linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_bios.c
Thomas Meyer 493dea2876 drm/i915: Use kcalloc instead of kzalloc to allocate array
The advantage of kcalloc is, that will prevent integer overflows which could
result from the multiplication of number of elements and size and it is also
a bit nicer to read.

The semantic patch that makes this change is available
in https://lkml.org/lkml/2011/11/25/107

Signed-off-by: Thomas Meyer <thomas@m3y3r.de>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-01-17 17:33:24 +01:00

712 lines
19 KiB
C

/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <drm/drm_dp_helper.h>
#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "intel_bios.h"
#define SLAVE_ADDR1 0x70
#define SLAVE_ADDR2 0x72
static int panel_type;
static void *
find_section(struct bdb_header *bdb, int section_id)
{
u8 *base = (u8 *)bdb;
int index = 0;
u16 total, current_size;
u8 current_id;
/* skip to first section */
index += bdb->header_size;
total = bdb->bdb_size;
/* walk the sections looking for section_id */
while (index < total) {
current_id = *(base + index);
index++;
current_size = *((u16 *)(base + index));
index += 2;
if (current_id == section_id)
return base + index;
index += current_size;
}
return NULL;
}
static u16
get_blocksize(void *p)
{
u16 *block_ptr, block_size;
block_ptr = (u16 *)((char *)p - 2);
block_size = *block_ptr;
return block_size;
}
static void
fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
const struct lvds_dvo_timing *dvo_timing)
{
panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
dvo_timing->hactive_lo;
panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
dvo_timing->hsync_pulse_width;
panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
dvo_timing->vactive_lo;
panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
dvo_timing->vsync_off;
panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
dvo_timing->vsync_pulse_width;
panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
panel_fixed_mode->clock = dvo_timing->clock * 10;
panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
if (dvo_timing->hsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
if (dvo_timing->vsync_positive)
panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
else
panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
/* Some VBTs have bogus h/vtotal values */
if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
drm_mode_set_name(panel_fixed_mode);
}
static bool
lvds_dvo_timing_equal_size(const struct lvds_dvo_timing *a,
const struct lvds_dvo_timing *b)
{
if (a->hactive_hi != b->hactive_hi ||
a->hactive_lo != b->hactive_lo)
return false;
if (a->hsync_off_hi != b->hsync_off_hi ||
a->hsync_off_lo != b->hsync_off_lo)
return false;
if (a->hsync_pulse_width != b->hsync_pulse_width)
return false;
if (a->hblank_hi != b->hblank_hi ||
a->hblank_lo != b->hblank_lo)
return false;
if (a->vactive_hi != b->vactive_hi ||
a->vactive_lo != b->vactive_lo)
return false;
if (a->vsync_off != b->vsync_off)
return false;
if (a->vsync_pulse_width != b->vsync_pulse_width)
return false;
if (a->vblank_hi != b->vblank_hi ||
a->vblank_lo != b->vblank_lo)
return false;
return true;
}
static const struct lvds_dvo_timing *
get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
int index)
{
/*
* the size of fp_timing varies on the different platform.
* So calculate the DVO timing relative offset in LVDS data
* entry to get the DVO timing entry
*/
int lfp_data_size =
lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
int dvo_timing_offset =
lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
}
/* Try to find integrated panel data */
static void
parse_lfp_panel_data(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
const struct bdb_lvds_options *lvds_options;
const struct bdb_lvds_lfp_data *lvds_lfp_data;
const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
const struct lvds_dvo_timing *panel_dvo_timing;
struct drm_display_mode *panel_fixed_mode;
int i, downclock;
lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
if (!lvds_options)
return;
dev_priv->lvds_dither = lvds_options->pixel_dither;
if (lvds_options->panel_type == 0xff)
return;
panel_type = lvds_options->panel_type;
lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
if (!lvds_lfp_data)
return;
lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
if (!lvds_lfp_data_ptrs)
return;
dev_priv->lvds_vbt = 1;
panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
lvds_lfp_data_ptrs,
lvds_options->panel_type);
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
dev_priv->lfp_lvds_vbt_mode = panel_fixed_mode;
DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n");
drm_mode_debug_printmodeline(panel_fixed_mode);
/*
* Iterate over the LVDS panel timing info to find the lowest clock
* for the native resolution.
*/
downclock = panel_dvo_timing->clock;
for (i = 0; i < 16; i++) {
const struct lvds_dvo_timing *dvo_timing;
dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
lvds_lfp_data_ptrs,
i);
if (lvds_dvo_timing_equal_size(dvo_timing, panel_dvo_timing) &&
dvo_timing->clock < downclock)
downclock = dvo_timing->clock;
}
if (downclock < panel_dvo_timing->clock && i915_lvds_downclock) {
dev_priv->lvds_downclock_avail = 1;
dev_priv->lvds_downclock = downclock * 10;
DRM_DEBUG_KMS("LVDS downclock is found in VBT. "
"Normal Clock %dKHz, downclock %dKHz\n",
panel_fixed_mode->clock, 10*downclock);
}
}
/* Try to find sdvo panel data */
static void
parse_sdvo_panel_data(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct lvds_dvo_timing *dvo_timing;
struct drm_display_mode *panel_fixed_mode;
int index;
index = i915_vbt_sdvo_panel_type;
if (index == -1) {
struct bdb_sdvo_lvds_options *sdvo_lvds_options;
sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
if (!sdvo_lvds_options)
return;
index = sdvo_lvds_options->panel_type;
}
dvo_timing = find_section(bdb, BDB_SDVO_PANEL_DTDS);
if (!dvo_timing)
return;
panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
if (!panel_fixed_mode)
return;
fill_detail_timing_data(panel_fixed_mode, dvo_timing + index);
dev_priv->sdvo_lvds_vbt_mode = panel_fixed_mode;
DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n");
drm_mode_debug_printmodeline(panel_fixed_mode);
}
static int intel_bios_ssc_frequency(struct drm_device *dev,
bool alternate)
{
switch (INTEL_INFO(dev)->gen) {
case 2:
return alternate ? 66 : 48;
case 3:
case 4:
return alternate ? 100 : 96;
default:
return alternate ? 100 : 120;
}
}
static void
parse_general_features(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct drm_device *dev = dev_priv->dev;
struct bdb_general_features *general;
general = find_section(bdb, BDB_GENERAL_FEATURES);
if (general) {
dev_priv->int_tv_support = general->int_tv_support;
dev_priv->int_crt_support = general->int_crt_support;
dev_priv->lvds_use_ssc = general->enable_ssc;
dev_priv->lvds_ssc_freq =
intel_bios_ssc_frequency(dev, general->ssc_freq);
dev_priv->display_clock_mode = general->display_clock_mode;
DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d\n",
dev_priv->int_tv_support,
dev_priv->int_crt_support,
dev_priv->lvds_use_ssc,
dev_priv->lvds_ssc_freq,
dev_priv->display_clock_mode);
}
}
static void
parse_general_definitions(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct bdb_general_definitions *general;
general = find_section(bdb, BDB_GENERAL_DEFINITIONS);
if (general) {
u16 block_size = get_blocksize(general);
if (block_size >= sizeof(*general)) {
int bus_pin = general->crt_ddc_gmbus_pin;
DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin);
if (bus_pin >= 1 && bus_pin <= 6)
dev_priv->crt_ddc_pin = bus_pin;
} else {
DRM_DEBUG_KMS("BDB_GD too small (%d). Invalid.\n",
block_size);
}
}
}
static void
parse_sdvo_device_mapping(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct sdvo_device_mapping *p_mapping;
struct bdb_general_definitions *p_defs;
struct child_device_config *p_child;
int i, child_device_num, count;
u16 block_size;
p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
if (!p_defs) {
DRM_DEBUG_KMS("No general definition block is found, unable to construct sdvo mapping.\n");
return;
}
/* judge whether the size of child device meets the requirements.
* If the child device size obtained from general definition block
* is different with sizeof(struct child_device_config), skip the
* parsing of sdvo device info
*/
if (p_defs->child_dev_size != sizeof(*p_child)) {
/* different child dev size . Ignore it */
DRM_DEBUG_KMS("different child size is found. Invalid.\n");
return;
}
/* get the block size of general definitions */
block_size = get_blocksize(p_defs);
/* get the number of child device */
child_device_num = (block_size - sizeof(*p_defs)) /
sizeof(*p_child);
count = 0;
for (i = 0; i < child_device_num; i++) {
p_child = &(p_defs->devices[i]);
if (!p_child->device_type) {
/* skip the device block if device type is invalid */
continue;
}
if (p_child->slave_addr != SLAVE_ADDR1 &&
p_child->slave_addr != SLAVE_ADDR2) {
/*
* If the slave address is neither 0x70 nor 0x72,
* it is not a SDVO device. Skip it.
*/
continue;
}
if (p_child->dvo_port != DEVICE_PORT_DVOB &&
p_child->dvo_port != DEVICE_PORT_DVOC) {
/* skip the incorrect SDVO port */
DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n");
continue;
}
DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on"
" %s port\n",
p_child->slave_addr,
(p_child->dvo_port == DEVICE_PORT_DVOB) ?
"SDVOB" : "SDVOC");
p_mapping = &(dev_priv->sdvo_mappings[p_child->dvo_port - 1]);
if (!p_mapping->initialized) {
p_mapping->dvo_port = p_child->dvo_port;
p_mapping->slave_addr = p_child->slave_addr;
p_mapping->dvo_wiring = p_child->dvo_wiring;
p_mapping->ddc_pin = p_child->ddc_pin;
p_mapping->i2c_pin = p_child->i2c_pin;
p_mapping->initialized = 1;
DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
p_mapping->dvo_port,
p_mapping->slave_addr,
p_mapping->dvo_wiring,
p_mapping->ddc_pin,
p_mapping->i2c_pin);
} else {
DRM_DEBUG_KMS("Maybe one SDVO port is shared by "
"two SDVO device.\n");
}
if (p_child->slave2_addr) {
/* Maybe this is a SDVO device with multiple inputs */
/* And the mapping info is not added */
DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this"
" is a SDVO device with multiple inputs.\n");
}
count++;
}
if (!count) {
/* No SDVO device info is found */
DRM_DEBUG_KMS("No SDVO device info is found in VBT\n");
}
return;
}
static void
parse_driver_features(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct drm_device *dev = dev_priv->dev;
struct bdb_driver_features *driver;
driver = find_section(bdb, BDB_DRIVER_FEATURES);
if (!driver)
return;
if (SUPPORTS_EDP(dev) &&
driver->lvds_config == BDB_DRIVER_FEATURE_EDP)
dev_priv->edp.support = 1;
if (driver->dual_frequency)
dev_priv->render_reclock_avail = true;
}
static void
parse_edp(struct drm_i915_private *dev_priv, struct bdb_header *bdb)
{
struct bdb_edp *edp;
struct edp_power_seq *edp_pps;
struct edp_link_params *edp_link_params;
edp = find_section(bdb, BDB_EDP);
if (!edp) {
if (SUPPORTS_EDP(dev_priv->dev) && dev_priv->edp.support) {
DRM_DEBUG_KMS("No eDP BDB found but eDP panel "
"supported, assume %dbpp panel color "
"depth.\n",
dev_priv->edp.bpp);
}
return;
}
switch ((edp->color_depth >> (panel_type * 2)) & 3) {
case EDP_18BPP:
dev_priv->edp.bpp = 18;
break;
case EDP_24BPP:
dev_priv->edp.bpp = 24;
break;
case EDP_30BPP:
dev_priv->edp.bpp = 30;
break;
}
/* Get the eDP sequencing and link info */
edp_pps = &edp->power_seqs[panel_type];
edp_link_params = &edp->link_params[panel_type];
dev_priv->edp.pps = *edp_pps;
dev_priv->edp.rate = edp_link_params->rate ? DP_LINK_BW_2_7 :
DP_LINK_BW_1_62;
switch (edp_link_params->lanes) {
case 0:
dev_priv->edp.lanes = 1;
break;
case 1:
dev_priv->edp.lanes = 2;
break;
case 3:
default:
dev_priv->edp.lanes = 4;
break;
}
switch (edp_link_params->preemphasis) {
case 0:
dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPHASIS_0;
break;
case 1:
dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPHASIS_3_5;
break;
case 2:
dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPHASIS_6;
break;
case 3:
dev_priv->edp.preemphasis = DP_TRAIN_PRE_EMPHASIS_9_5;
break;
}
switch (edp_link_params->vswing) {
case 0:
dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_400;
break;
case 1:
dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_600;
break;
case 2:
dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_800;
break;
case 3:
dev_priv->edp.vswing = DP_TRAIN_VOLTAGE_SWING_1200;
break;
}
}
static void
parse_device_mapping(struct drm_i915_private *dev_priv,
struct bdb_header *bdb)
{
struct bdb_general_definitions *p_defs;
struct child_device_config *p_child, *child_dev_ptr;
int i, child_device_num, count;
u16 block_size;
p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
if (!p_defs) {
DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n");
return;
}
/* judge whether the size of child device meets the requirements.
* If the child device size obtained from general definition block
* is different with sizeof(struct child_device_config), skip the
* parsing of sdvo device info
*/
if (p_defs->child_dev_size != sizeof(*p_child)) {
/* different child dev size . Ignore it */
DRM_DEBUG_KMS("different child size is found. Invalid.\n");
return;
}
/* get the block size of general definitions */
block_size = get_blocksize(p_defs);
/* get the number of child device */
child_device_num = (block_size - sizeof(*p_defs)) /
sizeof(*p_child);
count = 0;
/* get the number of child device that is present */
for (i = 0; i < child_device_num; i++) {
p_child = &(p_defs->devices[i]);
if (!p_child->device_type) {
/* skip the device block if device type is invalid */
continue;
}
count++;
}
if (!count) {
DRM_DEBUG_KMS("no child dev is parsed from VBT\n");
return;
}
dev_priv->child_dev = kcalloc(count, sizeof(*p_child), GFP_KERNEL);
if (!dev_priv->child_dev) {
DRM_DEBUG_KMS("No memory space for child device\n");
return;
}
dev_priv->child_dev_num = count;
count = 0;
for (i = 0; i < child_device_num; i++) {
p_child = &(p_defs->devices[i]);
if (!p_child->device_type) {
/* skip the device block if device type is invalid */
continue;
}
child_dev_ptr = dev_priv->child_dev + count;
count++;
memcpy((void *)child_dev_ptr, (void *)p_child,
sizeof(*p_child));
}
return;
}
static void
init_vbt_defaults(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
dev_priv->crt_ddc_pin = GMBUS_PORT_VGADDC;
/* LFP panel data */
dev_priv->lvds_dither = 1;
dev_priv->lvds_vbt = 0;
/* SDVO panel data */
dev_priv->sdvo_lvds_vbt_mode = NULL;
/* general features */
dev_priv->int_tv_support = 1;
dev_priv->int_crt_support = 1;
/* Default to using SSC */
dev_priv->lvds_use_ssc = 1;
dev_priv->lvds_ssc_freq = intel_bios_ssc_frequency(dev, 1);
DRM_DEBUG_KMS("Set default to SSC at %dMHz\n", dev_priv->lvds_ssc_freq);
/* eDP data */
dev_priv->edp.bpp = 18;
}
/**
* intel_parse_bios - find VBT and initialize settings from the BIOS
* @dev: DRM device
*
* Loads the Video BIOS and checks that the VBT exists. Sets scratch registers
* to appropriate values.
*
* Returns 0 on success, nonzero on failure.
*/
bool
intel_parse_bios(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct pci_dev *pdev = dev->pdev;
struct bdb_header *bdb = NULL;
u8 __iomem *bios = NULL;
init_vbt_defaults(dev_priv);
/* XXX Should this validation be moved to intel_opregion.c? */
if (dev_priv->opregion.vbt) {
struct vbt_header *vbt = dev_priv->opregion.vbt;
if (memcmp(vbt->signature, "$VBT", 4) == 0) {
DRM_DEBUG_KMS("Using VBT from OpRegion: %20s\n",
vbt->signature);
bdb = (struct bdb_header *)((char *)vbt + vbt->bdb_offset);
} else
dev_priv->opregion.vbt = NULL;
}
if (bdb == NULL) {
struct vbt_header *vbt = NULL;
size_t size;
int i;
bios = pci_map_rom(pdev, &size);
if (!bios)
return -1;
/* Scour memory looking for the VBT signature */
for (i = 0; i + 4 < size; i++) {
if (!memcmp(bios + i, "$VBT", 4)) {
vbt = (struct vbt_header *)(bios + i);
break;
}
}
if (!vbt) {
DRM_ERROR("VBT signature missing\n");
pci_unmap_rom(pdev, bios);
return -1;
}
bdb = (struct bdb_header *)(bios + i + vbt->bdb_offset);
}
/* Grab useful general definitions */
parse_general_features(dev_priv, bdb);
parse_general_definitions(dev_priv, bdb);
parse_lfp_panel_data(dev_priv, bdb);
parse_sdvo_panel_data(dev_priv, bdb);
parse_sdvo_device_mapping(dev_priv, bdb);
parse_device_mapping(dev_priv, bdb);
parse_driver_features(dev_priv, bdb);
parse_edp(dev_priv, bdb);
if (bios)
pci_unmap_rom(pdev, bios);
return 0;
}
/* Ensure that vital registers have been initialised, even if the BIOS
* is absent or just failing to do its job.
*/
void intel_setup_bios(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Set the Panel Power On/Off timings if uninitialized. */
if ((I915_READ(PP_ON_DELAYS) == 0) && (I915_READ(PP_OFF_DELAYS) == 0)) {
/* Set T2 to 40ms and T5 to 200ms */
I915_WRITE(PP_ON_DELAYS, 0x019007d0);
/* Set T3 to 35ms and Tx to 200ms */
I915_WRITE(PP_OFF_DELAYS, 0x015e07d0);
}
}