linux_dsm_epyc7002/drivers/net/wireless/ath/ath10k/htt_rx.c
Sujith Manoharan 55314fc2b6 ath10k: fix no-ack frame status
Use the new IEEE80211_TX_STAT_NOACK_TRANSMITTED flag
to indicate successful transmission of no-ack frames.
This fixes multicast frame accounting.

Signed-off-by: Sujith Manoharan <c_manoha@qca.qualcomm.com>
Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2015-04-09 15:11:30 +03:00

2110 lines
56 KiB
C

/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "core.h"
#include "htc.h"
#include "htt.h"
#include "txrx.h"
#include "debug.h"
#include "trace.h"
#include "mac.h"
#include <linux/log2.h>
#define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX
#define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1)
/* when under memory pressure rx ring refill may fail and needs a retry */
#define HTT_RX_RING_REFILL_RETRY_MS 50
static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
static void ath10k_htt_txrx_compl_task(unsigned long ptr);
static struct sk_buff *
ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u32 paddr)
{
struct ath10k_skb_rxcb *rxcb;
hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
if (rxcb->paddr == paddr)
return ATH10K_RXCB_SKB(rxcb);
WARN_ON_ONCE(1);
return NULL;
}
static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
{
struct sk_buff *skb;
struct ath10k_skb_rxcb *rxcb;
struct hlist_node *n;
int i;
if (htt->rx_ring.in_ord_rx) {
hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
skb = ATH10K_RXCB_SKB(rxcb);
dma_unmap_single(htt->ar->dev, rxcb->paddr,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
hash_del(&rxcb->hlist);
dev_kfree_skb_any(skb);
}
} else {
for (i = 0; i < htt->rx_ring.size; i++) {
skb = htt->rx_ring.netbufs_ring[i];
if (!skb)
continue;
rxcb = ATH10K_SKB_RXCB(skb);
dma_unmap_single(htt->ar->dev, rxcb->paddr,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
}
}
htt->rx_ring.fill_cnt = 0;
hash_init(htt->rx_ring.skb_table);
memset(htt->rx_ring.netbufs_ring, 0,
htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
}
static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
{
struct htt_rx_desc *rx_desc;
struct ath10k_skb_rxcb *rxcb;
struct sk_buff *skb;
dma_addr_t paddr;
int ret = 0, idx;
/* The Full Rx Reorder firmware has no way of telling the host
* implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
* To keep things simple make sure ring is always half empty. This
* guarantees there'll be no replenishment overruns possible.
*/
BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
while (num > 0) {
skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
if (!skb) {
ret = -ENOMEM;
goto fail;
}
if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
skb_pull(skb,
PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
skb->data);
/* Clear rx_desc attention word before posting to Rx ring */
rx_desc = (struct htt_rx_desc *)skb->data;
rx_desc->attention.flags = __cpu_to_le32(0);
paddr = dma_map_single(htt->ar->dev, skb->data,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
dev_kfree_skb_any(skb);
ret = -ENOMEM;
goto fail;
}
rxcb = ATH10K_SKB_RXCB(skb);
rxcb->paddr = paddr;
htt->rx_ring.netbufs_ring[idx] = skb;
htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
htt->rx_ring.fill_cnt++;
if (htt->rx_ring.in_ord_rx) {
hash_add(htt->rx_ring.skb_table,
&ATH10K_SKB_RXCB(skb)->hlist,
(u32)paddr);
}
num--;
idx++;
idx &= htt->rx_ring.size_mask;
}
fail:
/*
* Make sure the rx buffer is updated before available buffer
* index to avoid any potential rx ring corruption.
*/
mb();
*htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
return ret;
}
static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
{
lockdep_assert_held(&htt->rx_ring.lock);
return __ath10k_htt_rx_ring_fill_n(htt, num);
}
static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
{
int ret, num_deficit, num_to_fill;
/* Refilling the whole RX ring buffer proves to be a bad idea. The
* reason is RX may take up significant amount of CPU cycles and starve
* other tasks, e.g. TX on an ethernet device while acting as a bridge
* with ath10k wlan interface. This ended up with very poor performance
* once CPU the host system was overwhelmed with RX on ath10k.
*
* By limiting the number of refills the replenishing occurs
* progressively. This in turns makes use of the fact tasklets are
* processed in FIFO order. This means actual RX processing can starve
* out refilling. If there's not enough buffers on RX ring FW will not
* report RX until it is refilled with enough buffers. This
* automatically balances load wrt to CPU power.
*
* This probably comes at a cost of lower maximum throughput but
* improves the average and stability. */
spin_lock_bh(&htt->rx_ring.lock);
num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
num_deficit -= num_to_fill;
ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
if (ret == -ENOMEM) {
/*
* Failed to fill it to the desired level -
* we'll start a timer and try again next time.
* As long as enough buffers are left in the ring for
* another A-MPDU rx, no special recovery is needed.
*/
mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
} else if (num_deficit > 0) {
tasklet_schedule(&htt->rx_replenish_task);
}
spin_unlock_bh(&htt->rx_ring.lock);
}
static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
{
struct ath10k_htt *htt = (struct ath10k_htt *)arg;
ath10k_htt_rx_msdu_buff_replenish(htt);
}
int ath10k_htt_rx_ring_refill(struct ath10k *ar)
{
struct ath10k_htt *htt = &ar->htt;
int ret;
spin_lock_bh(&htt->rx_ring.lock);
ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
htt->rx_ring.fill_cnt));
spin_unlock_bh(&htt->rx_ring.lock);
if (ret)
ath10k_htt_rx_ring_free(htt);
return ret;
}
void ath10k_htt_rx_free(struct ath10k_htt *htt)
{
del_timer_sync(&htt->rx_ring.refill_retry_timer);
tasklet_kill(&htt->rx_replenish_task);
tasklet_kill(&htt->txrx_compl_task);
skb_queue_purge(&htt->tx_compl_q);
skb_queue_purge(&htt->rx_compl_q);
skb_queue_purge(&htt->rx_in_ord_compl_q);
ath10k_htt_rx_ring_free(htt);
dma_free_coherent(htt->ar->dev,
(htt->rx_ring.size *
sizeof(htt->rx_ring.paddrs_ring)),
htt->rx_ring.paddrs_ring,
htt->rx_ring.base_paddr);
dma_free_coherent(htt->ar->dev,
sizeof(*htt->rx_ring.alloc_idx.vaddr),
htt->rx_ring.alloc_idx.vaddr,
htt->rx_ring.alloc_idx.paddr);
kfree(htt->rx_ring.netbufs_ring);
}
static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
int idx;
struct sk_buff *msdu;
lockdep_assert_held(&htt->rx_ring.lock);
if (htt->rx_ring.fill_cnt == 0) {
ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
return NULL;
}
idx = htt->rx_ring.sw_rd_idx.msdu_payld;
msdu = htt->rx_ring.netbufs_ring[idx];
htt->rx_ring.netbufs_ring[idx] = NULL;
htt->rx_ring.paddrs_ring[idx] = 0;
idx++;
idx &= htt->rx_ring.size_mask;
htt->rx_ring.sw_rd_idx.msdu_payld = idx;
htt->rx_ring.fill_cnt--;
dma_unmap_single(htt->ar->dev,
ATH10K_SKB_RXCB(msdu)->paddr,
msdu->len + skb_tailroom(msdu),
DMA_FROM_DEVICE);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
msdu->data, msdu->len + skb_tailroom(msdu));
return msdu;
}
/* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
u8 **fw_desc, int *fw_desc_len,
struct sk_buff_head *amsdu)
{
struct ath10k *ar = htt->ar;
int msdu_len, msdu_chaining = 0;
struct sk_buff *msdu;
struct htt_rx_desc *rx_desc;
lockdep_assert_held(&htt->rx_ring.lock);
for (;;) {
int last_msdu, msdu_len_invalid, msdu_chained;
msdu = ath10k_htt_rx_netbuf_pop(htt);
if (!msdu) {
__skb_queue_purge(amsdu);
return -ENOENT;
}
__skb_queue_tail(amsdu, msdu);
rx_desc = (struct htt_rx_desc *)msdu->data;
/* FIXME: we must report msdu payload since this is what caller
* expects now */
skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
/*
* Sanity check - confirm the HW is finished filling in the
* rx data.
* If the HW and SW are working correctly, then it's guaranteed
* that the HW's MAC DMA is done before this point in the SW.
* To prevent the case that we handle a stale Rx descriptor,
* just assert for now until we have a way to recover.
*/
if (!(__le32_to_cpu(rx_desc->attention.flags)
& RX_ATTENTION_FLAGS_MSDU_DONE)) {
__skb_queue_purge(amsdu);
return -EIO;
}
/*
* Copy the FW rx descriptor for this MSDU from the rx
* indication message into the MSDU's netbuf. HL uses the
* same rx indication message definition as LL, and simply
* appends new info (fields from the HW rx desc, and the
* MSDU payload itself). So, the offset into the rx
* indication message only has to account for the standard
* offset of the per-MSDU FW rx desc info within the
* message, and how many bytes of the per-MSDU FW rx desc
* info have already been consumed. (And the endianness of
* the host, since for a big-endian host, the rx ind
* message contents, including the per-MSDU rx desc bytes,
* were byteswapped during upload.)
*/
if (*fw_desc_len > 0) {
rx_desc->fw_desc.info0 = **fw_desc;
/*
* The target is expected to only provide the basic
* per-MSDU rx descriptors. Just to be sure, verify
* that the target has not attached extension data
* (e.g. LRO flow ID).
*/
/* or more, if there's extension data */
(*fw_desc)++;
(*fw_desc_len)--;
} else {
/*
* When an oversized AMSDU happened, FW will lost
* some of MSDU status - in this case, the FW
* descriptors provided will be less than the
* actual MSDUs inside this MPDU. Mark the FW
* descriptors so that it will still deliver to
* upper stack, if no CRC error for this MPDU.
*
* FIX THIS - the FW descriptors are actually for
* MSDUs in the end of this A-MSDU instead of the
* beginning.
*/
rx_desc->fw_desc.info0 = 0;
}
msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
& (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
RX_MSDU_START_INFO0_MSDU_LENGTH);
msdu_chained = rx_desc->frag_info.ring2_more_count;
if (msdu_len_invalid)
msdu_len = 0;
skb_trim(msdu, 0);
skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
msdu_len -= msdu->len;
/* Note: Chained buffers do not contain rx descriptor */
while (msdu_chained--) {
msdu = ath10k_htt_rx_netbuf_pop(htt);
if (!msdu) {
__skb_queue_purge(amsdu);
return -ENOENT;
}
__skb_queue_tail(amsdu, msdu);
skb_trim(msdu, 0);
skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
msdu_len -= msdu->len;
msdu_chaining = 1;
}
last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
RX_MSDU_END_INFO0_LAST_MSDU;
trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
sizeof(*rx_desc) - sizeof(u32));
if (last_msdu)
break;
}
if (skb_queue_empty(amsdu))
msdu_chaining = -1;
/*
* Don't refill the ring yet.
*
* First, the elements popped here are still in use - it is not
* safe to overwrite them until the matching call to
* mpdu_desc_list_next. Second, for efficiency it is preferable to
* refill the rx ring with 1 PPDU's worth of rx buffers (something
* like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
* (something like 3 buffers). Consequently, we'll rely on the txrx
* SW to tell us when it is done pulling all the PPDU's rx buffers
* out of the rx ring, and then refill it just once.
*/
return msdu_chaining;
}
static void ath10k_htt_rx_replenish_task(unsigned long ptr)
{
struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
ath10k_htt_rx_msdu_buff_replenish(htt);
}
static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
u32 paddr)
{
struct ath10k *ar = htt->ar;
struct ath10k_skb_rxcb *rxcb;
struct sk_buff *msdu;
lockdep_assert_held(&htt->rx_ring.lock);
msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
if (!msdu)
return NULL;
rxcb = ATH10K_SKB_RXCB(msdu);
hash_del(&rxcb->hlist);
htt->rx_ring.fill_cnt--;
dma_unmap_single(htt->ar->dev, rxcb->paddr,
msdu->len + skb_tailroom(msdu),
DMA_FROM_DEVICE);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
msdu->data, msdu->len + skb_tailroom(msdu));
return msdu;
}
static int ath10k_htt_rx_pop_paddr_list(struct ath10k_htt *htt,
struct htt_rx_in_ord_ind *ev,
struct sk_buff_head *list)
{
struct ath10k *ar = htt->ar;
struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs;
struct htt_rx_desc *rxd;
struct sk_buff *msdu;
int msdu_count;
bool is_offload;
u32 paddr;
lockdep_assert_held(&htt->rx_ring.lock);
msdu_count = __le16_to_cpu(ev->msdu_count);
is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
while (msdu_count--) {
paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
if (!msdu) {
__skb_queue_purge(list);
return -ENOENT;
}
__skb_queue_tail(list, msdu);
if (!is_offload) {
rxd = (void *)msdu->data;
trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
skb_put(msdu, sizeof(*rxd));
skb_pull(msdu, sizeof(*rxd));
skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
if (!(__le32_to_cpu(rxd->attention.flags) &
RX_ATTENTION_FLAGS_MSDU_DONE)) {
ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
return -EIO;
}
}
msdu_desc++;
}
return 0;
}
int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
{
struct ath10k *ar = htt->ar;
dma_addr_t paddr;
void *vaddr;
size_t size;
struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
htt->rx_confused = false;
/* XXX: The fill level could be changed during runtime in response to
* the host processing latency. Is this really worth it?
*/
htt->rx_ring.size = HTT_RX_RING_SIZE;
htt->rx_ring.size_mask = htt->rx_ring.size - 1;
htt->rx_ring.fill_level = HTT_RX_RING_FILL_LEVEL;
if (!is_power_of_2(htt->rx_ring.size)) {
ath10k_warn(ar, "htt rx ring size is not power of 2\n");
return -EINVAL;
}
htt->rx_ring.netbufs_ring =
kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
GFP_KERNEL);
if (!htt->rx_ring.netbufs_ring)
goto err_netbuf;
size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA);
if (!vaddr)
goto err_dma_ring;
htt->rx_ring.paddrs_ring = vaddr;
htt->rx_ring.base_paddr = paddr;
vaddr = dma_alloc_coherent(htt->ar->dev,
sizeof(*htt->rx_ring.alloc_idx.vaddr),
&paddr, GFP_DMA);
if (!vaddr)
goto err_dma_idx;
htt->rx_ring.alloc_idx.vaddr = vaddr;
htt->rx_ring.alloc_idx.paddr = paddr;
htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
*htt->rx_ring.alloc_idx.vaddr = 0;
/* Initialize the Rx refill retry timer */
setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
spin_lock_init(&htt->rx_ring.lock);
htt->rx_ring.fill_cnt = 0;
htt->rx_ring.sw_rd_idx.msdu_payld = 0;
hash_init(htt->rx_ring.skb_table);
tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
(unsigned long)htt);
skb_queue_head_init(&htt->tx_compl_q);
skb_queue_head_init(&htt->rx_compl_q);
skb_queue_head_init(&htt->rx_in_ord_compl_q);
tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
(unsigned long)htt);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
htt->rx_ring.size, htt->rx_ring.fill_level);
return 0;
err_dma_idx:
dma_free_coherent(htt->ar->dev,
(htt->rx_ring.size *
sizeof(htt->rx_ring.paddrs_ring)),
htt->rx_ring.paddrs_ring,
htt->rx_ring.base_paddr);
err_dma_ring:
kfree(htt->rx_ring.netbufs_ring);
err_netbuf:
return -ENOMEM;
}
static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
enum htt_rx_mpdu_encrypt_type type)
{
switch (type) {
case HTT_RX_MPDU_ENCRYPT_NONE:
return 0;
case HTT_RX_MPDU_ENCRYPT_WEP40:
case HTT_RX_MPDU_ENCRYPT_WEP104:
return IEEE80211_WEP_IV_LEN;
case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
return IEEE80211_TKIP_IV_LEN;
case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
return IEEE80211_CCMP_HDR_LEN;
case HTT_RX_MPDU_ENCRYPT_WEP128:
case HTT_RX_MPDU_ENCRYPT_WAPI:
break;
}
ath10k_warn(ar, "unsupported encryption type %d\n", type);
return 0;
}
#define MICHAEL_MIC_LEN 8
static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
enum htt_rx_mpdu_encrypt_type type)
{
switch (type) {
case HTT_RX_MPDU_ENCRYPT_NONE:
return 0;
case HTT_RX_MPDU_ENCRYPT_WEP40:
case HTT_RX_MPDU_ENCRYPT_WEP104:
return IEEE80211_WEP_ICV_LEN;
case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
return IEEE80211_TKIP_ICV_LEN;
case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
return IEEE80211_CCMP_MIC_LEN;
case HTT_RX_MPDU_ENCRYPT_WEP128:
case HTT_RX_MPDU_ENCRYPT_WAPI:
break;
}
ath10k_warn(ar, "unsupported encryption type %d\n", type);
return 0;
}
struct amsdu_subframe_hdr {
u8 dst[ETH_ALEN];
u8 src[ETH_ALEN];
__be16 len;
} __packed;
static void ath10k_htt_rx_h_rates(struct ath10k *ar,
struct ieee80211_rx_status *status,
struct htt_rx_desc *rxd)
{
struct ieee80211_supported_band *sband;
u8 cck, rate, bw, sgi, mcs, nss;
u8 preamble = 0;
u32 info1, info2, info3;
info1 = __le32_to_cpu(rxd->ppdu_start.info1);
info2 = __le32_to_cpu(rxd->ppdu_start.info2);
info3 = __le32_to_cpu(rxd->ppdu_start.info3);
preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
switch (preamble) {
case HTT_RX_LEGACY:
/* To get legacy rate index band is required. Since band can't
* be undefined check if freq is non-zero.
*/
if (!status->freq)
return;
cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
rate &= ~RX_PPDU_START_RATE_FLAG;
sband = &ar->mac.sbands[status->band];
status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate);
break;
case HTT_RX_HT:
case HTT_RX_HT_WITH_TXBF:
/* HT-SIG - Table 20-11 in info2 and info3 */
mcs = info2 & 0x1F;
nss = mcs >> 3;
bw = (info2 >> 7) & 1;
sgi = (info3 >> 7) & 1;
status->rate_idx = mcs;
status->flag |= RX_FLAG_HT;
if (sgi)
status->flag |= RX_FLAG_SHORT_GI;
if (bw)
status->flag |= RX_FLAG_40MHZ;
break;
case HTT_RX_VHT:
case HTT_RX_VHT_WITH_TXBF:
/* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
TODO check this */
mcs = (info3 >> 4) & 0x0F;
nss = ((info2 >> 10) & 0x07) + 1;
bw = info2 & 3;
sgi = info3 & 1;
status->rate_idx = mcs;
status->vht_nss = nss;
if (sgi)
status->flag |= RX_FLAG_SHORT_GI;
switch (bw) {
/* 20MHZ */
case 0:
break;
/* 40MHZ */
case 1:
status->flag |= RX_FLAG_40MHZ;
break;
/* 80MHZ */
case 2:
status->vht_flag |= RX_VHT_FLAG_80MHZ;
}
status->flag |= RX_FLAG_VHT;
break;
default:
break;
}
}
static struct ieee80211_channel *
ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
{
struct ath10k_peer *peer;
struct ath10k_vif *arvif;
struct cfg80211_chan_def def;
u16 peer_id;
lockdep_assert_held(&ar->data_lock);
if (!rxd)
return NULL;
if (rxd->attention.flags &
__cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
return NULL;
if (!(rxd->msdu_end.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
return NULL;
peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
RX_MPDU_START_INFO0_PEER_IDX);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer)
return NULL;
arvif = ath10k_get_arvif(ar, peer->vdev_id);
if (WARN_ON_ONCE(!arvif))
return NULL;
if (WARN_ON(ath10k_mac_vif_chan(arvif->vif, &def)))
return NULL;
return def.chan;
}
static struct ieee80211_channel *
ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
{
struct ath10k_vif *arvif;
struct cfg80211_chan_def def;
lockdep_assert_held(&ar->data_lock);
list_for_each_entry(arvif, &ar->arvifs, list) {
if (arvif->vdev_id == vdev_id &&
ath10k_mac_vif_chan(arvif->vif, &def) == 0)
return def.chan;
}
return NULL;
}
static void
ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
struct ieee80211_chanctx_conf *conf,
void *data)
{
struct cfg80211_chan_def *def = data;
*def = conf->def;
}
static struct ieee80211_channel *
ath10k_htt_rx_h_any_channel(struct ath10k *ar)
{
struct cfg80211_chan_def def = {};
ieee80211_iter_chan_contexts_atomic(ar->hw,
ath10k_htt_rx_h_any_chan_iter,
&def);
return def.chan;
}
static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
struct ieee80211_rx_status *status,
struct htt_rx_desc *rxd,
u32 vdev_id)
{
struct ieee80211_channel *ch;
spin_lock_bh(&ar->data_lock);
ch = ar->scan_channel;
if (!ch)
ch = ar->rx_channel;
if (!ch)
ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
if (!ch)
ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
if (!ch)
ch = ath10k_htt_rx_h_any_channel(ar);
spin_unlock_bh(&ar->data_lock);
if (!ch)
return false;
status->band = ch->band;
status->freq = ch->center_freq;
return true;
}
static void ath10k_htt_rx_h_signal(struct ath10k *ar,
struct ieee80211_rx_status *status,
struct htt_rx_desc *rxd)
{
/* FIXME: Get real NF */
status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
rxd->ppdu_start.rssi_comb;
status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
}
static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
struct ieee80211_rx_status *status,
struct htt_rx_desc *rxd)
{
/* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
* means all prior MSDUs in a PPDU are reported to mac80211 without the
* TSF. Is it worth holding frames until end of PPDU is known?
*
* FIXME: Can we get/compute 64bit TSF?
*/
status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
status->flag |= RX_FLAG_MACTIME_END;
}
static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
struct sk_buff_head *amsdu,
struct ieee80211_rx_status *status,
u32 vdev_id)
{
struct sk_buff *first;
struct htt_rx_desc *rxd;
bool is_first_ppdu;
bool is_last_ppdu;
if (skb_queue_empty(amsdu))
return;
first = skb_peek(amsdu);
rxd = (void *)first->data - sizeof(*rxd);
is_first_ppdu = !!(rxd->attention.flags &
__cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
is_last_ppdu = !!(rxd->attention.flags &
__cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
if (is_first_ppdu) {
/* New PPDU starts so clear out the old per-PPDU status. */
status->freq = 0;
status->rate_idx = 0;
status->vht_nss = 0;
status->vht_flag &= ~RX_VHT_FLAG_80MHZ;
status->flag &= ~(RX_FLAG_HT |
RX_FLAG_VHT |
RX_FLAG_SHORT_GI |
RX_FLAG_40MHZ |
RX_FLAG_MACTIME_END);
status->flag |= RX_FLAG_NO_SIGNAL_VAL;
ath10k_htt_rx_h_signal(ar, status, rxd);
ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
ath10k_htt_rx_h_rates(ar, status, rxd);
}
if (is_last_ppdu)
ath10k_htt_rx_h_mactime(ar, status, rxd);
}
static const char * const tid_to_ac[] = {
"BE",
"BK",
"BK",
"BE",
"VI",
"VI",
"VO",
"VO",
};
static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
{
u8 *qc;
int tid;
if (!ieee80211_is_data_qos(hdr->frame_control))
return "";
qc = ieee80211_get_qos_ctl(hdr);
tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
if (tid < 8)
snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
else
snprintf(out, size, "tid %d", tid);
return out;
}
static void ath10k_process_rx(struct ath10k *ar,
struct ieee80211_rx_status *rx_status,
struct sk_buff *skb)
{
struct ieee80211_rx_status *status;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
char tid[32];
status = IEEE80211_SKB_RXCB(skb);
*status = *rx_status;
ath10k_dbg(ar, ATH10K_DBG_DATA,
"rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
skb,
skb->len,
ieee80211_get_SA(hdr),
ath10k_get_tid(hdr, tid, sizeof(tid)),
is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
"mcast" : "ucast",
(__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
status->flag == 0 ? "legacy" : "",
status->flag & RX_FLAG_HT ? "ht" : "",
status->flag & RX_FLAG_VHT ? "vht" : "",
status->flag & RX_FLAG_40MHZ ? "40" : "",
status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
status->rate_idx,
status->vht_nss,
status->freq,
status->band, status->flag,
!!(status->flag & RX_FLAG_FAILED_FCS_CRC),
!!(status->flag & RX_FLAG_MMIC_ERROR),
!!(status->flag & RX_FLAG_AMSDU_MORE));
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
skb->data, skb->len);
trace_ath10k_rx_hdr(ar, skb->data, skb->len);
trace_ath10k_rx_payload(ar, skb->data, skb->len);
ieee80211_rx(ar->hw, skb);
}
static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr)
{
/* nwifi header is padded to 4 bytes. this fixes 4addr rx */
return round_up(ieee80211_hdrlen(hdr->frame_control), 4);
}
static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
struct sk_buff *msdu,
struct ieee80211_rx_status *status,
enum htt_rx_mpdu_encrypt_type enctype,
bool is_decrypted)
{
struct ieee80211_hdr *hdr;
struct htt_rx_desc *rxd;
size_t hdr_len;
size_t crypto_len;
bool is_first;
bool is_last;
rxd = (void *)msdu->data - sizeof(*rxd);
is_first = !!(rxd->msdu_end.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
is_last = !!(rxd->msdu_end.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
/* Delivered decapped frame:
* [802.11 header]
* [crypto param] <-- can be trimmed if !fcs_err &&
* !decrypt_err && !peer_idx_invalid
* [amsdu header] <-- only if A-MSDU
* [rfc1042/llc]
* [payload]
* [FCS] <-- at end, needs to be trimmed
*/
/* This probably shouldn't happen but warn just in case */
if (unlikely(WARN_ON_ONCE(!is_first)))
return;
/* This probably shouldn't happen but warn just in case */
if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
return;
skb_trim(msdu, msdu->len - FCS_LEN);
/* In most cases this will be true for sniffed frames. It makes sense
* to deliver them as-is without stripping the crypto param. This would
* also make sense for software based decryption (which is not
* implemented in ath10k).
*
* If there's no error then the frame is decrypted. At least that is
* the case for frames that come in via fragmented rx indication.
*/
if (!is_decrypted)
return;
/* The payload is decrypted so strip crypto params. Start from tail
* since hdr is used to compute some stuff.
*/
hdr = (void *)msdu->data;
/* Tail */
skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype));
/* MMIC */
if (!ieee80211_has_morefrags(hdr->frame_control) &&
enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
skb_trim(msdu, msdu->len - 8);
/* Head */
hdr_len = ieee80211_hdrlen(hdr->frame_control);
crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
memmove((void *)msdu->data + crypto_len,
(void *)msdu->data, hdr_len);
skb_pull(msdu, crypto_len);
}
static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
struct sk_buff *msdu,
struct ieee80211_rx_status *status,
const u8 first_hdr[64])
{
struct ieee80211_hdr *hdr;
size_t hdr_len;
u8 da[ETH_ALEN];
u8 sa[ETH_ALEN];
/* Delivered decapped frame:
* [nwifi 802.11 header] <-- replaced with 802.11 hdr
* [rfc1042/llc]
*
* Note: The nwifi header doesn't have QoS Control and is
* (always?) a 3addr frame.
*
* Note2: There's no A-MSDU subframe header. Even if it's part
* of an A-MSDU.
*/
/* pull decapped header and copy SA & DA */
hdr = (struct ieee80211_hdr *)msdu->data;
hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
ether_addr_copy(da, ieee80211_get_DA(hdr));
ether_addr_copy(sa, ieee80211_get_SA(hdr));
skb_pull(msdu, hdr_len);
/* push original 802.11 header */
hdr = (struct ieee80211_hdr *)first_hdr;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
/* original 802.11 header has a different DA and in
* case of 4addr it may also have different SA
*/
hdr = (struct ieee80211_hdr *)msdu->data;
ether_addr_copy(ieee80211_get_DA(hdr), da);
ether_addr_copy(ieee80211_get_SA(hdr), sa);
}
static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
struct sk_buff *msdu,
enum htt_rx_mpdu_encrypt_type enctype)
{
struct ieee80211_hdr *hdr;
struct htt_rx_desc *rxd;
size_t hdr_len, crypto_len;
void *rfc1042;
bool is_first, is_last, is_amsdu;
rxd = (void *)msdu->data - sizeof(*rxd);
hdr = (void *)rxd->rx_hdr_status;
is_first = !!(rxd->msdu_end.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
is_last = !!(rxd->msdu_end.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
is_amsdu = !(is_first && is_last);
rfc1042 = hdr;
if (is_first) {
hdr_len = ieee80211_hdrlen(hdr->frame_control);
crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
rfc1042 += round_up(hdr_len, 4) +
round_up(crypto_len, 4);
}
if (is_amsdu)
rfc1042 += sizeof(struct amsdu_subframe_hdr);
return rfc1042;
}
static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
struct sk_buff *msdu,
struct ieee80211_rx_status *status,
const u8 first_hdr[64],
enum htt_rx_mpdu_encrypt_type enctype)
{
struct ieee80211_hdr *hdr;
struct ethhdr *eth;
size_t hdr_len;
void *rfc1042;
u8 da[ETH_ALEN];
u8 sa[ETH_ALEN];
/* Delivered decapped frame:
* [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
* [payload]
*/
rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
if (WARN_ON_ONCE(!rfc1042))
return;
/* pull decapped header and copy SA & DA */
eth = (struct ethhdr *)msdu->data;
ether_addr_copy(da, eth->h_dest);
ether_addr_copy(sa, eth->h_source);
skb_pull(msdu, sizeof(struct ethhdr));
/* push rfc1042/llc/snap */
memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
sizeof(struct rfc1042_hdr));
/* push original 802.11 header */
hdr = (struct ieee80211_hdr *)first_hdr;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
/* original 802.11 header has a different DA and in
* case of 4addr it may also have different SA
*/
hdr = (struct ieee80211_hdr *)msdu->data;
ether_addr_copy(ieee80211_get_DA(hdr), da);
ether_addr_copy(ieee80211_get_SA(hdr), sa);
}
static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
struct sk_buff *msdu,
struct ieee80211_rx_status *status,
const u8 first_hdr[64])
{
struct ieee80211_hdr *hdr;
size_t hdr_len;
/* Delivered decapped frame:
* [amsdu header] <-- replaced with 802.11 hdr
* [rfc1042/llc]
* [payload]
*/
skb_pull(msdu, sizeof(struct amsdu_subframe_hdr));
hdr = (struct ieee80211_hdr *)first_hdr;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
}
static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
struct sk_buff *msdu,
struct ieee80211_rx_status *status,
u8 first_hdr[64],
enum htt_rx_mpdu_encrypt_type enctype,
bool is_decrypted)
{
struct htt_rx_desc *rxd;
enum rx_msdu_decap_format decap;
struct ieee80211_hdr *hdr;
/* First msdu's decapped header:
* [802.11 header] <-- padded to 4 bytes long
* [crypto param] <-- padded to 4 bytes long
* [amsdu header] <-- only if A-MSDU
* [rfc1042/llc]
*
* Other (2nd, 3rd, ..) msdu's decapped header:
* [amsdu header] <-- only if A-MSDU
* [rfc1042/llc]
*/
rxd = (void *)msdu->data - sizeof(*rxd);
hdr = (void *)rxd->rx_hdr_status;
decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
RX_MSDU_START_INFO1_DECAP_FORMAT);
switch (decap) {
case RX_MSDU_DECAP_RAW:
ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
is_decrypted);
break;
case RX_MSDU_DECAP_NATIVE_WIFI:
ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
break;
case RX_MSDU_DECAP_ETHERNET2_DIX:
ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
break;
case RX_MSDU_DECAP_8023_SNAP_LLC:
ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
break;
}
}
static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
{
struct htt_rx_desc *rxd;
u32 flags, info;
bool is_ip4, is_ip6;
bool is_tcp, is_udp;
bool ip_csum_ok, tcpudp_csum_ok;
rxd = (void *)skb->data - sizeof(*rxd);
flags = __le32_to_cpu(rxd->attention.flags);
info = __le32_to_cpu(rxd->msdu_start.info1);
is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
if (!is_ip4 && !is_ip6)
return CHECKSUM_NONE;
if (!is_tcp && !is_udp)
return CHECKSUM_NONE;
if (!ip_csum_ok)
return CHECKSUM_NONE;
if (!tcpudp_csum_ok)
return CHECKSUM_NONE;
return CHECKSUM_UNNECESSARY;
}
static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
{
msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
}
static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
struct sk_buff_head *amsdu,
struct ieee80211_rx_status *status)
{
struct sk_buff *first;
struct sk_buff *last;
struct sk_buff *msdu;
struct htt_rx_desc *rxd;
struct ieee80211_hdr *hdr;
enum htt_rx_mpdu_encrypt_type enctype;
u8 first_hdr[64];
u8 *qos;
size_t hdr_len;
bool has_fcs_err;
bool has_crypto_err;
bool has_tkip_err;
bool has_peer_idx_invalid;
bool is_decrypted;
u32 attention;
if (skb_queue_empty(amsdu))
return;
first = skb_peek(amsdu);
rxd = (void *)first->data - sizeof(*rxd);
enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
RX_MPDU_START_INFO0_ENCRYPT_TYPE);
/* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
* decapped header. It'll be used for undecapping of each MSDU.
*/
hdr = (void *)rxd->rx_hdr_status;
hdr_len = ieee80211_hdrlen(hdr->frame_control);
memcpy(first_hdr, hdr, hdr_len);
/* Each A-MSDU subframe will use the original header as the base and be
* reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
*/
hdr = (void *)first_hdr;
qos = ieee80211_get_qos_ctl(hdr);
qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
/* Some attention flags are valid only in the last MSDU. */
last = skb_peek_tail(amsdu);
rxd = (void *)last->data - sizeof(*rxd);
attention = __le32_to_cpu(rxd->attention.flags);
has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
/* Note: If hardware captures an encrypted frame that it can't decrypt,
* e.g. due to fcs error, missing peer or invalid key data it will
* report the frame as raw.
*/
is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
!has_fcs_err &&
!has_crypto_err &&
!has_peer_idx_invalid);
/* Clear per-MPDU flags while leaving per-PPDU flags intact. */
status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
RX_FLAG_MMIC_ERROR |
RX_FLAG_DECRYPTED |
RX_FLAG_IV_STRIPPED |
RX_FLAG_MMIC_STRIPPED);
if (has_fcs_err)
status->flag |= RX_FLAG_FAILED_FCS_CRC;
if (has_tkip_err)
status->flag |= RX_FLAG_MMIC_ERROR;
if (is_decrypted)
status->flag |= RX_FLAG_DECRYPTED |
RX_FLAG_IV_STRIPPED |
RX_FLAG_MMIC_STRIPPED;
skb_queue_walk(amsdu, msdu) {
ath10k_htt_rx_h_csum_offload(msdu);
ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
is_decrypted);
/* Undecapping involves copying the original 802.11 header back
* to sk_buff. If frame is protected and hardware has decrypted
* it then remove the protected bit.
*/
if (!is_decrypted)
continue;
hdr = (void *)msdu->data;
hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
}
}
static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
struct sk_buff_head *amsdu,
struct ieee80211_rx_status *status)
{
struct sk_buff *msdu;
while ((msdu = __skb_dequeue(amsdu))) {
/* Setup per-MSDU flags */
if (skb_queue_empty(amsdu))
status->flag &= ~RX_FLAG_AMSDU_MORE;
else
status->flag |= RX_FLAG_AMSDU_MORE;
ath10k_process_rx(ar, status, msdu);
}
}
static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
{
struct sk_buff *skb, *first;
int space;
int total_len = 0;
/* TODO: Might could optimize this by using
* skb_try_coalesce or similar method to
* decrease copying, or maybe get mac80211 to
* provide a way to just receive a list of
* skb?
*/
first = __skb_dequeue(amsdu);
/* Allocate total length all at once. */
skb_queue_walk(amsdu, skb)
total_len += skb->len;
space = total_len - skb_tailroom(first);
if ((space > 0) &&
(pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
/* TODO: bump some rx-oom error stat */
/* put it back together so we can free the
* whole list at once.
*/
__skb_queue_head(amsdu, first);
return -1;
}
/* Walk list again, copying contents into
* msdu_head
*/
while ((skb = __skb_dequeue(amsdu))) {
skb_copy_from_linear_data(skb, skb_put(first, skb->len),
skb->len);
dev_kfree_skb_any(skb);
}
__skb_queue_head(amsdu, first);
return 0;
}
static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
struct sk_buff_head *amsdu,
bool chained)
{
struct sk_buff *first;
struct htt_rx_desc *rxd;
enum rx_msdu_decap_format decap;
first = skb_peek(amsdu);
rxd = (void *)first->data - sizeof(*rxd);
decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
RX_MSDU_START_INFO1_DECAP_FORMAT);
if (!chained)
return;
/* FIXME: Current unchaining logic can only handle simple case of raw
* msdu chaining. If decapping is other than raw the chaining may be
* more complex and this isn't handled by the current code. Don't even
* try re-constructing such frames - it'll be pretty much garbage.
*/
if (decap != RX_MSDU_DECAP_RAW ||
skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
__skb_queue_purge(amsdu);
return;
}
ath10k_unchain_msdu(amsdu);
}
static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
struct sk_buff_head *amsdu,
struct ieee80211_rx_status *rx_status)
{
struct sk_buff *msdu;
struct htt_rx_desc *rxd;
bool is_mgmt;
bool has_fcs_err;
msdu = skb_peek(amsdu);
rxd = (void *)msdu->data - sizeof(*rxd);
/* FIXME: It might be a good idea to do some fuzzy-testing to drop
* invalid/dangerous frames.
*/
if (!rx_status->freq) {
ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
return false;
}
is_mgmt = !!(rxd->attention.flags &
__cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
has_fcs_err = !!(rxd->attention.flags &
__cpu_to_le32(RX_ATTENTION_FLAGS_FCS_ERR));
/* Management frames are handled via WMI events. The pros of such
* approach is that channel is explicitly provided in WMI events
* whereas HTT doesn't provide channel information for Rxed frames.
*
* However some firmware revisions don't report corrupted frames via
* WMI so don't drop them.
*/
if (is_mgmt && !has_fcs_err) {
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
return false;
}
if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
return false;
}
return true;
}
static void ath10k_htt_rx_h_filter(struct ath10k *ar,
struct sk_buff_head *amsdu,
struct ieee80211_rx_status *rx_status)
{
if (skb_queue_empty(amsdu))
return;
if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
return;
__skb_queue_purge(amsdu);
}
static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
struct htt_rx_indication *rx)
{
struct ath10k *ar = htt->ar;
struct ieee80211_rx_status *rx_status = &htt->rx_status;
struct htt_rx_indication_mpdu_range *mpdu_ranges;
struct sk_buff_head amsdu;
int num_mpdu_ranges;
int fw_desc_len;
u8 *fw_desc;
int i, ret, mpdu_count = 0;
lockdep_assert_held(&htt->rx_ring.lock);
if (htt->rx_confused)
return;
fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
fw_desc = (u8 *)&rx->fw_desc;
num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
rx, sizeof(*rx) +
(sizeof(struct htt_rx_indication_mpdu_range) *
num_mpdu_ranges));
for (i = 0; i < num_mpdu_ranges; i++)
mpdu_count += mpdu_ranges[i].mpdu_count;
while (mpdu_count--) {
__skb_queue_head_init(&amsdu);
ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc,
&fw_desc_len, &amsdu);
if (ret < 0) {
ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
__skb_queue_purge(&amsdu);
/* FIXME: It's probably a good idea to reboot the
* device instead of leaving it inoperable.
*/
htt->rx_confused = true;
break;
}
ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0);
ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
}
tasklet_schedule(&htt->rx_replenish_task);
}
static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
struct htt_rx_fragment_indication *frag)
{
struct ath10k *ar = htt->ar;
struct ieee80211_rx_status *rx_status = &htt->rx_status;
struct sk_buff_head amsdu;
int ret;
u8 *fw_desc;
int fw_desc_len;
fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
fw_desc = (u8 *)frag->fw_msdu_rx_desc;
__skb_queue_head_init(&amsdu);
spin_lock_bh(&htt->rx_ring.lock);
ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
&amsdu);
spin_unlock_bh(&htt->rx_ring.lock);
tasklet_schedule(&htt->rx_replenish_task);
ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
if (ret) {
ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n",
ret);
__skb_queue_purge(&amsdu);
return;
}
if (skb_queue_len(&amsdu) != 1) {
ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n");
__skb_queue_purge(&amsdu);
return;
}
ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
if (fw_desc_len > 0) {
ath10k_dbg(ar, ATH10K_DBG_HTT,
"expecting more fragmented rx in one indication %d\n",
fw_desc_len);
}
}
static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
struct sk_buff *skb)
{
struct ath10k_htt *htt = &ar->htt;
struct htt_resp *resp = (struct htt_resp *)skb->data;
struct htt_tx_done tx_done = {};
int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
__le16 msdu_id;
int i;
lockdep_assert_held(&htt->tx_lock);
switch (status) {
case HTT_DATA_TX_STATUS_NO_ACK:
tx_done.no_ack = true;
break;
case HTT_DATA_TX_STATUS_OK:
tx_done.success = true;
break;
case HTT_DATA_TX_STATUS_DISCARD:
case HTT_DATA_TX_STATUS_POSTPONE:
case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
tx_done.discard = true;
break;
default:
ath10k_warn(ar, "unhandled tx completion status %d\n", status);
tx_done.discard = true;
break;
}
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
resp->data_tx_completion.num_msdus);
for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
msdu_id = resp->data_tx_completion.msdus[i];
tx_done.msdu_id = __le16_to_cpu(msdu_id);
ath10k_txrx_tx_unref(htt, &tx_done);
}
}
static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
{
struct htt_rx_addba *ev = &resp->rx_addba;
struct ath10k_peer *peer;
struct ath10k_vif *arvif;
u16 info0, tid, peer_id;
info0 = __le16_to_cpu(ev->info0);
tid = MS(info0, HTT_RX_BA_INFO0_TID);
peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx addba tid %hu peer_id %hu size %hhu\n",
tid, peer_id, ev->window_size);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer) {
ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
peer_id);
spin_unlock_bh(&ar->data_lock);
return;
}
arvif = ath10k_get_arvif(ar, peer->vdev_id);
if (!arvif) {
ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
peer->vdev_id);
spin_unlock_bh(&ar->data_lock);
return;
}
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx start rx ba session sta %pM tid %hu size %hhu\n",
peer->addr, tid, ev->window_size);
ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
spin_unlock_bh(&ar->data_lock);
}
static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
{
struct htt_rx_delba *ev = &resp->rx_delba;
struct ath10k_peer *peer;
struct ath10k_vif *arvif;
u16 info0, tid, peer_id;
info0 = __le16_to_cpu(ev->info0);
tid = MS(info0, HTT_RX_BA_INFO0_TID);
peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx delba tid %hu peer_id %hu\n",
tid, peer_id);
spin_lock_bh(&ar->data_lock);
peer = ath10k_peer_find_by_id(ar, peer_id);
if (!peer) {
ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
peer_id);
spin_unlock_bh(&ar->data_lock);
return;
}
arvif = ath10k_get_arvif(ar, peer->vdev_id);
if (!arvif) {
ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
peer->vdev_id);
spin_unlock_bh(&ar->data_lock);
return;
}
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx stop rx ba session sta %pM tid %hu\n",
peer->addr, tid);
ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
spin_unlock_bh(&ar->data_lock);
}
static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
struct sk_buff_head *amsdu)
{
struct sk_buff *msdu;
struct htt_rx_desc *rxd;
if (skb_queue_empty(list))
return -ENOBUFS;
if (WARN_ON(!skb_queue_empty(amsdu)))
return -EINVAL;
while ((msdu = __skb_dequeue(list))) {
__skb_queue_tail(amsdu, msdu);
rxd = (void *)msdu->data - sizeof(*rxd);
if (rxd->msdu_end.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
break;
}
msdu = skb_peek_tail(amsdu);
rxd = (void *)msdu->data - sizeof(*rxd);
if (!(rxd->msdu_end.info0 &
__cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
skb_queue_splice_init(amsdu, list);
return -EAGAIN;
}
return 0;
}
static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
if (!ieee80211_has_protected(hdr->frame_control))
return;
/* Offloaded frames are already decrypted but firmware insists they are
* protected in the 802.11 header. Strip the flag. Otherwise mac80211
* will drop the frame.
*/
hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
status->flag |= RX_FLAG_DECRYPTED |
RX_FLAG_IV_STRIPPED |
RX_FLAG_MMIC_STRIPPED;
}
static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
struct sk_buff_head *list)
{
struct ath10k_htt *htt = &ar->htt;
struct ieee80211_rx_status *status = &htt->rx_status;
struct htt_rx_offload_msdu *rx;
struct sk_buff *msdu;
size_t offset;
while ((msdu = __skb_dequeue(list))) {
/* Offloaded frames don't have Rx descriptor. Instead they have
* a short meta information header.
*/
rx = (void *)msdu->data;
skb_put(msdu, sizeof(*rx));
skb_pull(msdu, sizeof(*rx));
if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
dev_kfree_skb_any(msdu);
continue;
}
skb_put(msdu, __le16_to_cpu(rx->msdu_len));
/* Offloaded rx header length isn't multiple of 2 nor 4 so the
* actual payload is unaligned. Align the frame. Otherwise
* mac80211 complains. This shouldn't reduce performance much
* because these offloaded frames are rare.
*/
offset = 4 - ((unsigned long)msdu->data & 3);
skb_put(msdu, offset);
memmove(msdu->data + offset, msdu->data, msdu->len);
skb_pull(msdu, offset);
/* FIXME: The frame is NWifi. Re-construct QoS Control
* if possible later.
*/
memset(status, 0, sizeof(*status));
status->flag |= RX_FLAG_NO_SIGNAL_VAL;
ath10k_htt_rx_h_rx_offload_prot(status, msdu);
ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
ath10k_process_rx(ar, status, msdu);
}
}
static void ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
{
struct ath10k_htt *htt = &ar->htt;
struct htt_resp *resp = (void *)skb->data;
struct ieee80211_rx_status *status = &htt->rx_status;
struct sk_buff_head list;
struct sk_buff_head amsdu;
u16 peer_id;
u16 msdu_count;
u8 vdev_id;
u8 tid;
bool offload;
bool frag;
int ret;
lockdep_assert_held(&htt->rx_ring.lock);
if (htt->rx_confused)
return;
skb_pull(skb, sizeof(resp->hdr));
skb_pull(skb, sizeof(resp->rx_in_ord_ind));
peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
vdev_id = resp->rx_in_ord_ind.vdev_id;
tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
offload = !!(resp->rx_in_ord_ind.info &
HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
ath10k_dbg(ar, ATH10K_DBG_HTT,
"htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
vdev_id, peer_id, tid, offload, frag, msdu_count);
if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs)) {
ath10k_warn(ar, "dropping invalid in order rx indication\n");
return;
}
/* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
* extracted and processed.
*/
__skb_queue_head_init(&list);
ret = ath10k_htt_rx_pop_paddr_list(htt, &resp->rx_in_ord_ind, &list);
if (ret < 0) {
ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
htt->rx_confused = true;
return;
}
/* Offloaded frames are very different and need to be handled
* separately.
*/
if (offload)
ath10k_htt_rx_h_rx_offload(ar, &list);
while (!skb_queue_empty(&list)) {
__skb_queue_head_init(&amsdu);
ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
switch (ret) {
case 0:
/* Note: The in-order indication may report interleaved
* frames from different PPDUs meaning reported rx rate
* to mac80211 isn't accurate/reliable. It's still
* better to report something than nothing though. This
* should still give an idea about rx rate to the user.
*/
ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
ath10k_htt_rx_h_filter(ar, &amsdu, status);
ath10k_htt_rx_h_mpdu(ar, &amsdu, status);
ath10k_htt_rx_h_deliver(ar, &amsdu, status);
break;
case -EAGAIN:
/* fall through */
default:
/* Should not happen. */
ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
htt->rx_confused = true;
__skb_queue_purge(&list);
return;
}
}
tasklet_schedule(&htt->rx_replenish_task);
}
void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
{
struct ath10k_htt *htt = &ar->htt;
struct htt_resp *resp = (struct htt_resp *)skb->data;
enum htt_t2h_msg_type type;
/* confirm alignment */
if (!IS_ALIGNED((unsigned long)skb->data, 4))
ath10k_warn(ar, "unaligned htt message, expect trouble\n");
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
resp->hdr.msg_type);
if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
dev_kfree_skb_any(skb);
return;
}
type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
switch (type) {
case HTT_T2H_MSG_TYPE_VERSION_CONF: {
htt->target_version_major = resp->ver_resp.major;
htt->target_version_minor = resp->ver_resp.minor;
complete(&htt->target_version_received);
break;
}
case HTT_T2H_MSG_TYPE_RX_IND:
spin_lock_bh(&htt->rx_ring.lock);
__skb_queue_tail(&htt->rx_compl_q, skb);
spin_unlock_bh(&htt->rx_ring.lock);
tasklet_schedule(&htt->txrx_compl_task);
return;
case HTT_T2H_MSG_TYPE_PEER_MAP: {
struct htt_peer_map_event ev = {
.vdev_id = resp->peer_map.vdev_id,
.peer_id = __le16_to_cpu(resp->peer_map.peer_id),
};
memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
ath10k_peer_map_event(htt, &ev);
break;
}
case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
struct htt_peer_unmap_event ev = {
.peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
};
ath10k_peer_unmap_event(htt, &ev);
break;
}
case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
struct htt_tx_done tx_done = {};
int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
tx_done.msdu_id =
__le32_to_cpu(resp->mgmt_tx_completion.desc_id);
switch (status) {
case HTT_MGMT_TX_STATUS_OK:
tx_done.success = true;
break;
case HTT_MGMT_TX_STATUS_RETRY:
tx_done.no_ack = true;
break;
case HTT_MGMT_TX_STATUS_DROP:
tx_done.discard = true;
break;
}
spin_lock_bh(&htt->tx_lock);
ath10k_txrx_tx_unref(htt, &tx_done);
spin_unlock_bh(&htt->tx_lock);
break;
}
case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
spin_lock_bh(&htt->tx_lock);
__skb_queue_tail(&htt->tx_compl_q, skb);
spin_unlock_bh(&htt->tx_lock);
tasklet_schedule(&htt->txrx_compl_task);
return;
case HTT_T2H_MSG_TYPE_SEC_IND: {
struct ath10k *ar = htt->ar;
struct htt_security_indication *ev = &resp->security_indication;
ath10k_dbg(ar, ATH10K_DBG_HTT,
"sec ind peer_id %d unicast %d type %d\n",
__le16_to_cpu(ev->peer_id),
!!(ev->flags & HTT_SECURITY_IS_UNICAST),
MS(ev->flags, HTT_SECURITY_TYPE));
complete(&ar->install_key_done);
break;
}
case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
skb->data, skb->len);
ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
break;
}
case HTT_T2H_MSG_TYPE_TEST:
break;
case HTT_T2H_MSG_TYPE_STATS_CONF:
trace_ath10k_htt_stats(ar, skb->data, skb->len);
break;
case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
/* Firmware can return tx frames if it's unable to fully
* process them and suspects host may be able to fix it. ath10k
* sends all tx frames as already inspected so this shouldn't
* happen unless fw has a bug.
*/
ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
break;
case HTT_T2H_MSG_TYPE_RX_ADDBA:
ath10k_htt_rx_addba(ar, resp);
break;
case HTT_T2H_MSG_TYPE_RX_DELBA:
ath10k_htt_rx_delba(ar, resp);
break;
case HTT_T2H_MSG_TYPE_PKTLOG: {
struct ath10k_pktlog_hdr *hdr =
(struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload;
trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
sizeof(*hdr) +
__le16_to_cpu(hdr->size));
break;
}
case HTT_T2H_MSG_TYPE_RX_FLUSH: {
/* Ignore this event because mac80211 takes care of Rx
* aggregation reordering.
*/
break;
}
case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
spin_lock_bh(&htt->rx_ring.lock);
__skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
spin_unlock_bh(&htt->rx_ring.lock);
tasklet_schedule(&htt->txrx_compl_task);
return;
}
case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
break;
case HTT_T2H_MSG_TYPE_CHAN_CHANGE:
break;
default:
ath10k_warn(ar, "htt event (%d) not handled\n",
resp->hdr.msg_type);
ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
skb->data, skb->len);
break;
};
/* Free the indication buffer */
dev_kfree_skb_any(skb);
}
static void ath10k_htt_txrx_compl_task(unsigned long ptr)
{
struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
struct ath10k *ar = htt->ar;
struct htt_resp *resp;
struct sk_buff *skb;
spin_lock_bh(&htt->tx_lock);
while ((skb = __skb_dequeue(&htt->tx_compl_q))) {
ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
dev_kfree_skb_any(skb);
}
spin_unlock_bh(&htt->tx_lock);
spin_lock_bh(&htt->rx_ring.lock);
while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
resp = (struct htt_resp *)skb->data;
ath10k_htt_rx_handler(htt, &resp->rx_ind);
dev_kfree_skb_any(skb);
}
while ((skb = __skb_dequeue(&htt->rx_in_ord_compl_q))) {
ath10k_htt_rx_in_ord_ind(ar, skb);
dev_kfree_skb_any(skb);
}
spin_unlock_bh(&htt->rx_ring.lock);
}