linux_dsm_epyc7002/arch/powerpc/mm/fault.c
Linus Torvalds c90fca951e powerpc updates for 4.18
Notable changes:
 
  - Support for split PMD page table lock on 64-bit Book3S (Power8/9).
 
  - Add support for HAVE_RELIABLE_STACKTRACE, so we properly support live
    patching again.
 
  - Add support for patching barrier_nospec in copy_from_user() and syscall entry.
 
  - A couple of fixes for our data breakpoints on Book3S.
 
  - A series from Nick optimising TLB/mm handling with the Radix MMU.
 
  - Numerous small cleanups to squash sparse/gcc warnings from Mathieu Malaterre.
 
  - Several series optimising various parts of the 32-bit code from Christophe Leroy.
 
  - Removal of support for two old machines, "SBC834xE" and "C2K" ("GEFanuc,C2K"),
    which is why the diffstat has so many deletions.
 
 And many other small improvements & fixes.
 
 There's a few out-of-area changes. Some minor ftrace changes OK'ed by Steve, and
 a fix to our powernv cpuidle driver. Then there's a series touching mm, x86 and
 fs/proc/task_mmu.c, which cleans up some details around pkey support. It was
 ack'ed/reviewed by Ingo & Dave and has been in next for several weeks.
 
 Thanks to:
   Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Al Viro, Andrew
   Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Arnd Bergmann, Balbir Singh,
   Cédric Le Goater, Christophe Leroy, Christophe Lombard, Colin Ian King, Dave
   Hansen, Fabio Estevam, Finn Thain, Frederic Barrat, Gautham R. Shenoy, Haren
   Myneni, Hari Bathini, Ingo Molnar, Jonathan Neuschäfer, Josh Poimboeuf,
   Kamalesh Babulal, Madhavan Srinivasan, Mahesh Salgaonkar, Mark Greer, Mathieu
   Malaterre, Matthew Wilcox, Michael Neuling, Michal Suchanek, Naveen N. Rao,
   Nicholas Piggin, Nicolai Stange, Olof Johansson, Paul Gortmaker, Paul
   Mackerras, Peter Rosin, Pridhiviraj Paidipeddi, Ram Pai, Rashmica Gupta, Ravi
   Bangoria, Russell Currey, Sam Bobroff, Samuel Mendoza-Jonas, Segher
   Boessenkool, Shilpasri G Bhat, Simon Guo, Souptick Joarder, Stewart Smith,
   Thiago Jung Bauermann, Torsten Duwe, Vaibhav Jain, Wei Yongjun, Wolfram Sang,
   Yisheng Xie, YueHaibing.
 -----BEGIN PGP SIGNATURE-----
 
 iQIwBAABCAAaBQJbGQKBExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYBq
 TRAAioK7rz5xYMkxaM3Ng3ybobEeNAwQqOolz98xvmnB9SfDWNuc99vf8cGu0/fQ
 zc8AKZ5RcnwipOjyGlxW9oa1ZhVq0xtYnQPiYLEKMdLQmh5D+C7+KpvAd1UElweg
 ub40/xDySWfMujfuMSF9JDCWPIXyojt4Xg5nJKIVRrAm/3YMe/+i5Am7NWHuMCEb
 aQmZtlYW5Mz81XY0968hjpUO6eKFRmsaM7yFAhGTXx6+oLRpGj1PZB4AwdRIKS2L
 Ak7q/VgxtE4W+s3a0GK2s+eXIhGKeFuX9AVnx3nti+8/K1OqrqhDcLMUC/9JpCpv
 EvOtO7dxPnZujHjdu4Eai/xNoo4h6zRy7bWqve9LoBM40CP5jljKzu1lwqqb5yO0
 jC7/aXhgiSIxxcRJLjoI/TYpZPu40MifrkydmczykdPyPCnMIWEJDcj4KsRL/9Y8
 9SSbJzRNC/SgQNTbUYPZFFi6G0QaMmlcbCb628k8QT+Gn3Xkdf/ZtxzqEyoF4Irq
 46kFBsiSSK4Bu0rVlcUtJQLgdqytWULO6NKEYnD67laxYcgQd8pGFQ8SjZhRZLgU
 q5LA3HIWhoAI4M0wZhOnKXO6JfiQ1UbO8gUJLsWsfF0Fk5KAcdm+4kb4jbI1H4Qk
 Vol9WNRZwEllyaiqScZN9RuVVuH0GPOZeEH1dtWK+uWi0lM=
 =ZlBf
 -----END PGP SIGNATURE-----

Merge tag 'powerpc-4.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux

Pull powerpc updates from Michael Ellerman:
 "Notable changes:

   - Support for split PMD page table lock on 64-bit Book3S (Power8/9).

   - Add support for HAVE_RELIABLE_STACKTRACE, so we properly support
     live patching again.

   - Add support for patching barrier_nospec in copy_from_user() and
     syscall entry.

   - A couple of fixes for our data breakpoints on Book3S.

   - A series from Nick optimising TLB/mm handling with the Radix MMU.

   - Numerous small cleanups to squash sparse/gcc warnings from Mathieu
     Malaterre.

   - Several series optimising various parts of the 32-bit code from
     Christophe Leroy.

   - Removal of support for two old machines, "SBC834xE" and "C2K"
     ("GEFanuc,C2K"), which is why the diffstat has so many deletions.

  And many other small improvements & fixes.

  There's a few out-of-area changes. Some minor ftrace changes OK'ed by
  Steve, and a fix to our powernv cpuidle driver. Then there's a series
  touching mm, x86 and fs/proc/task_mmu.c, which cleans up some details
  around pkey support. It was ack'ed/reviewed by Ingo & Dave and has
  been in next for several weeks.

  Thanks to: Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Al
  Viro, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Arnd
  Bergmann, Balbir Singh, Cédric Le Goater, Christophe Leroy, Christophe
  Lombard, Colin Ian King, Dave Hansen, Fabio Estevam, Finn Thain,
  Frederic Barrat, Gautham R. Shenoy, Haren Myneni, Hari Bathini, Ingo
  Molnar, Jonathan Neuschäfer, Josh Poimboeuf, Kamalesh Babulal,
  Madhavan Srinivasan, Mahesh Salgaonkar, Mark Greer, Mathieu Malaterre,
  Matthew Wilcox, Michael Neuling, Michal Suchanek, Naveen N. Rao,
  Nicholas Piggin, Nicolai Stange, Olof Johansson, Paul Gortmaker, Paul
  Mackerras, Peter Rosin, Pridhiviraj Paidipeddi, Ram Pai, Rashmica
  Gupta, Ravi Bangoria, Russell Currey, Sam Bobroff, Samuel
  Mendoza-Jonas, Segher Boessenkool, Shilpasri G Bhat, Simon Guo,
  Souptick Joarder, Stewart Smith, Thiago Jung Bauermann, Torsten Duwe,
  Vaibhav Jain, Wei Yongjun, Wolfram Sang, Yisheng Xie, YueHaibing"

* tag 'powerpc-4.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (251 commits)
  powerpc/64s/radix: Fix missing ptesync in flush_cache_vmap
  cpuidle: powernv: Fix promotion from snooze if next state disabled
  powerpc: fix build failure by disabling attribute-alias warning in pci_32
  ocxl: Fix missing unlock on error in afu_ioctl_enable_p9_wait()
  powerpc-opal: fix spelling mistake "Uniterrupted" -> "Uninterrupted"
  powerpc: fix spelling mistake: "Usupported" -> "Unsupported"
  powerpc/pkeys: Detach execute_only key on !PROT_EXEC
  powerpc/powernv: copy/paste - Mask SO bit in CR
  powerpc: Remove core support for Marvell mv64x60 hostbridges
  powerpc/boot: Remove core support for Marvell mv64x60 hostbridges
  powerpc/boot: Remove support for Marvell mv64x60 i2c controller
  powerpc/boot: Remove support for Marvell MPSC serial controller
  powerpc/embedded6xx: Remove C2K board support
  powerpc/lib: optimise PPC32 memcmp
  powerpc/lib: optimise 32 bits __clear_user()
  powerpc/time: inline arch_vtime_task_switch()
  powerpc/Makefile: set -mcpu=860 flag for the 8xx
  powerpc: Implement csum_ipv6_magic in assembly
  powerpc/32: Optimise __csum_partial()
  powerpc/lib: Adjust .balign inside string functions for PPC32
  ...
2018-06-07 10:23:33 -07:00

659 lines
18 KiB
C

/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Derived from "arch/i386/mm/fault.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Modified by Cort Dougan and Paul Mackerras.
*
* Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/pagemap.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/highmem.h>
#include <linux/extable.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/perf_event.h>
#include <linux/ratelimit.h>
#include <linux/context_tracking.h>
#include <linux/hugetlb.h>
#include <linux/uaccess.h>
#include <asm/firmware.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/siginfo.h>
#include <asm/debug.h>
static inline bool notify_page_fault(struct pt_regs *regs)
{
bool ret = false;
#ifdef CONFIG_KPROBES
/* kprobe_running() needs smp_processor_id() */
if (!user_mode(regs)) {
preempt_disable();
if (kprobe_running() && kprobe_fault_handler(regs, 11))
ret = true;
preempt_enable();
}
#endif /* CONFIG_KPROBES */
if (unlikely(debugger_fault_handler(regs)))
ret = true;
return ret;
}
/*
* Check whether the instruction inst is a store using
* an update addressing form which will update r1.
*/
static bool store_updates_sp(unsigned int inst)
{
/* check for 1 in the rA field */
if (((inst >> 16) & 0x1f) != 1)
return false;
/* check major opcode */
switch (inst >> 26) {
case OP_STWU:
case OP_STBU:
case OP_STHU:
case OP_STFSU:
case OP_STFDU:
return true;
case OP_STD: /* std or stdu */
return (inst & 3) == 1;
case OP_31:
/* check minor opcode */
switch ((inst >> 1) & 0x3ff) {
case OP_31_XOP_STDUX:
case OP_31_XOP_STWUX:
case OP_31_XOP_STBUX:
case OP_31_XOP_STHUX:
case OP_31_XOP_STFSUX:
case OP_31_XOP_STFDUX:
return true;
}
}
return false;
}
/*
* do_page_fault error handling helpers
*/
static int
__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code,
int pkey)
{
/*
* If we are in kernel mode, bail out with a SEGV, this will
* be caught by the assembly which will restore the non-volatile
* registers before calling bad_page_fault()
*/
if (!user_mode(regs))
return SIGSEGV;
_exception_pkey(SIGSEGV, regs, si_code, address, pkey);
return 0;
}
static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
{
return __bad_area_nosemaphore(regs, address, SEGV_MAPERR, 0);
}
static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
int pkey)
{
struct mm_struct *mm = current->mm;
/*
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
up_read(&mm->mmap_sem);
return __bad_area_nosemaphore(regs, address, si_code, pkey);
}
static noinline int bad_area(struct pt_regs *regs, unsigned long address)
{
return __bad_area(regs, address, SEGV_MAPERR, 0);
}
static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
int pkey)
{
return __bad_area_nosemaphore(regs, address, SEGV_PKUERR, pkey);
}
static noinline int bad_access(struct pt_regs *regs, unsigned long address)
{
return __bad_area(regs, address, SEGV_ACCERR, 0);
}
static int do_sigbus(struct pt_regs *regs, unsigned long address,
unsigned int fault)
{
siginfo_t info;
unsigned int lsb = 0;
if (!user_mode(regs))
return SIGBUS;
current->thread.trap_nr = BUS_ADRERR;
clear_siginfo(&info);
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = BUS_ADRERR;
info.si_addr = (void __user *)address;
#ifdef CONFIG_MEMORY_FAILURE
if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
current->comm, current->pid, address);
info.si_code = BUS_MCEERR_AR;
}
if (fault & VM_FAULT_HWPOISON_LARGE)
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
if (fault & VM_FAULT_HWPOISON)
lsb = PAGE_SHIFT;
#endif
info.si_addr_lsb = lsb;
force_sig_info(SIGBUS, &info, current);
return 0;
}
static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
{
/*
* Kernel page fault interrupted by SIGKILL. We have no reason to
* continue processing.
*/
if (fatal_signal_pending(current) && !user_mode(regs))
return SIGKILL;
/* Out of memory */
if (fault & VM_FAULT_OOM) {
/*
* We ran out of memory, or some other thing happened to us that
* made us unable to handle the page fault gracefully.
*/
if (!user_mode(regs))
return SIGSEGV;
pagefault_out_of_memory();
} else {
if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
VM_FAULT_HWPOISON_LARGE))
return do_sigbus(regs, addr, fault);
else if (fault & VM_FAULT_SIGSEGV)
return bad_area_nosemaphore(regs, addr);
else
BUG();
}
return 0;
}
/* Is this a bad kernel fault ? */
static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
unsigned long address)
{
if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
printk_ratelimited(KERN_CRIT "kernel tried to execute"
" exec-protected page (%lx) -"
"exploit attempt? (uid: %d)\n",
address, from_kuid(&init_user_ns,
current_uid()));
}
return is_exec || (address >= TASK_SIZE);
}
static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
struct vm_area_struct *vma, unsigned int flags,
bool *must_retry)
{
/*
* N.B. The POWER/Open ABI allows programs to access up to
* 288 bytes below the stack pointer.
* The kernel signal delivery code writes up to about 1.5kB
* below the stack pointer (r1) before decrementing it.
* The exec code can write slightly over 640kB to the stack
* before setting the user r1. Thus we allow the stack to
* expand to 1MB without further checks.
*/
if (address + 0x100000 < vma->vm_end) {
unsigned int __user *nip = (unsigned int __user *)regs->nip;
/* get user regs even if this fault is in kernel mode */
struct pt_regs *uregs = current->thread.regs;
if (uregs == NULL)
return true;
/*
* A user-mode access to an address a long way below
* the stack pointer is only valid if the instruction
* is one which would update the stack pointer to the
* address accessed if the instruction completed,
* i.e. either stwu rs,n(r1) or stwux rs,r1,rb
* (or the byte, halfword, float or double forms).
*
* If we don't check this then any write to the area
* between the last mapped region and the stack will
* expand the stack rather than segfaulting.
*/
if (address + 2048 >= uregs->gpr[1])
return false;
if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
access_ok(VERIFY_READ, nip, sizeof(*nip))) {
unsigned int inst;
int res;
pagefault_disable();
res = __get_user_inatomic(inst, nip);
pagefault_enable();
if (!res)
return !store_updates_sp(inst);
*must_retry = true;
}
return true;
}
return false;
}
static bool access_error(bool is_write, bool is_exec,
struct vm_area_struct *vma)
{
/*
* Allow execution from readable areas if the MMU does not
* provide separate controls over reading and executing.
*
* Note: That code used to not be enabled for 4xx/BookE.
* It is now as I/D cache coherency for these is done at
* set_pte_at() time and I see no reason why the test
* below wouldn't be valid on those processors. This -may-
* break programs compiled with a really old ABI though.
*/
if (is_exec) {
return !(vma->vm_flags & VM_EXEC) &&
(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
!(vma->vm_flags & (VM_READ | VM_WRITE)));
}
if (is_write) {
if (unlikely(!(vma->vm_flags & VM_WRITE)))
return true;
return false;
}
if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
return true;
/*
* We should ideally do the vma pkey access check here. But in the
* fault path, handle_mm_fault() also does the same check. To avoid
* these multiple checks, we skip it here and handle access error due
* to pkeys later.
*/
return false;
}
#ifdef CONFIG_PPC_SMLPAR
static inline void cmo_account_page_fault(void)
{
if (firmware_has_feature(FW_FEATURE_CMO)) {
u32 page_ins;
preempt_disable();
page_ins = be32_to_cpu(get_lppaca()->page_ins);
page_ins += 1 << PAGE_FACTOR;
get_lppaca()->page_ins = cpu_to_be32(page_ins);
preempt_enable();
}
}
#else
static inline void cmo_account_page_fault(void) { }
#endif /* CONFIG_PPC_SMLPAR */
#ifdef CONFIG_PPC_STD_MMU
static void sanity_check_fault(bool is_write, unsigned long error_code)
{
/*
* For hash translation mode, we should never get a
* PROTFAULT. Any update to pte to reduce access will result in us
* removing the hash page table entry, thus resulting in a DSISR_NOHPTE
* fault instead of DSISR_PROTFAULT.
*
* A pte update to relax the access will not result in a hash page table
* entry invalidate and hence can result in DSISR_PROTFAULT.
* ptep_set_access_flags() doesn't do a hpte flush. This is why we have
* the special !is_write in the below conditional.
*
* For platforms that doesn't supports coherent icache and do support
* per page noexec bit, we do setup things such that we do the
* sync between D/I cache via fault. But that is handled via low level
* hash fault code (hash_page_do_lazy_icache()) and we should not reach
* here in such case.
*
* For wrong access that can result in PROTFAULT, the above vma->vm_flags
* check should handle those and hence we should fall to the bad_area
* handling correctly.
*
* For embedded with per page exec support that doesn't support coherent
* icache we do get PROTFAULT and we handle that D/I cache sync in
* set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
* is conditional for server MMU.
*
* For radix, we can get prot fault for autonuma case, because radix
* page table will have them marked noaccess for user.
*/
if (!radix_enabled() && !is_write)
WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
}
#else
static void sanity_check_fault(bool is_write, unsigned long error_code) { }
#endif /* CONFIG_PPC_STD_MMU */
/*
* Define the correct "is_write" bit in error_code based
* on the processor family
*/
#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
#define page_fault_is_write(__err) ((__err) & ESR_DST)
#define page_fault_is_bad(__err) (0)
#else
#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
#if defined(CONFIG_PPC_8xx)
#define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
#elif defined(CONFIG_PPC64)
#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
#else
#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
#endif
#endif
/*
* For 600- and 800-family processors, the error_code parameter is DSISR
* for a data fault, SRR1 for an instruction fault. For 400-family processors
* the error_code parameter is ESR for a data fault, 0 for an instruction
* fault.
* For 64-bit processors, the error_code parameter is
* - DSISR for a non-SLB data access fault,
* - SRR1 & 0x08000000 for a non-SLB instruction access fault
* - 0 any SLB fault.
*
* The return value is 0 if the fault was handled, or the signal
* number if this is a kernel fault that can't be handled here.
*/
static int __do_page_fault(struct pt_regs *regs, unsigned long address,
unsigned long error_code)
{
struct vm_area_struct * vma;
struct mm_struct *mm = current->mm;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
int is_exec = TRAP(regs) == 0x400;
int is_user = user_mode(regs);
int is_write = page_fault_is_write(error_code);
int fault, major = 0;
bool must_retry = false;
if (notify_page_fault(regs))
return 0;
if (unlikely(page_fault_is_bad(error_code))) {
if (is_user) {
_exception(SIGBUS, regs, BUS_OBJERR, address);
return 0;
}
return SIGBUS;
}
/* Additional sanity check(s) */
sanity_check_fault(is_write, error_code);
/*
* The kernel should never take an execute fault nor should it
* take a page fault to a kernel address.
*/
if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
return SIGSEGV;
/*
* If we're in an interrupt, have no user context or are running
* in a region with pagefaults disabled then we must not take the fault
*/
if (unlikely(faulthandler_disabled() || !mm)) {
if (is_user)
printk_ratelimited(KERN_ERR "Page fault in user mode"
" with faulthandler_disabled()=%d"
" mm=%p\n",
faulthandler_disabled(), mm);
return bad_area_nosemaphore(regs, address);
}
/* We restore the interrupt state now */
if (!arch_irq_disabled_regs(regs))
local_irq_enable();
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
if (error_code & DSISR_KEYFAULT)
return bad_key_fault_exception(regs, address,
get_mm_addr_key(mm, address));
/*
* We want to do this outside mmap_sem, because reading code around nip
* can result in fault, which will cause a deadlock when called with
* mmap_sem held
*/
if (is_user)
flags |= FAULT_FLAG_USER;
if (is_write)
flags |= FAULT_FLAG_WRITE;
if (is_exec)
flags |= FAULT_FLAG_INSTRUCTION;
/* When running in the kernel we expect faults to occur only to
* addresses in user space. All other faults represent errors in the
* kernel and should generate an OOPS. Unfortunately, in the case of an
* erroneous fault occurring in a code path which already holds mmap_sem
* we will deadlock attempting to validate the fault against the
* address space. Luckily the kernel only validly references user
* space from well defined areas of code, which are listed in the
* exceptions table.
*
* As the vast majority of faults will be valid we will only perform
* the source reference check when there is a possibility of a deadlock.
* Attempt to lock the address space, if we cannot we then validate the
* source. If this is invalid we can skip the address space check,
* thus avoiding the deadlock.
*/
if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
if (!is_user && !search_exception_tables(regs->nip))
return bad_area_nosemaphore(regs, address);
retry:
down_read(&mm->mmap_sem);
} else {
/*
* The above down_read_trylock() might have succeeded in
* which case we'll have missed the might_sleep() from
* down_read():
*/
might_sleep();
}
vma = find_vma(mm, address);
if (unlikely(!vma))
return bad_area(regs, address);
if (likely(vma->vm_start <= address))
goto good_area;
if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
return bad_area(regs, address);
/* The stack is being expanded, check if it's valid */
if (unlikely(bad_stack_expansion(regs, address, vma, flags,
&must_retry))) {
if (!must_retry)
return bad_area(regs, address);
up_read(&mm->mmap_sem);
if (fault_in_pages_readable((const char __user *)regs->nip,
sizeof(unsigned int)))
return bad_area_nosemaphore(regs, address);
goto retry;
}
/* Try to expand it */
if (unlikely(expand_stack(vma, address)))
return bad_area(regs, address);
good_area:
if (unlikely(access_error(is_write, is_exec, vma)))
return bad_access(regs, address);
/*
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault.
*/
fault = handle_mm_fault(vma, address, flags);
#ifdef CONFIG_PPC_MEM_KEYS
/*
* we skipped checking for access error due to key earlier.
* Check that using handle_mm_fault error return.
*/
if (unlikely(fault & VM_FAULT_SIGSEGV) &&
!arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
int pkey = vma_pkey(vma);
up_read(&mm->mmap_sem);
return bad_key_fault_exception(regs, address, pkey);
}
#endif /* CONFIG_PPC_MEM_KEYS */
major |= fault & VM_FAULT_MAJOR;
/*
* Handle the retry right now, the mmap_sem has been released in that
* case.
*/
if (unlikely(fault & VM_FAULT_RETRY)) {
/* We retry only once */
if (flags & FAULT_FLAG_ALLOW_RETRY) {
/*
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation.
*/
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
if (!fatal_signal_pending(current))
goto retry;
}
/*
* User mode? Just return to handle the fatal exception otherwise
* return to bad_page_fault
*/
return is_user ? 0 : SIGBUS;
}
up_read(&current->mm->mmap_sem);
if (unlikely(fault & VM_FAULT_ERROR))
return mm_fault_error(regs, address, fault);
/*
* Major/minor page fault accounting.
*/
if (major) {
current->maj_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
cmo_account_page_fault();
} else {
current->min_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
}
return 0;
}
NOKPROBE_SYMBOL(__do_page_fault);
int do_page_fault(struct pt_regs *regs, unsigned long address,
unsigned long error_code)
{
enum ctx_state prev_state = exception_enter();
int rc = __do_page_fault(regs, address, error_code);
exception_exit(prev_state);
return rc;
}
NOKPROBE_SYMBOL(do_page_fault);
/*
* bad_page_fault is called when we have a bad access from the kernel.
* It is called from the DSI and ISI handlers in head.S and from some
* of the procedures in traps.c.
*/
void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
{
const struct exception_table_entry *entry;
/* Are we prepared to handle this fault? */
if ((entry = search_exception_tables(regs->nip)) != NULL) {
regs->nip = extable_fixup(entry);
return;
}
/* kernel has accessed a bad area */
switch (TRAP(regs)) {
case 0x300:
case 0x380:
printk(KERN_ALERT "Unable to handle kernel paging request for "
"data at address 0x%08lx\n", regs->dar);
break;
case 0x400:
case 0x480:
printk(KERN_ALERT "Unable to handle kernel paging request for "
"instruction fetch\n");
break;
case 0x600:
printk(KERN_ALERT "Unable to handle kernel paging request for "
"unaligned access at address 0x%08lx\n", regs->dar);
break;
default:
printk(KERN_ALERT "Unable to handle kernel paging request for "
"unknown fault\n");
break;
}
printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
regs->nip);
if (task_stack_end_corrupted(current))
printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
die("Kernel access of bad area", regs, sig);
}