mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-17 05:17:45 +07:00
87382003e3
Rename bit() to __feature_bit() to give it a more descriptive name, and add a macro, feature_bit(), to stuff the X68_FEATURE_ prefix to keep line lengths manageable for code that hardcodes the bit to be retrieved. No functional change intended. Cc: Jim Mattson <jmattson@google.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
1072 lines
28 KiB
C
1072 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
* cpuid support routines
|
|
*
|
|
* derived from arch/x86/kvm/x86.c
|
|
*
|
|
* Copyright 2011 Red Hat, Inc. and/or its affiliates.
|
|
* Copyright IBM Corporation, 2008
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/export.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/sched/stat.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/user.h>
|
|
#include <asm/fpu/xstate.h>
|
|
#include "cpuid.h"
|
|
#include "lapic.h"
|
|
#include "mmu.h"
|
|
#include "trace.h"
|
|
#include "pmu.h"
|
|
|
|
static u32 xstate_required_size(u64 xstate_bv, bool compacted)
|
|
{
|
|
int feature_bit = 0;
|
|
u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
|
|
|
|
xstate_bv &= XFEATURE_MASK_EXTEND;
|
|
while (xstate_bv) {
|
|
if (xstate_bv & 0x1) {
|
|
u32 eax, ebx, ecx, edx, offset;
|
|
cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
|
|
offset = compacted ? ret : ebx;
|
|
ret = max(ret, offset + eax);
|
|
}
|
|
|
|
xstate_bv >>= 1;
|
|
feature_bit++;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool kvm_mpx_supported(void)
|
|
{
|
|
return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
|
|
&& kvm_x86_ops->mpx_supported());
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_mpx_supported);
|
|
|
|
u64 kvm_supported_xcr0(void)
|
|
{
|
|
u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
|
|
|
|
if (!kvm_mpx_supported())
|
|
xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
|
|
|
|
return xcr0;
|
|
}
|
|
|
|
#define F feature_bit
|
|
|
|
int kvm_update_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
struct kvm_lapic *apic = vcpu->arch.apic;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 1, 0);
|
|
if (!best)
|
|
return 0;
|
|
|
|
/* Update OSXSAVE bit */
|
|
if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
|
|
best->ecx &= ~F(OSXSAVE);
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
|
|
best->ecx |= F(OSXSAVE);
|
|
}
|
|
|
|
best->edx &= ~F(APIC);
|
|
if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
|
|
best->edx |= F(APIC);
|
|
|
|
if (apic) {
|
|
if (best->ecx & F(TSC_DEADLINE_TIMER))
|
|
apic->lapic_timer.timer_mode_mask = 3 << 17;
|
|
else
|
|
apic->lapic_timer.timer_mode_mask = 1 << 17;
|
|
}
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 7, 0);
|
|
if (best) {
|
|
/* Update OSPKE bit */
|
|
if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
|
|
best->ecx &= ~F(OSPKE);
|
|
if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
|
|
best->ecx |= F(OSPKE);
|
|
}
|
|
}
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
|
|
if (!best) {
|
|
vcpu->arch.guest_supported_xcr0 = 0;
|
|
vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
|
|
} else {
|
|
vcpu->arch.guest_supported_xcr0 =
|
|
(best->eax | ((u64)best->edx << 32)) &
|
|
kvm_supported_xcr0();
|
|
vcpu->arch.guest_xstate_size = best->ebx =
|
|
xstate_required_size(vcpu->arch.xcr0, false);
|
|
}
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
|
|
if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
|
|
best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
|
|
|
|
/*
|
|
* The existing code assumes virtual address is 48-bit or 57-bit in the
|
|
* canonical address checks; exit if it is ever changed.
|
|
*/
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
|
|
if (best) {
|
|
int vaddr_bits = (best->eax & 0xff00) >> 8;
|
|
|
|
if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
|
|
return -EINVAL;
|
|
}
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
|
|
if (kvm_hlt_in_guest(vcpu->kvm) && best &&
|
|
(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
|
|
best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
|
|
|
|
if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
|
|
best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
|
|
if (best) {
|
|
if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT)
|
|
best->ecx |= F(MWAIT);
|
|
else
|
|
best->ecx &= ~F(MWAIT);
|
|
}
|
|
}
|
|
|
|
/* Update physical-address width */
|
|
vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
|
|
kvm_mmu_reset_context(vcpu);
|
|
|
|
kvm_pmu_refresh(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
static int is_efer_nx(void)
|
|
{
|
|
unsigned long long efer = 0;
|
|
|
|
rdmsrl_safe(MSR_EFER, &efer);
|
|
return efer & EFER_NX;
|
|
}
|
|
|
|
static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
|
|
{
|
|
int i;
|
|
struct kvm_cpuid_entry2 *e, *entry;
|
|
|
|
entry = NULL;
|
|
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
|
|
e = &vcpu->arch.cpuid_entries[i];
|
|
if (e->function == 0x80000001) {
|
|
entry = e;
|
|
break;
|
|
}
|
|
}
|
|
if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
|
|
entry->edx &= ~F(NX);
|
|
printk(KERN_INFO "kvm: guest NX capability removed\n");
|
|
}
|
|
}
|
|
|
|
int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_cpuid_entry2 *best;
|
|
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
|
|
if (!best || best->eax < 0x80000008)
|
|
goto not_found;
|
|
best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
|
|
if (best)
|
|
return best->eax & 0xff;
|
|
not_found:
|
|
return 36;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
|
|
|
|
/* when an old userspace process fills a new kernel module */
|
|
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid *cpuid,
|
|
struct kvm_cpuid_entry __user *entries)
|
|
{
|
|
int r, i;
|
|
struct kvm_cpuid_entry *cpuid_entries = NULL;
|
|
|
|
r = -E2BIG;
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
goto out;
|
|
r = -ENOMEM;
|
|
if (cpuid->nent) {
|
|
cpuid_entries =
|
|
vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
|
|
cpuid->nent));
|
|
if (!cpuid_entries)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(cpuid_entries, entries,
|
|
cpuid->nent * sizeof(struct kvm_cpuid_entry)))
|
|
goto out;
|
|
}
|
|
for (i = 0; i < cpuid->nent; i++) {
|
|
vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
|
|
vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
|
|
vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
|
|
vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
|
|
vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
|
|
vcpu->arch.cpuid_entries[i].index = 0;
|
|
vcpu->arch.cpuid_entries[i].flags = 0;
|
|
vcpu->arch.cpuid_entries[i].padding[0] = 0;
|
|
vcpu->arch.cpuid_entries[i].padding[1] = 0;
|
|
vcpu->arch.cpuid_entries[i].padding[2] = 0;
|
|
}
|
|
vcpu->arch.cpuid_nent = cpuid->nent;
|
|
cpuid_fix_nx_cap(vcpu);
|
|
kvm_apic_set_version(vcpu);
|
|
kvm_x86_ops->cpuid_update(vcpu);
|
|
r = kvm_update_cpuid(vcpu);
|
|
|
|
out:
|
|
vfree(cpuid_entries);
|
|
return r;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
int r;
|
|
|
|
r = -E2BIG;
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
|
|
cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
|
|
goto out;
|
|
vcpu->arch.cpuid_nent = cpuid->nent;
|
|
kvm_apic_set_version(vcpu);
|
|
kvm_x86_ops->cpuid_update(vcpu);
|
|
r = kvm_update_cpuid(vcpu);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
|
|
struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries)
|
|
{
|
|
int r;
|
|
|
|
r = -E2BIG;
|
|
if (cpuid->nent < vcpu->arch.cpuid_nent)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
|
|
vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
|
|
goto out;
|
|
return 0;
|
|
|
|
out:
|
|
cpuid->nent = vcpu->arch.cpuid_nent;
|
|
return r;
|
|
}
|
|
|
|
static __always_inline void cpuid_mask(u32 *word, int wordnum)
|
|
{
|
|
reverse_cpuid_check(wordnum);
|
|
*word &= boot_cpu_data.x86_capability[wordnum];
|
|
}
|
|
|
|
static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function,
|
|
u32 index)
|
|
{
|
|
entry->function = function;
|
|
entry->index = index;
|
|
entry->flags = 0;
|
|
|
|
cpuid_count(entry->function, entry->index,
|
|
&entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
|
|
|
|
switch (function) {
|
|
case 2:
|
|
entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
|
|
break;
|
|
case 4:
|
|
case 7:
|
|
case 0xb:
|
|
case 0xd:
|
|
case 0xf:
|
|
case 0x10:
|
|
case 0x12:
|
|
case 0x14:
|
|
case 0x17:
|
|
case 0x18:
|
|
case 0x1f:
|
|
case 0x8000001d:
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry,
|
|
u32 func, int *nent, int maxnent)
|
|
{
|
|
entry->function = func;
|
|
entry->index = 0;
|
|
entry->flags = 0;
|
|
|
|
switch (func) {
|
|
case 0:
|
|
entry->eax = 7;
|
|
++*nent;
|
|
break;
|
|
case 1:
|
|
entry->ecx = F(MOVBE);
|
|
++*nent;
|
|
break;
|
|
case 7:
|
|
entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
|
|
entry->eax = 0;
|
|
entry->ecx = F(RDPID);
|
|
++*nent;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index)
|
|
{
|
|
unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
|
|
unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
|
|
unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
|
|
unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
|
|
unsigned f_la57;
|
|
|
|
/* cpuid 7.0.ebx */
|
|
const u32 kvm_cpuid_7_0_ebx_x86_features =
|
|
F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
|
|
F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
|
|
F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
|
|
F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
|
|
F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
|
|
|
|
/* cpuid 7.0.ecx*/
|
|
const u32 kvm_cpuid_7_0_ecx_x86_features =
|
|
F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
|
|
F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
|
|
F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
|
|
F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/;
|
|
|
|
/* cpuid 7.0.edx*/
|
|
const u32 kvm_cpuid_7_0_edx_x86_features =
|
|
F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
|
|
F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
|
|
F(MD_CLEAR);
|
|
|
|
/* cpuid 7.1.eax */
|
|
const u32 kvm_cpuid_7_1_eax_x86_features =
|
|
F(AVX512_BF16);
|
|
|
|
switch (index) {
|
|
case 0:
|
|
entry->eax = min(entry->eax, 1u);
|
|
entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
|
|
cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
|
|
/* TSC_ADJUST is emulated */
|
|
entry->ebx |= F(TSC_ADJUST);
|
|
|
|
entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
|
|
f_la57 = entry->ecx & F(LA57);
|
|
cpuid_mask(&entry->ecx, CPUID_7_ECX);
|
|
/* Set LA57 based on hardware capability. */
|
|
entry->ecx |= f_la57;
|
|
entry->ecx |= f_umip;
|
|
/* PKU is not yet implemented for shadow paging. */
|
|
if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
|
|
entry->ecx &= ~F(PKU);
|
|
|
|
entry->edx &= kvm_cpuid_7_0_edx_x86_features;
|
|
cpuid_mask(&entry->edx, CPUID_7_EDX);
|
|
if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
|
|
entry->edx |= F(SPEC_CTRL);
|
|
if (boot_cpu_has(X86_FEATURE_STIBP))
|
|
entry->edx |= F(INTEL_STIBP);
|
|
if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
|
|
boot_cpu_has(X86_FEATURE_AMD_SSBD))
|
|
entry->edx |= F(SPEC_CTRL_SSBD);
|
|
/*
|
|
* We emulate ARCH_CAPABILITIES in software even
|
|
* if the host doesn't support it.
|
|
*/
|
|
entry->edx |= F(ARCH_CAPABILITIES);
|
|
break;
|
|
case 1:
|
|
entry->eax &= kvm_cpuid_7_1_eax_x86_features;
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
entry->eax = 0;
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function,
|
|
int *nent, int maxnent)
|
|
{
|
|
int r;
|
|
unsigned f_nx = is_efer_nx() ? F(NX) : 0;
|
|
#ifdef CONFIG_X86_64
|
|
unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
|
|
? F(GBPAGES) : 0;
|
|
unsigned f_lm = F(LM);
|
|
#else
|
|
unsigned f_gbpages = 0;
|
|
unsigned f_lm = 0;
|
|
#endif
|
|
unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
|
|
unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
|
|
unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
|
|
|
|
/* cpuid 1.edx */
|
|
const u32 kvm_cpuid_1_edx_x86_features =
|
|
F(FPU) | F(VME) | F(DE) | F(PSE) |
|
|
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
|
|
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
|
|
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
|
|
F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
|
|
0 /* Reserved, DS, ACPI */ | F(MMX) |
|
|
F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
|
|
0 /* HTT, TM, Reserved, PBE */;
|
|
/* cpuid 0x80000001.edx */
|
|
const u32 kvm_cpuid_8000_0001_edx_x86_features =
|
|
F(FPU) | F(VME) | F(DE) | F(PSE) |
|
|
F(TSC) | F(MSR) | F(PAE) | F(MCE) |
|
|
F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
|
|
F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
|
|
F(PAT) | F(PSE36) | 0 /* Reserved */ |
|
|
f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
|
|
F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
|
|
0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
|
|
/* cpuid 1.ecx */
|
|
const u32 kvm_cpuid_1_ecx_x86_features =
|
|
/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
|
|
* but *not* advertised to guests via CPUID ! */
|
|
F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
|
|
0 /* DS-CPL, VMX, SMX, EST */ |
|
|
0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
|
|
F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
|
|
F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
|
|
F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
|
|
0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
|
|
F(F16C) | F(RDRAND);
|
|
/* cpuid 0x80000001.ecx */
|
|
const u32 kvm_cpuid_8000_0001_ecx_x86_features =
|
|
F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
|
|
F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
|
|
F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
|
|
0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
|
|
F(TOPOEXT) | F(PERFCTR_CORE);
|
|
|
|
/* cpuid 0x80000008.ebx */
|
|
const u32 kvm_cpuid_8000_0008_ebx_x86_features =
|
|
F(CLZERO) | F(XSAVEERPTR) |
|
|
F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
|
|
F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON);
|
|
|
|
/* cpuid 0xC0000001.edx */
|
|
const u32 kvm_cpuid_C000_0001_edx_x86_features =
|
|
F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
|
|
F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
|
|
F(PMM) | F(PMM_EN);
|
|
|
|
/* cpuid 0xD.1.eax */
|
|
const u32 kvm_cpuid_D_1_eax_x86_features =
|
|
F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
|
|
|
|
/* all calls to cpuid_count() should be made on the same cpu */
|
|
get_cpu();
|
|
|
|
r = -E2BIG;
|
|
|
|
if (WARN_ON(*nent >= maxnent))
|
|
goto out;
|
|
|
|
do_host_cpuid(entry, function, 0);
|
|
++*nent;
|
|
|
|
switch (function) {
|
|
case 0:
|
|
/* Limited to the highest leaf implemented in KVM. */
|
|
entry->eax = min(entry->eax, 0x1fU);
|
|
break;
|
|
case 1:
|
|
entry->edx &= kvm_cpuid_1_edx_x86_features;
|
|
cpuid_mask(&entry->edx, CPUID_1_EDX);
|
|
entry->ecx &= kvm_cpuid_1_ecx_x86_features;
|
|
cpuid_mask(&entry->ecx, CPUID_1_ECX);
|
|
/* we support x2apic emulation even if host does not support
|
|
* it since we emulate x2apic in software */
|
|
entry->ecx |= F(X2APIC);
|
|
break;
|
|
/* function 2 entries are STATEFUL. That is, repeated cpuid commands
|
|
* may return different values. This forces us to get_cpu() before
|
|
* issuing the first command, and also to emulate this annoying behavior
|
|
* in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
|
|
case 2: {
|
|
int t, times = entry->eax & 0xff;
|
|
|
|
entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
|
|
for (t = 1; t < times; ++t) {
|
|
if (*nent >= maxnent)
|
|
goto out;
|
|
|
|
do_host_cpuid(&entry[t], function, 0);
|
|
++*nent;
|
|
}
|
|
break;
|
|
}
|
|
/* functions 4 and 0x8000001d have additional index. */
|
|
case 4:
|
|
case 0x8000001d: {
|
|
int i, cache_type;
|
|
|
|
/* read more entries until cache_type is zero */
|
|
for (i = 1; ; ++i) {
|
|
if (*nent >= maxnent)
|
|
goto out;
|
|
|
|
cache_type = entry[i - 1].eax & 0x1f;
|
|
if (!cache_type)
|
|
break;
|
|
do_host_cpuid(&entry[i], function, i);
|
|
++*nent;
|
|
}
|
|
break;
|
|
}
|
|
case 6: /* Thermal management */
|
|
entry->eax = 0x4; /* allow ARAT */
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
/* function 7 has additional index. */
|
|
case 7: {
|
|
int i;
|
|
|
|
for (i = 0; ; ) {
|
|
do_cpuid_7_mask(&entry[i], i);
|
|
if (i == entry->eax)
|
|
break;
|
|
if (*nent >= maxnent)
|
|
goto out;
|
|
|
|
++i;
|
|
do_host_cpuid(&entry[i], function, i);
|
|
++*nent;
|
|
}
|
|
break;
|
|
}
|
|
case 9:
|
|
break;
|
|
case 0xa: { /* Architectural Performance Monitoring */
|
|
struct x86_pmu_capability cap;
|
|
union cpuid10_eax eax;
|
|
union cpuid10_edx edx;
|
|
|
|
perf_get_x86_pmu_capability(&cap);
|
|
|
|
/*
|
|
* Only support guest architectural pmu on a host
|
|
* with architectural pmu.
|
|
*/
|
|
if (!cap.version)
|
|
memset(&cap, 0, sizeof(cap));
|
|
|
|
eax.split.version_id = min(cap.version, 2);
|
|
eax.split.num_counters = cap.num_counters_gp;
|
|
eax.split.bit_width = cap.bit_width_gp;
|
|
eax.split.mask_length = cap.events_mask_len;
|
|
|
|
edx.split.num_counters_fixed = cap.num_counters_fixed;
|
|
edx.split.bit_width_fixed = cap.bit_width_fixed;
|
|
edx.split.reserved = 0;
|
|
|
|
entry->eax = eax.full;
|
|
entry->ebx = cap.events_mask;
|
|
entry->ecx = 0;
|
|
entry->edx = edx.full;
|
|
break;
|
|
}
|
|
/*
|
|
* Per Intel's SDM, the 0x1f is a superset of 0xb,
|
|
* thus they can be handled by common code.
|
|
*/
|
|
case 0x1f:
|
|
case 0xb: {
|
|
int i;
|
|
|
|
/*
|
|
* We filled in entry[0] for CPUID(EAX=<function>,
|
|
* ECX=00H) above. If its level type (ECX[15:8]) is
|
|
* zero, then the leaf is unimplemented, and we're
|
|
* done. Otherwise, continue to populate entries
|
|
* until the level type (ECX[15:8]) of the previously
|
|
* added entry is zero.
|
|
*/
|
|
for (i = 1; entry[i - 1].ecx & 0xff00; ++i) {
|
|
if (*nent >= maxnent)
|
|
goto out;
|
|
|
|
do_host_cpuid(&entry[i], function, i);
|
|
++*nent;
|
|
}
|
|
break;
|
|
}
|
|
case 0xd: {
|
|
int idx, i;
|
|
u64 supported = kvm_supported_xcr0();
|
|
|
|
entry->eax &= supported;
|
|
entry->ebx = xstate_required_size(supported, false);
|
|
entry->ecx = entry->ebx;
|
|
entry->edx &= supported >> 32;
|
|
if (!supported)
|
|
break;
|
|
|
|
for (idx = 1, i = 1; idx < 64; ++idx) {
|
|
u64 mask = ((u64)1 << idx);
|
|
if (*nent >= maxnent)
|
|
goto out;
|
|
|
|
do_host_cpuid(&entry[i], function, idx);
|
|
if (idx == 1) {
|
|
entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
|
|
cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
|
|
entry[i].ebx = 0;
|
|
if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
|
|
entry[i].ebx =
|
|
xstate_required_size(supported,
|
|
true);
|
|
} else {
|
|
if (entry[i].eax == 0 || !(supported & mask))
|
|
continue;
|
|
if (WARN_ON_ONCE(entry[i].ecx & 1))
|
|
continue;
|
|
}
|
|
entry[i].ecx = 0;
|
|
entry[i].edx = 0;
|
|
++*nent;
|
|
++i;
|
|
}
|
|
break;
|
|
}
|
|
/* Intel PT */
|
|
case 0x14: {
|
|
int t, times = entry->eax;
|
|
|
|
if (!f_intel_pt)
|
|
break;
|
|
|
|
for (t = 1; t <= times; ++t) {
|
|
if (*nent >= maxnent)
|
|
goto out;
|
|
do_host_cpuid(&entry[t], function, t);
|
|
++*nent;
|
|
}
|
|
break;
|
|
}
|
|
case KVM_CPUID_SIGNATURE: {
|
|
static const char signature[12] = "KVMKVMKVM\0\0";
|
|
const u32 *sigptr = (const u32 *)signature;
|
|
entry->eax = KVM_CPUID_FEATURES;
|
|
entry->ebx = sigptr[0];
|
|
entry->ecx = sigptr[1];
|
|
entry->edx = sigptr[2];
|
|
break;
|
|
}
|
|
case KVM_CPUID_FEATURES:
|
|
entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
|
|
(1 << KVM_FEATURE_NOP_IO_DELAY) |
|
|
(1 << KVM_FEATURE_CLOCKSOURCE2) |
|
|
(1 << KVM_FEATURE_ASYNC_PF) |
|
|
(1 << KVM_FEATURE_PV_EOI) |
|
|
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
|
|
(1 << KVM_FEATURE_PV_UNHALT) |
|
|
(1 << KVM_FEATURE_PV_TLB_FLUSH) |
|
|
(1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
|
|
(1 << KVM_FEATURE_PV_SEND_IPI) |
|
|
(1 << KVM_FEATURE_POLL_CONTROL) |
|
|
(1 << KVM_FEATURE_PV_SCHED_YIELD);
|
|
|
|
if (sched_info_on())
|
|
entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
|
|
|
|
entry->ebx = 0;
|
|
entry->ecx = 0;
|
|
entry->edx = 0;
|
|
break;
|
|
case 0x80000000:
|
|
entry->eax = min(entry->eax, 0x8000001f);
|
|
break;
|
|
case 0x80000001:
|
|
entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
|
|
cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
|
|
entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
|
|
cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
|
|
break;
|
|
case 0x80000007: /* Advanced power management */
|
|
/* invariant TSC is CPUID.80000007H:EDX[8] */
|
|
entry->edx &= (1 << 8);
|
|
/* mask against host */
|
|
entry->edx &= boot_cpu_data.x86_power;
|
|
entry->eax = entry->ebx = entry->ecx = 0;
|
|
break;
|
|
case 0x80000008: {
|
|
unsigned g_phys_as = (entry->eax >> 16) & 0xff;
|
|
unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
|
|
unsigned phys_as = entry->eax & 0xff;
|
|
|
|
if (!g_phys_as)
|
|
g_phys_as = phys_as;
|
|
entry->eax = g_phys_as | (virt_as << 8);
|
|
entry->edx = 0;
|
|
entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
|
|
cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
|
|
/*
|
|
* AMD has separate bits for each SPEC_CTRL bit.
|
|
* arch/x86/kernel/cpu/bugs.c is kind enough to
|
|
* record that in cpufeatures so use them.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_IBPB))
|
|
entry->ebx |= F(AMD_IBPB);
|
|
if (boot_cpu_has(X86_FEATURE_IBRS))
|
|
entry->ebx |= F(AMD_IBRS);
|
|
if (boot_cpu_has(X86_FEATURE_STIBP))
|
|
entry->ebx |= F(AMD_STIBP);
|
|
if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
|
|
boot_cpu_has(X86_FEATURE_AMD_SSBD))
|
|
entry->ebx |= F(AMD_SSBD);
|
|
if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
|
|
entry->ebx |= F(AMD_SSB_NO);
|
|
/*
|
|
* The preference is to use SPEC CTRL MSR instead of the
|
|
* VIRT_SPEC MSR.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
|
|
!boot_cpu_has(X86_FEATURE_AMD_SSBD))
|
|
entry->ebx |= F(VIRT_SSBD);
|
|
break;
|
|
}
|
|
case 0x80000019:
|
|
entry->ecx = entry->edx = 0;
|
|
break;
|
|
case 0x8000001a:
|
|
case 0x8000001e:
|
|
break;
|
|
/* Support memory encryption cpuid if host supports it */
|
|
case 0x8000001F:
|
|
if (!boot_cpu_has(X86_FEATURE_SEV))
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
/*Add support for Centaur's CPUID instruction*/
|
|
case 0xC0000000:
|
|
/*Just support up to 0xC0000004 now*/
|
|
entry->eax = min(entry->eax, 0xC0000004);
|
|
break;
|
|
case 0xC0000001:
|
|
entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
|
|
cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
|
|
break;
|
|
case 3: /* Processor serial number */
|
|
case 5: /* MONITOR/MWAIT */
|
|
case 0xC0000002:
|
|
case 0xC0000003:
|
|
case 0xC0000004:
|
|
default:
|
|
entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
|
|
break;
|
|
}
|
|
|
|
kvm_x86_ops->set_supported_cpuid(function, entry);
|
|
|
|
r = 0;
|
|
|
|
out:
|
|
put_cpu();
|
|
|
|
return r;
|
|
}
|
|
|
|
static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func,
|
|
int *nent, int maxnent, unsigned int type)
|
|
{
|
|
if (*nent >= maxnent)
|
|
return -E2BIG;
|
|
|
|
if (type == KVM_GET_EMULATED_CPUID)
|
|
return __do_cpuid_func_emulated(entry, func, nent, maxnent);
|
|
|
|
return __do_cpuid_func(entry, func, nent, maxnent);
|
|
}
|
|
|
|
struct kvm_cpuid_param {
|
|
u32 func;
|
|
bool (*qualifier)(const struct kvm_cpuid_param *param);
|
|
};
|
|
|
|
static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
|
|
{
|
|
return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
|
|
}
|
|
|
|
static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
|
|
__u32 num_entries, unsigned int ioctl_type)
|
|
{
|
|
int i;
|
|
__u32 pad[3];
|
|
|
|
if (ioctl_type != KVM_GET_EMULATED_CPUID)
|
|
return false;
|
|
|
|
/*
|
|
* We want to make sure that ->padding is being passed clean from
|
|
* userspace in case we want to use it for something in the future.
|
|
*
|
|
* Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
|
|
* have to give ourselves satisfied only with the emulated side. /me
|
|
* sheds a tear.
|
|
*/
|
|
for (i = 0; i < num_entries; i++) {
|
|
if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
|
|
return true;
|
|
|
|
if (pad[0] || pad[1] || pad[2])
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
|
|
struct kvm_cpuid_entry2 __user *entries,
|
|
unsigned int type)
|
|
{
|
|
struct kvm_cpuid_entry2 *cpuid_entries;
|
|
int limit, nent = 0, r = -E2BIG, i;
|
|
u32 func;
|
|
static const struct kvm_cpuid_param param[] = {
|
|
{ .func = 0 },
|
|
{ .func = 0x80000000 },
|
|
{ .func = 0xC0000000, .qualifier = is_centaur_cpu },
|
|
{ .func = KVM_CPUID_SIGNATURE },
|
|
};
|
|
|
|
if (cpuid->nent < 1)
|
|
goto out;
|
|
if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
|
|
cpuid->nent = KVM_MAX_CPUID_ENTRIES;
|
|
|
|
if (sanity_check_entries(entries, cpuid->nent, type))
|
|
return -EINVAL;
|
|
|
|
r = -ENOMEM;
|
|
cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
|
|
cpuid->nent));
|
|
if (!cpuid_entries)
|
|
goto out;
|
|
|
|
r = 0;
|
|
for (i = 0; i < ARRAY_SIZE(param); i++) {
|
|
const struct kvm_cpuid_param *ent = ¶m[i];
|
|
|
|
if (ent->qualifier && !ent->qualifier(ent))
|
|
continue;
|
|
|
|
r = do_cpuid_func(&cpuid_entries[nent], ent->func,
|
|
&nent, cpuid->nent, type);
|
|
|
|
if (r)
|
|
goto out_free;
|
|
|
|
limit = cpuid_entries[nent - 1].eax;
|
|
for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
|
|
r = do_cpuid_func(&cpuid_entries[nent], func,
|
|
&nent, cpuid->nent, type);
|
|
|
|
if (r)
|
|
goto out_free;
|
|
}
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(entries, cpuid_entries,
|
|
nent * sizeof(struct kvm_cpuid_entry2)))
|
|
goto out_free;
|
|
cpuid->nent = nent;
|
|
r = 0;
|
|
|
|
out_free:
|
|
vfree(cpuid_entries);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
|
|
{
|
|
struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
|
|
struct kvm_cpuid_entry2 *ej;
|
|
int j = i;
|
|
int nent = vcpu->arch.cpuid_nent;
|
|
|
|
e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
|
|
/* when no next entry is found, the current entry[i] is reselected */
|
|
do {
|
|
j = (j + 1) % nent;
|
|
ej = &vcpu->arch.cpuid_entries[j];
|
|
} while (ej->function != e->function);
|
|
|
|
ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
|
|
|
|
return j;
|
|
}
|
|
|
|
/* find an entry with matching function, matching index (if needed), and that
|
|
* should be read next (if it's stateful) */
|
|
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
|
|
u32 function, u32 index)
|
|
{
|
|
if (e->function != function)
|
|
return 0;
|
|
if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
|
|
return 0;
|
|
if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
|
|
!(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
|
|
u32 function, u32 index)
|
|
{
|
|
int i;
|
|
struct kvm_cpuid_entry2 *best = NULL;
|
|
|
|
for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
|
|
struct kvm_cpuid_entry2 *e;
|
|
|
|
e = &vcpu->arch.cpuid_entries[i];
|
|
if (is_matching_cpuid_entry(e, function, index)) {
|
|
if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
|
|
move_to_next_stateful_cpuid_entry(vcpu, i);
|
|
best = e;
|
|
break;
|
|
}
|
|
}
|
|
return best;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
|
|
|
|
/*
|
|
* If the basic or extended CPUID leaf requested is higher than the
|
|
* maximum supported basic or extended leaf, respectively, then it is
|
|
* out of range.
|
|
*/
|
|
static bool cpuid_function_in_range(struct kvm_vcpu *vcpu, u32 function)
|
|
{
|
|
struct kvm_cpuid_entry2 *max;
|
|
|
|
max = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
|
|
return max && function <= max->eax;
|
|
}
|
|
|
|
bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
|
|
u32 *ecx, u32 *edx, bool check_limit)
|
|
{
|
|
u32 function = *eax, index = *ecx;
|
|
struct kvm_cpuid_entry2 *entry;
|
|
struct kvm_cpuid_entry2 *max;
|
|
bool found;
|
|
|
|
entry = kvm_find_cpuid_entry(vcpu, function, index);
|
|
found = entry;
|
|
/*
|
|
* Intel CPUID semantics treats any query for an out-of-range
|
|
* leaf as if the highest basic leaf (i.e. CPUID.0H:EAX) were
|
|
* requested. AMD CPUID semantics returns all zeroes for any
|
|
* undefined leaf, whether or not the leaf is in range.
|
|
*/
|
|
if (!entry && check_limit && !guest_cpuid_is_amd(vcpu) &&
|
|
!cpuid_function_in_range(vcpu, function)) {
|
|
max = kvm_find_cpuid_entry(vcpu, 0, 0);
|
|
if (max) {
|
|
function = max->eax;
|
|
entry = kvm_find_cpuid_entry(vcpu, function, index);
|
|
}
|
|
}
|
|
if (entry) {
|
|
*eax = entry->eax;
|
|
*ebx = entry->ebx;
|
|
*ecx = entry->ecx;
|
|
*edx = entry->edx;
|
|
if (function == 7 && index == 0) {
|
|
u64 data;
|
|
if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
|
|
(data & TSX_CTRL_CPUID_CLEAR))
|
|
*ebx &= ~(F(RTM) | F(HLE));
|
|
}
|
|
} else {
|
|
*eax = *ebx = *ecx = *edx = 0;
|
|
/*
|
|
* When leaf 0BH or 1FH is defined, CL is pass-through
|
|
* and EDX is always the x2APIC ID, even for undefined
|
|
* subleaves. Index 1 will exist iff the leaf is
|
|
* implemented, so we pass through CL iff leaf 1
|
|
* exists. EDX can be copied from any existing index.
|
|
*/
|
|
if (function == 0xb || function == 0x1f) {
|
|
entry = kvm_find_cpuid_entry(vcpu, function, 1);
|
|
if (entry) {
|
|
*ecx = index & 0xff;
|
|
*edx = entry->edx;
|
|
}
|
|
}
|
|
}
|
|
trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, found);
|
|
return found;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_cpuid);
|
|
|
|
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
|
|
{
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
|
|
return 1;
|
|
|
|
eax = kvm_rax_read(vcpu);
|
|
ecx = kvm_rcx_read(vcpu);
|
|
kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
|
|
kvm_rax_write(vcpu, eax);
|
|
kvm_rbx_write(vcpu, ebx);
|
|
kvm_rcx_write(vcpu, ecx);
|
|
kvm_rdx_write(vcpu, edx);
|
|
return kvm_skip_emulated_instruction(vcpu);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
|