long)uaddr & PAGE_MASK) !=
((unsigned long)end & PAGE_MASK))
__get_user(c, end);
}
}
#endif /* _LINUX_PAGEMAP_H */