linux_dsm_epyc7002/drivers/gpu/drm/tegra/dc.c
Thierry Reding e687651bc1 drm/tegra: Add hardware cursor support
Enable hardware cursor support on Tegra124. Earlier generations support
the hardware cursor to some degree as well, but not in a way that can be
generically exposed.

Signed-off-by: Thierry Reding <treding@nvidia.com>
2014-06-05 23:14:47 +02:00

1447 lines
37 KiB
C

/*
* Copyright (C) 2012 Avionic Design GmbH
* Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/reset.h>
#include "dc.h"
#include "drm.h"
#include "gem.h"
struct tegra_dc_soc_info {
bool supports_interlacing;
bool supports_cursor;
};
struct tegra_plane {
struct drm_plane base;
unsigned int index;
};
static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
{
return container_of(plane, struct tegra_plane, base);
}
static unsigned int tegra_dc_format(uint32_t format, uint32_t *swap)
{
/* assume no swapping of fetched data */
if (swap)
*swap = BYTE_SWAP_NOSWAP;
switch (format) {
case DRM_FORMAT_XBGR8888:
return WIN_COLOR_DEPTH_R8G8B8A8;
case DRM_FORMAT_XRGB8888:
return WIN_COLOR_DEPTH_B8G8R8A8;
case DRM_FORMAT_RGB565:
return WIN_COLOR_DEPTH_B5G6R5;
case DRM_FORMAT_UYVY:
return WIN_COLOR_DEPTH_YCbCr422;
case DRM_FORMAT_YUYV:
if (swap)
*swap = BYTE_SWAP_SWAP2;
return WIN_COLOR_DEPTH_YCbCr422;
case DRM_FORMAT_YUV420:
return WIN_COLOR_DEPTH_YCbCr420P;
case DRM_FORMAT_YUV422:
return WIN_COLOR_DEPTH_YCbCr422P;
default:
break;
}
WARN(1, "unsupported pixel format %u, using default\n", format);
return WIN_COLOR_DEPTH_B8G8R8A8;
}
static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
{
switch (format) {
case WIN_COLOR_DEPTH_YCbCr422:
case WIN_COLOR_DEPTH_YUV422:
if (planar)
*planar = false;
return true;
case WIN_COLOR_DEPTH_YCbCr420P:
case WIN_COLOR_DEPTH_YUV420P:
case WIN_COLOR_DEPTH_YCbCr422P:
case WIN_COLOR_DEPTH_YUV422P:
case WIN_COLOR_DEPTH_YCbCr422R:
case WIN_COLOR_DEPTH_YUV422R:
case WIN_COLOR_DEPTH_YCbCr422RA:
case WIN_COLOR_DEPTH_YUV422RA:
if (planar)
*planar = true;
return true;
}
return false;
}
static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
unsigned int bpp)
{
fixed20_12 outf = dfixed_init(out);
fixed20_12 inf = dfixed_init(in);
u32 dda_inc;
int max;
if (v)
max = 15;
else {
switch (bpp) {
case 2:
max = 8;
break;
default:
WARN_ON_ONCE(1);
/* fallthrough */
case 4:
max = 4;
break;
}
}
outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
inf.full -= dfixed_const(1);
dda_inc = dfixed_div(inf, outf);
dda_inc = min_t(u32, dda_inc, dfixed_const(max));
return dda_inc;
}
static inline u32 compute_initial_dda(unsigned int in)
{
fixed20_12 inf = dfixed_init(in);
return dfixed_frac(inf);
}
static int tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
const struct tegra_dc_window *window)
{
unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
unsigned long value;
bool yuv, planar;
/*
* For YUV planar modes, the number of bytes per pixel takes into
* account only the luma component and therefore is 1.
*/
yuv = tegra_dc_format_is_yuv(window->format, &planar);
if (!yuv)
bpp = window->bits_per_pixel / 8;
else
bpp = planar ? 1 : 2;
value = WINDOW_A_SELECT << index;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
tegra_dc_writel(dc, value, DC_WIN_POSITION);
value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
tegra_dc_writel(dc, value, DC_WIN_SIZE);
h_offset = window->src.x * bpp;
v_offset = window->src.y;
h_size = window->src.w * bpp;
v_size = window->src.h;
value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
/*
* For DDA computations the number of bytes per pixel for YUV planar
* modes needs to take into account all Y, U and V components.
*/
if (yuv && planar)
bpp = 2;
h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
h_dda = compute_initial_dda(window->src.x);
v_dda = compute_initial_dda(window->src.y);
tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
if (yuv && planar) {
tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
value = window->stride[1] << 16 | window->stride[0];
tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
} else {
tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
}
if (window->bottom_up)
v_offset += window->src.h - 1;
tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
if (window->tiled) {
value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
DC_WIN_BUFFER_ADDR_MODE_TILE;
} else {
value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
DC_WIN_BUFFER_ADDR_MODE_LINEAR;
}
tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
value = WIN_ENABLE;
if (yuv) {
/* setup default colorspace conversion coefficients */
tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
value |= CSC_ENABLE;
} else if (window->bits_per_pixel < 24) {
value |= COLOR_EXPAND;
}
if (window->bottom_up)
value |= V_DIRECTION;
tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
/*
* Disable blending and assume Window A is the bottom-most window,
* Window C is the top-most window and Window B is in the middle.
*/
tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
switch (index) {
case 0:
tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
break;
case 1:
tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
break;
case 2:
tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
break;
}
tegra_dc_writel(dc, WIN_A_UPDATE << index, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, WIN_A_ACT_REQ << index, DC_CMD_STATE_CONTROL);
return 0;
}
static int tegra_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
struct drm_framebuffer *fb, int crtc_x,
int crtc_y, unsigned int crtc_w,
unsigned int crtc_h, uint32_t src_x,
uint32_t src_y, uint32_t src_w, uint32_t src_h)
{
struct tegra_plane *p = to_tegra_plane(plane);
struct tegra_dc *dc = to_tegra_dc(crtc);
struct tegra_dc_window window;
unsigned int i;
memset(&window, 0, sizeof(window));
window.src.x = src_x >> 16;
window.src.y = src_y >> 16;
window.src.w = src_w >> 16;
window.src.h = src_h >> 16;
window.dst.x = crtc_x;
window.dst.y = crtc_y;
window.dst.w = crtc_w;
window.dst.h = crtc_h;
window.format = tegra_dc_format(fb->pixel_format, &window.swap);
window.bits_per_pixel = fb->bits_per_pixel;
window.bottom_up = tegra_fb_is_bottom_up(fb);
window.tiled = tegra_fb_is_tiled(fb);
for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
window.base[i] = bo->paddr + fb->offsets[i];
/*
* Tegra doesn't support different strides for U and V planes
* so we display a warning if the user tries to display a
* framebuffer with such a configuration.
*/
if (i >= 2) {
if (fb->pitches[i] != window.stride[1])
DRM_ERROR("unsupported UV-plane configuration\n");
} else {
window.stride[i] = fb->pitches[i];
}
}
return tegra_dc_setup_window(dc, p->index, &window);
}
static int tegra_plane_disable(struct drm_plane *plane)
{
struct tegra_dc *dc = to_tegra_dc(plane->crtc);
struct tegra_plane *p = to_tegra_plane(plane);
unsigned long value;
if (!plane->crtc)
return 0;
value = WINDOW_A_SELECT << p->index;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
value &= ~WIN_ENABLE;
tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
tegra_dc_writel(dc, WIN_A_UPDATE << p->index, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, WIN_A_ACT_REQ << p->index, DC_CMD_STATE_CONTROL);
return 0;
}
static void tegra_plane_destroy(struct drm_plane *plane)
{
struct tegra_plane *p = to_tegra_plane(plane);
tegra_plane_disable(plane);
drm_plane_cleanup(plane);
kfree(p);
}
static const struct drm_plane_funcs tegra_plane_funcs = {
.update_plane = tegra_plane_update,
.disable_plane = tegra_plane_disable,
.destroy = tegra_plane_destroy,
};
static const uint32_t plane_formats[] = {
DRM_FORMAT_XBGR8888,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB565,
DRM_FORMAT_UYVY,
DRM_FORMAT_YUYV,
DRM_FORMAT_YUV420,
DRM_FORMAT_YUV422,
};
static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
{
unsigned int i;
int err = 0;
for (i = 0; i < 2; i++) {
struct tegra_plane *plane;
plane = kzalloc(sizeof(*plane), GFP_KERNEL);
if (!plane)
return -ENOMEM;
plane->index = 1 + i;
err = drm_plane_init(drm, &plane->base, 1 << dc->pipe,
&tegra_plane_funcs, plane_formats,
ARRAY_SIZE(plane_formats), false);
if (err < 0) {
kfree(plane);
return err;
}
}
return 0;
}
static int tegra_dc_set_base(struct tegra_dc *dc, int x, int y,
struct drm_framebuffer *fb)
{
struct tegra_bo *bo = tegra_fb_get_plane(fb, 0);
unsigned int h_offset = 0, v_offset = 0;
unsigned int format, swap;
unsigned long value;
tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
value = fb->offsets[0] + y * fb->pitches[0] +
x * fb->bits_per_pixel / 8;
tegra_dc_writel(dc, bo->paddr + value, DC_WINBUF_START_ADDR);
tegra_dc_writel(dc, fb->pitches[0], DC_WIN_LINE_STRIDE);
format = tegra_dc_format(fb->pixel_format, &swap);
tegra_dc_writel(dc, format, DC_WIN_COLOR_DEPTH);
tegra_dc_writel(dc, swap, DC_WIN_BYTE_SWAP);
if (tegra_fb_is_tiled(fb)) {
value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
DC_WIN_BUFFER_ADDR_MODE_TILE;
} else {
value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
DC_WIN_BUFFER_ADDR_MODE_LINEAR;
}
tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
/* make sure bottom-up buffers are properly displayed */
if (tegra_fb_is_bottom_up(fb)) {
value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
value |= V_DIRECTION;
tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
v_offset += fb->height - 1;
} else {
value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
value &= ~V_DIRECTION;
tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
}
tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
value = GENERAL_UPDATE | WIN_A_UPDATE;
tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
value = GENERAL_ACT_REQ | WIN_A_ACT_REQ;
tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
return 0;
}
void tegra_dc_enable_vblank(struct tegra_dc *dc)
{
unsigned long value, flags;
spin_lock_irqsave(&dc->lock, flags);
value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
value |= VBLANK_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
spin_unlock_irqrestore(&dc->lock, flags);
}
void tegra_dc_disable_vblank(struct tegra_dc *dc)
{
unsigned long value, flags;
spin_lock_irqsave(&dc->lock, flags);
value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
value &= ~VBLANK_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
spin_unlock_irqrestore(&dc->lock, flags);
}
static int tegra_dc_cursor_set2(struct drm_crtc *crtc, struct drm_file *file,
uint32_t handle, uint32_t width,
uint32_t height, int32_t hot_x, int32_t hot_y)
{
unsigned long value = CURSOR_CLIP_DISPLAY;
struct tegra_dc *dc = to_tegra_dc(crtc);
struct drm_gem_object *gem;
struct tegra_bo *bo = NULL;
if (!dc->soc->supports_cursor)
return -ENXIO;
if (width != height)
return -EINVAL;
switch (width) {
case 32:
value |= CURSOR_SIZE_32x32;
break;
case 64:
value |= CURSOR_SIZE_64x64;
break;
case 128:
value |= CURSOR_SIZE_128x128;
case 256:
value |= CURSOR_SIZE_256x256;
break;
default:
return -EINVAL;
}
if (handle) {
gem = drm_gem_object_lookup(crtc->dev, file, handle);
if (!gem)
return -ENOENT;
bo = to_tegra_bo(gem);
}
if (bo) {
unsigned long addr = (bo->paddr & 0xfffffc00) >> 10;
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
unsigned long high = (bo->paddr & 0xfffffffc) >> 32;
#endif
tegra_dc_writel(dc, value | addr, DC_DISP_CURSOR_START_ADDR);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
tegra_dc_writel(dc, high, DC_DISP_CURSOR_START_ADDR_HI);
#endif
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
value |= CURSOR_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
value &= ~CURSOR_DST_BLEND_MASK;
value &= ~CURSOR_SRC_BLEND_MASK;
value |= CURSOR_MODE_NORMAL;
value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
value |= CURSOR_ALPHA;
tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
} else {
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
value &= ~CURSOR_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
}
tegra_dc_writel(dc, CURSOR_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, CURSOR_ACT_REQ, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
return 0;
}
static int tegra_dc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
unsigned long value;
if (!dc->soc->supports_cursor)
return -ENXIO;
value = ((y & 0x3fff) << 16) | (x & 0x3fff);
tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
tegra_dc_writel(dc, CURSOR_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, CURSOR_ACT_REQ, DC_CMD_STATE_CONTROL);
/* XXX: only required on generations earlier than Tegra124? */
tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
return 0;
}
static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
{
struct drm_device *drm = dc->base.dev;
struct drm_crtc *crtc = &dc->base;
unsigned long flags, base;
struct tegra_bo *bo;
if (!dc->event)
return;
bo = tegra_fb_get_plane(crtc->primary->fb, 0);
/* check if new start address has been latched */
tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
spin_lock_irqsave(&drm->event_lock, flags);
drm_send_vblank_event(drm, dc->pipe, dc->event);
drm_vblank_put(drm, dc->pipe);
dc->event = NULL;
spin_unlock_irqrestore(&drm->event_lock, flags);
}
}
void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
struct drm_device *drm = crtc->dev;
unsigned long flags;
spin_lock_irqsave(&drm->event_lock, flags);
if (dc->event && dc->event->base.file_priv == file) {
dc->event->base.destroy(&dc->event->base);
drm_vblank_put(drm, dc->pipe);
dc->event = NULL;
}
spin_unlock_irqrestore(&drm->event_lock, flags);
}
static int tegra_dc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event, uint32_t page_flip_flags)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
struct drm_device *drm = crtc->dev;
if (dc->event)
return -EBUSY;
if (event) {
event->pipe = dc->pipe;
dc->event = event;
drm_vblank_get(drm, dc->pipe);
}
tegra_dc_set_base(dc, 0, 0, fb);
crtc->primary->fb = fb;
return 0;
}
static void drm_crtc_clear(struct drm_crtc *crtc)
{
memset(crtc, 0, sizeof(*crtc));
}
static void tegra_dc_destroy(struct drm_crtc *crtc)
{
drm_crtc_cleanup(crtc);
drm_crtc_clear(crtc);
}
static const struct drm_crtc_funcs tegra_crtc_funcs = {
.cursor_set2 = tegra_dc_cursor_set2,
.cursor_move = tegra_dc_cursor_move,
.page_flip = tegra_dc_page_flip,
.set_config = drm_crtc_helper_set_config,
.destroy = tegra_dc_destroy,
};
static void tegra_crtc_disable(struct drm_crtc *crtc)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
struct drm_device *drm = crtc->dev;
struct drm_plane *plane;
drm_for_each_legacy_plane(plane, &drm->mode_config.plane_list) {
if (plane->crtc == crtc) {
tegra_plane_disable(plane);
plane->crtc = NULL;
if (plane->fb) {
drm_framebuffer_unreference(plane->fb);
plane->fb = NULL;
}
}
}
drm_vblank_off(drm, dc->pipe);
}
static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted)
{
return true;
}
static int tegra_dc_set_timings(struct tegra_dc *dc,
struct drm_display_mode *mode)
{
unsigned int h_ref_to_sync = 1;
unsigned int v_ref_to_sync = 1;
unsigned long value;
tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
value = (v_ref_to_sync << 16) | h_ref_to_sync;
tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
value = ((mode->vsync_end - mode->vsync_start) << 16) |
((mode->hsync_end - mode->hsync_start) << 0);
tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
value = ((mode->vtotal - mode->vsync_end) << 16) |
((mode->htotal - mode->hsync_end) << 0);
tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
value = ((mode->vsync_start - mode->vdisplay) << 16) |
((mode->hsync_start - mode->hdisplay) << 0);
tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
value = (mode->vdisplay << 16) | mode->hdisplay;
tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
return 0;
}
static int tegra_crtc_setup_clk(struct drm_crtc *crtc,
struct drm_display_mode *mode)
{
unsigned long pclk = mode->clock * 1000;
struct tegra_dc *dc = to_tegra_dc(crtc);
struct tegra_output *output = NULL;
struct drm_encoder *encoder;
unsigned int div;
u32 value;
long err;
list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list, head)
if (encoder->crtc == crtc) {
output = encoder_to_output(encoder);
break;
}
if (!output)
return -ENODEV;
/*
* This assumes that the parent clock is pll_d_out0 or pll_d2_out
* respectively, each of which divides the base pll_d by 2.
*/
err = tegra_output_setup_clock(output, dc->clk, pclk, &div);
if (err < 0) {
dev_err(dc->dev, "failed to setup clock: %ld\n", err);
return err;
}
DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), div);
value = SHIFT_CLK_DIVIDER(div) | PIXEL_CLK_DIVIDER_PCD1;
tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
return 0;
}
static int tegra_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted,
int x, int y, struct drm_framebuffer *old_fb)
{
struct tegra_bo *bo = tegra_fb_get_plane(crtc->primary->fb, 0);
struct tegra_dc *dc = to_tegra_dc(crtc);
struct tegra_dc_window window;
u32 value;
int err;
drm_vblank_pre_modeset(crtc->dev, dc->pipe);
err = tegra_crtc_setup_clk(crtc, mode);
if (err) {
dev_err(dc->dev, "failed to setup clock for CRTC: %d\n", err);
return err;
}
/* program display mode */
tegra_dc_set_timings(dc, mode);
/* interlacing isn't supported yet, so disable it */
if (dc->soc->supports_interlacing) {
value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
value &= ~INTERLACE_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
}
/* setup window parameters */
memset(&window, 0, sizeof(window));
window.src.x = 0;
window.src.y = 0;
window.src.w = mode->hdisplay;
window.src.h = mode->vdisplay;
window.dst.x = 0;
window.dst.y = 0;
window.dst.w = mode->hdisplay;
window.dst.h = mode->vdisplay;
window.format = tegra_dc_format(crtc->primary->fb->pixel_format,
&window.swap);
window.bits_per_pixel = crtc->primary->fb->bits_per_pixel;
window.stride[0] = crtc->primary->fb->pitches[0];
window.base[0] = bo->paddr;
err = tegra_dc_setup_window(dc, 0, &window);
if (err < 0)
dev_err(dc->dev, "failed to enable root plane\n");
return 0;
}
static int tegra_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
return tegra_dc_set_base(dc, x, y, crtc->primary->fb);
}
static void tegra_crtc_prepare(struct drm_crtc *crtc)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
unsigned int syncpt;
unsigned long value;
/* hardware initialization */
reset_control_deassert(dc->rst);
usleep_range(10000, 20000);
if (dc->pipe)
syncpt = SYNCPT_VBLANK1;
else
syncpt = SYNCPT_VBLANK0;
/* initialize display controller */
tegra_dc_writel(dc, 0x00000100, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
tegra_dc_writel(dc, 0x100 | syncpt, DC_CMD_CONT_SYNCPT_VSYNC);
value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
/* initialize timer */
value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
}
static void tegra_crtc_commit(struct drm_crtc *crtc)
{
struct tegra_dc *dc = to_tegra_dc(crtc);
unsigned long value;
value = GENERAL_UPDATE | WIN_A_UPDATE;
tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
value = GENERAL_ACT_REQ | WIN_A_ACT_REQ;
tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
drm_vblank_post_modeset(crtc->dev, dc->pipe);
}
static void tegra_crtc_load_lut(struct drm_crtc *crtc)
{
}
static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
.disable = tegra_crtc_disable,
.mode_fixup = tegra_crtc_mode_fixup,
.mode_set = tegra_crtc_mode_set,
.mode_set_base = tegra_crtc_mode_set_base,
.prepare = tegra_crtc_prepare,
.commit = tegra_crtc_commit,
.load_lut = tegra_crtc_load_lut,
};
static irqreturn_t tegra_dc_irq(int irq, void *data)
{
struct tegra_dc *dc = data;
unsigned long status;
status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
if (status & FRAME_END_INT) {
/*
dev_dbg(dc->dev, "%s(): frame end\n", __func__);
*/
}
if (status & VBLANK_INT) {
/*
dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
*/
drm_handle_vblank(dc->base.dev, dc->pipe);
tegra_dc_finish_page_flip(dc);
}
if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
/*
dev_dbg(dc->dev, "%s(): underflow\n", __func__);
*/
}
return IRQ_HANDLED;
}
static int tegra_dc_show_regs(struct seq_file *s, void *data)
{
struct drm_info_node *node = s->private;
struct tegra_dc *dc = node->info_ent->data;
#define DUMP_REG(name) \
seq_printf(s, "%-40s %#05x %08lx\n", #name, name, \
tegra_dc_readl(dc, name))
DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
DUMP_REG(DC_CMD_DISPLAY_COMMAND);
DUMP_REG(DC_CMD_SIGNAL_RAISE);
DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
DUMP_REG(DC_CMD_INT_STATUS);
DUMP_REG(DC_CMD_INT_MASK);
DUMP_REG(DC_CMD_INT_ENABLE);
DUMP_REG(DC_CMD_INT_TYPE);
DUMP_REG(DC_CMD_INT_POLARITY);
DUMP_REG(DC_CMD_SIGNAL_RAISE1);
DUMP_REG(DC_CMD_SIGNAL_RAISE2);
DUMP_REG(DC_CMD_SIGNAL_RAISE3);
DUMP_REG(DC_CMD_STATE_ACCESS);
DUMP_REG(DC_CMD_STATE_CONTROL);
DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
DUMP_REG(DC_CMD_REG_ACT_CONTROL);
DUMP_REG(DC_COM_CRC_CONTROL);
DUMP_REG(DC_COM_CRC_CHECKSUM);
DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
DUMP_REG(DC_COM_PIN_MISC_CONTROL);
DUMP_REG(DC_COM_PIN_PM0_CONTROL);
DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
DUMP_REG(DC_COM_PIN_PM1_CONTROL);
DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
DUMP_REG(DC_COM_SPI_CONTROL);
DUMP_REG(DC_COM_SPI_START_BYTE);
DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
DUMP_REG(DC_COM_HSPI_CS_DC);
DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
DUMP_REG(DC_COM_GPIO_CTRL);
DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
DUMP_REG(DC_DISP_REF_TO_SYNC);
DUMP_REG(DC_DISP_SYNC_WIDTH);
DUMP_REG(DC_DISP_BACK_PORCH);
DUMP_REG(DC_DISP_ACTIVE);
DUMP_REG(DC_DISP_FRONT_PORCH);
DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
DUMP_REG(DC_DISP_M0_CONTROL);
DUMP_REG(DC_DISP_M1_CONTROL);
DUMP_REG(DC_DISP_DI_CONTROL);
DUMP_REG(DC_DISP_PP_CONTROL);
DUMP_REG(DC_DISP_PP_SELECT_A);
DUMP_REG(DC_DISP_PP_SELECT_B);
DUMP_REG(DC_DISP_PP_SELECT_C);
DUMP_REG(DC_DISP_PP_SELECT_D);
DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
DUMP_REG(DC_DISP_BORDER_COLOR);
DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
DUMP_REG(DC_DISP_CURSOR_START_ADDR);
DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
DUMP_REG(DC_DISP_CURSOR_POSITION);
DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
DUMP_REG(DC_DISP_DAC_CRT_CTRL);
DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
DUMP_REG(DC_DISP_SD_CONTROL);
DUMP_REG(DC_DISP_SD_CSC_COEFF);
DUMP_REG(DC_DISP_SD_LUT(0));
DUMP_REG(DC_DISP_SD_LUT(1));
DUMP_REG(DC_DISP_SD_LUT(2));
DUMP_REG(DC_DISP_SD_LUT(3));
DUMP_REG(DC_DISP_SD_LUT(4));
DUMP_REG(DC_DISP_SD_LUT(5));
DUMP_REG(DC_DISP_SD_LUT(6));
DUMP_REG(DC_DISP_SD_LUT(7));
DUMP_REG(DC_DISP_SD_LUT(8));
DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
DUMP_REG(DC_DISP_SD_BL_TF(0));
DUMP_REG(DC_DISP_SD_BL_TF(1));
DUMP_REG(DC_DISP_SD_BL_TF(2));
DUMP_REG(DC_DISP_SD_BL_TF(3));
DUMP_REG(DC_DISP_SD_BL_CONTROL);
DUMP_REG(DC_DISP_SD_HW_K_VALUES);
DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
DUMP_REG(DC_WIN_WIN_OPTIONS);
DUMP_REG(DC_WIN_BYTE_SWAP);
DUMP_REG(DC_WIN_BUFFER_CONTROL);
DUMP_REG(DC_WIN_COLOR_DEPTH);
DUMP_REG(DC_WIN_POSITION);
DUMP_REG(DC_WIN_SIZE);
DUMP_REG(DC_WIN_PRESCALED_SIZE);
DUMP_REG(DC_WIN_H_INITIAL_DDA);
DUMP_REG(DC_WIN_V_INITIAL_DDA);
DUMP_REG(DC_WIN_DDA_INC);
DUMP_REG(DC_WIN_LINE_STRIDE);
DUMP_REG(DC_WIN_BUF_STRIDE);
DUMP_REG(DC_WIN_UV_BUF_STRIDE);
DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
DUMP_REG(DC_WIN_DV_CONTROL);
DUMP_REG(DC_WIN_BLEND_NOKEY);
DUMP_REG(DC_WIN_BLEND_1WIN);
DUMP_REG(DC_WIN_BLEND_2WIN_X);
DUMP_REG(DC_WIN_BLEND_2WIN_Y);
DUMP_REG(DC_WIN_BLEND_3WIN_XY);
DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
DUMP_REG(DC_WINBUF_START_ADDR);
DUMP_REG(DC_WINBUF_START_ADDR_NS);
DUMP_REG(DC_WINBUF_START_ADDR_U);
DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
DUMP_REG(DC_WINBUF_START_ADDR_V);
DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
DUMP_REG(DC_WINBUF_UFLOW_STATUS);
DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
#undef DUMP_REG
return 0;
}
static struct drm_info_list debugfs_files[] = {
{ "regs", tegra_dc_show_regs, 0, NULL },
};
static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
{
unsigned int i;
char *name;
int err;
name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
kfree(name);
if (!dc->debugfs)
return -ENOMEM;
dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
GFP_KERNEL);
if (!dc->debugfs_files) {
err = -ENOMEM;
goto remove;
}
for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
dc->debugfs_files[i].data = dc;
err = drm_debugfs_create_files(dc->debugfs_files,
ARRAY_SIZE(debugfs_files),
dc->debugfs, minor);
if (err < 0)
goto free;
dc->minor = minor;
return 0;
free:
kfree(dc->debugfs_files);
dc->debugfs_files = NULL;
remove:
debugfs_remove(dc->debugfs);
dc->debugfs = NULL;
return err;
}
static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
{
drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
dc->minor);
dc->minor = NULL;
kfree(dc->debugfs_files);
dc->debugfs_files = NULL;
debugfs_remove(dc->debugfs);
dc->debugfs = NULL;
return 0;
}
static int tegra_dc_init(struct host1x_client *client)
{
struct drm_device *drm = dev_get_drvdata(client->parent);
struct tegra_dc *dc = host1x_client_to_dc(client);
int err;
drm_crtc_init(drm, &dc->base, &tegra_crtc_funcs);
drm_mode_crtc_set_gamma_size(&dc->base, 256);
drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
err = tegra_dc_rgb_init(drm, dc);
if (err < 0 && err != -ENODEV) {
dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
return err;
}
err = tegra_dc_add_planes(drm, dc);
if (err < 0)
return err;
if (IS_ENABLED(CONFIG_DEBUG_FS)) {
err = tegra_dc_debugfs_init(dc, drm->primary);
if (err < 0)
dev_err(dc->dev, "debugfs setup failed: %d\n", err);
}
err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
dev_name(dc->dev), dc);
if (err < 0) {
dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
err);
return err;
}
return 0;
}
static int tegra_dc_exit(struct host1x_client *client)
{
struct tegra_dc *dc = host1x_client_to_dc(client);
int err;
devm_free_irq(dc->dev, dc->irq, dc);
if (IS_ENABLED(CONFIG_DEBUG_FS)) {
err = tegra_dc_debugfs_exit(dc);
if (err < 0)
dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
}
err = tegra_dc_rgb_exit(dc);
if (err) {
dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
return err;
}
return 0;
}
static const struct host1x_client_ops dc_client_ops = {
.init = tegra_dc_init,
.exit = tegra_dc_exit,
};
static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
.supports_interlacing = false,
.supports_cursor = false,
};
static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
.supports_interlacing = false,
.supports_cursor = false,
};
static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
.supports_interlacing = true,
.supports_cursor = true,
};
static const struct of_device_id tegra_dc_of_match[] = {
{
.compatible = "nvidia,tegra124-dc",
.data = &tegra124_dc_soc_info,
}, {
.compatible = "nvidia,tegra30-dc",
.data = &tegra30_dc_soc_info,
}, {
.compatible = "nvidia,tegra20-dc",
.data = &tegra20_dc_soc_info,
}, {
/* sentinel */
}
};
static int tegra_dc_parse_dt(struct tegra_dc *dc)
{
struct device_node *np;
u32 value = 0;
int err;
err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
if (err < 0) {
dev_err(dc->dev, "missing \"nvidia,head\" property\n");
/*
* If the nvidia,head property isn't present, try to find the
* correct head number by looking up the position of this
* display controller's node within the device tree. Assuming
* that the nodes are ordered properly in the DTS file and
* that the translation into a flattened device tree blob
* preserves that ordering this will actually yield the right
* head number.
*
* If those assumptions don't hold, this will still work for
* cases where only a single display controller is used.
*/
for_each_matching_node(np, tegra_dc_of_match) {
if (np == dc->dev->of_node)
break;
value++;
}
}
dc->pipe = value;
return 0;
}
static int tegra_dc_probe(struct platform_device *pdev)
{
const struct of_device_id *id;
struct resource *regs;
struct tegra_dc *dc;
int err;
dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
if (!dc)
return -ENOMEM;
id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
if (!id)
return -ENODEV;
spin_lock_init(&dc->lock);
INIT_LIST_HEAD(&dc->list);
dc->dev = &pdev->dev;
dc->soc = id->data;
err = tegra_dc_parse_dt(dc);
if (err < 0)
return err;
dc->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(dc->clk)) {
dev_err(&pdev->dev, "failed to get clock\n");
return PTR_ERR(dc->clk);
}
dc->rst = devm_reset_control_get(&pdev->dev, "dc");
if (IS_ERR(dc->rst)) {
dev_err(&pdev->dev, "failed to get reset\n");
return PTR_ERR(dc->rst);
}
err = clk_prepare_enable(dc->clk);
if (err < 0)
return err;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dc->regs = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(dc->regs))
return PTR_ERR(dc->regs);
dc->irq = platform_get_irq(pdev, 0);
if (dc->irq < 0) {
dev_err(&pdev->dev, "failed to get IRQ\n");
return -ENXIO;
}
INIT_LIST_HEAD(&dc->client.list);
dc->client.ops = &dc_client_ops;
dc->client.dev = &pdev->dev;
err = tegra_dc_rgb_probe(dc);
if (err < 0 && err != -ENODEV) {
dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
return err;
}
err = host1x_client_register(&dc->client);
if (err < 0) {
dev_err(&pdev->dev, "failed to register host1x client: %d\n",
err);
return err;
}
platform_set_drvdata(pdev, dc);
return 0;
}
static int tegra_dc_remove(struct platform_device *pdev)
{
struct tegra_dc *dc = platform_get_drvdata(pdev);
int err;
err = host1x_client_unregister(&dc->client);
if (err < 0) {
dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
err);
return err;
}
err = tegra_dc_rgb_remove(dc);
if (err < 0) {
dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
return err;
}
clk_disable_unprepare(dc->clk);
return 0;
}
struct platform_driver tegra_dc_driver = {
.driver = {
.name = "tegra-dc",
.owner = THIS_MODULE,
.of_match_table = tegra_dc_of_match,
},
.probe = tegra_dc_probe,
.remove = tegra_dc_remove,
};