linux_dsm_epyc7002/drivers/net/ethernet/cavium/liquidio/lio_ethtool.c
Raghu Vatsavayi ddc173a688 liquidio: Avoid double free during soft command
This patch is to resolve the double free issue by checking proper return
values from soft command.

Signed-off-by: Derek Chickles <derek.chickles@caviumnetworks.com>
Signed-off-by: Satanand Burla <satananda.burla@caviumnetworks.com>
Signed-off-by: Felix Manlunas <felix.manlunas@caviumnetworks.com>
Signed-off-by: Raghu Vatsavayi <raghu.vatsavayi@caviumnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-15 21:44:31 -07:00

1217 lines
33 KiB
C

/**********************************************************************
* Author: Cavium, Inc.
*
* Contact: support@cavium.com
* Please include "LiquidIO" in the subject.
*
* Copyright (c) 2003-2015 Cavium, Inc.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more
* details.
*
* This file may also be available under a different license from Cavium.
* Contact Cavium, Inc. for more information
**********************************************************************/
#include <linux/version.h>
#include <linux/netdevice.h>
#include <linux/net_tstamp.h>
#include <linux/ethtool.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include "octeon_config.h"
#include "liquidio_common.h"
#include "octeon_droq.h"
#include "octeon_iq.h"
#include "response_manager.h"
#include "octeon_device.h"
#include "octeon_nic.h"
#include "octeon_main.h"
#include "octeon_network.h"
#include "cn66xx_regs.h"
#include "cn66xx_device.h"
#include "cn68xx_regs.h"
#include "cn68xx_device.h"
#include "liquidio_image.h"
struct oct_mdio_cmd_context {
int octeon_id;
wait_queue_head_t wc;
int cond;
};
struct oct_mdio_cmd_resp {
u64 rh;
struct oct_mdio_cmd resp;
u64 status;
};
#define OCT_MDIO45_RESP_SIZE (sizeof(struct oct_mdio_cmd_resp))
/* Octeon's interface mode of operation */
enum {
INTERFACE_MODE_DISABLED,
INTERFACE_MODE_RGMII,
INTERFACE_MODE_GMII,
INTERFACE_MODE_SPI,
INTERFACE_MODE_PCIE,
INTERFACE_MODE_XAUI,
INTERFACE_MODE_SGMII,
INTERFACE_MODE_PICMG,
INTERFACE_MODE_NPI,
INTERFACE_MODE_LOOP,
INTERFACE_MODE_SRIO,
INTERFACE_MODE_ILK,
INTERFACE_MODE_RXAUI,
INTERFACE_MODE_QSGMII,
INTERFACE_MODE_AGL,
};
#define ARRAY_LENGTH(a) (sizeof(a) / sizeof((a)[0]))
#define OCT_ETHTOOL_REGDUMP_LEN 4096
#define OCT_ETHTOOL_REGSVER 1
static const char oct_iq_stats_strings[][ETH_GSTRING_LEN] = {
"Instr posted",
"Instr processed",
"Instr dropped",
"Bytes Sent",
"Sgentry_sent",
"Inst cntreg",
"Tx done",
"Tx Iq busy",
"Tx dropped",
"Tx bytes",
};
static const char oct_droq_stats_strings[][ETH_GSTRING_LEN] = {
"OQ Pkts Received",
"OQ Bytes Received",
"Dropped no dispatch",
"Dropped nomem",
"Dropped toomany",
"Stack RX cnt",
"Stack RX Bytes",
"RX dropped",
};
#define OCTNIC_NCMD_AUTONEG_ON 0x1
#define OCTNIC_NCMD_PHY_ON 0x2
static int lio_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
struct oct_link_info *linfo;
linfo = &lio->linfo;
if (linfo->link.s.interface == INTERFACE_MODE_XAUI ||
linfo->link.s.interface == INTERFACE_MODE_RXAUI) {
ecmd->port = PORT_FIBRE;
ecmd->supported =
(SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE |
SUPPORTED_Pause);
ecmd->advertising =
(ADVERTISED_10000baseT_Full | ADVERTISED_Pause);
ecmd->transceiver = XCVR_EXTERNAL;
ecmd->autoneg = AUTONEG_DISABLE;
} else {
dev_err(&oct->pci_dev->dev, "Unknown link interface reported\n");
}
if (linfo->link.s.status) {
ethtool_cmd_speed_set(ecmd, linfo->link.s.speed);
ecmd->duplex = linfo->link.s.duplex;
} else {
ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN);
ecmd->duplex = DUPLEX_UNKNOWN;
}
return 0;
}
static void
lio_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
{
struct lio *lio;
struct octeon_device *oct;
lio = GET_LIO(netdev);
oct = lio->oct_dev;
memset(drvinfo, 0, sizeof(struct ethtool_drvinfo));
strcpy(drvinfo->driver, "liquidio");
strcpy(drvinfo->version, LIQUIDIO_VERSION);
strncpy(drvinfo->fw_version, oct->fw_info.liquidio_firmware_version,
ETHTOOL_FWVERS_LEN);
strncpy(drvinfo->bus_info, pci_name(oct->pci_dev), 32);
}
static void
lio_ethtool_get_channels(struct net_device *dev,
struct ethtool_channels *channel)
{
struct lio *lio = GET_LIO(dev);
struct octeon_device *oct = lio->oct_dev;
u32 max_rx = 0, max_tx = 0, tx_count = 0, rx_count = 0;
if (OCTEON_CN6XXX(oct)) {
struct octeon_config *conf6x = CHIP_FIELD(oct, cn6xxx, conf);
max_rx = CFG_GET_OQ_MAX_Q(conf6x);
max_tx = CFG_GET_IQ_MAX_Q(conf6x);
rx_count = CFG_GET_NUM_RXQS_NIC_IF(conf6x, lio->ifidx);
tx_count = CFG_GET_NUM_TXQS_NIC_IF(conf6x, lio->ifidx);
}
channel->max_rx = max_rx;
channel->max_tx = max_tx;
channel->rx_count = rx_count;
channel->tx_count = tx_count;
}
static int lio_get_eeprom_len(struct net_device *netdev)
{
u8 buf[128];
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct_dev = lio->oct_dev;
struct octeon_board_info *board_info;
int len;
board_info = (struct octeon_board_info *)(&oct_dev->boardinfo);
len = sprintf(buf, "boardname:%s serialnum:%s maj:%lld min:%lld\n",
board_info->name, board_info->serial_number,
board_info->major, board_info->minor);
return len;
}
static int
lio_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom,
u8 *bytes)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct_dev = lio->oct_dev;
struct octeon_board_info *board_info;
int len;
if (eeprom->offset != 0)
return -EINVAL;
eeprom->magic = oct_dev->pci_dev->vendor;
board_info = (struct octeon_board_info *)(&oct_dev->boardinfo);
len =
sprintf((char *)bytes,
"boardname:%s serialnum:%s maj:%lld min:%lld\n",
board_info->name, board_info->serial_number,
board_info->major, board_info->minor);
return 0;
}
static int octnet_gpio_access(struct net_device *netdev, int addr, int val)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
struct octnic_ctrl_pkt nctrl;
struct octnic_ctrl_params nparams;
int ret = 0;
memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
nctrl.ncmd.u64 = 0;
nctrl.ncmd.s.cmd = OCTNET_CMD_GPIO_ACCESS;
nctrl.ncmd.s.param1 = lio->linfo.ifidx;
nctrl.ncmd.s.param2 = addr;
nctrl.ncmd.s.param3 = val;
nctrl.wait_time = 100;
nctrl.netpndev = (u64)netdev;
nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
nparams.resp_order = OCTEON_RESP_ORDERED;
ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
if (ret < 0) {
dev_err(&oct->pci_dev->dev, "Failed to configure gpio value\n");
return -EINVAL;
}
return 0;
}
/* Callback for when mdio command response arrives
*/
static void octnet_mdio_resp_callback(struct octeon_device *oct,
u32 status,
void *buf)
{
struct oct_mdio_cmd_resp *mdio_cmd_rsp;
struct oct_mdio_cmd_context *mdio_cmd_ctx;
struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
mdio_cmd_rsp = (struct oct_mdio_cmd_resp *)sc->virtrptr;
mdio_cmd_ctx = (struct oct_mdio_cmd_context *)sc->ctxptr;
oct = lio_get_device(mdio_cmd_ctx->octeon_id);
if (status) {
dev_err(&oct->pci_dev->dev, "MIDO instruction failed. Status: %llx\n",
CVM_CAST64(status));
ACCESS_ONCE(mdio_cmd_ctx->cond) = -1;
} else {
ACCESS_ONCE(mdio_cmd_ctx->cond) = 1;
}
wake_up_interruptible(&mdio_cmd_ctx->wc);
}
/* This routine provides PHY access routines for
* mdio clause45 .
*/
static int
octnet_mdio45_access(struct lio *lio, int op, int loc, int *value)
{
struct octeon_device *oct_dev = lio->oct_dev;
struct octeon_soft_command *sc;
struct oct_mdio_cmd_resp *mdio_cmd_rsp;
struct oct_mdio_cmd_context *mdio_cmd_ctx;
struct oct_mdio_cmd *mdio_cmd;
int retval = 0;
sc = (struct octeon_soft_command *)
octeon_alloc_soft_command(oct_dev,
sizeof(struct oct_mdio_cmd),
sizeof(struct oct_mdio_cmd_resp),
sizeof(struct oct_mdio_cmd_context));
if (!sc)
return -ENOMEM;
mdio_cmd_ctx = (struct oct_mdio_cmd_context *)sc->ctxptr;
mdio_cmd_rsp = (struct oct_mdio_cmd_resp *)sc->virtrptr;
mdio_cmd = (struct oct_mdio_cmd *)sc->virtdptr;
ACCESS_ONCE(mdio_cmd_ctx->cond) = 0;
mdio_cmd_ctx->octeon_id = lio_get_device_id(oct_dev);
mdio_cmd->op = op;
mdio_cmd->mdio_addr = loc;
if (op)
mdio_cmd->value1 = *value;
mdio_cmd->value2 = lio->linfo.ifidx;
octeon_swap_8B_data((u64 *)mdio_cmd, sizeof(struct oct_mdio_cmd) / 8);
octeon_prepare_soft_command(oct_dev, sc, OPCODE_NIC, OPCODE_NIC_MDIO45,
0, 0, 0);
sc->wait_time = 1000;
sc->callback = octnet_mdio_resp_callback;
sc->callback_arg = sc;
init_waitqueue_head(&mdio_cmd_ctx->wc);
retval = octeon_send_soft_command(oct_dev, sc);
if (retval == IQ_SEND_FAILED) {
dev_err(&oct_dev->pci_dev->dev,
"octnet_mdio45_access instruction failed status: %x\n",
retval);
retval = -EBUSY;
} else {
/* Sleep on a wait queue till the cond flag indicates that the
* response arrived
*/
sleep_cond(&mdio_cmd_ctx->wc, &mdio_cmd_ctx->cond);
retval = mdio_cmd_rsp->status;
if (retval) {
dev_err(&oct_dev->pci_dev->dev, "octnet mdio45 access failed\n");
retval = -EBUSY;
} else {
octeon_swap_8B_data((u64 *)(&mdio_cmd_rsp->resp),
sizeof(struct oct_mdio_cmd) / 8);
if (ACCESS_ONCE(mdio_cmd_ctx->cond) == 1) {
if (!op)
*value = mdio_cmd_rsp->resp.value1;
} else {
retval = -EINVAL;
}
}
}
octeon_free_soft_command(oct_dev, sc);
return retval;
}
static int lio_set_phys_id(struct net_device *netdev,
enum ethtool_phys_id_state state)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
int value, ret;
switch (state) {
case ETHTOOL_ID_ACTIVE:
if (oct->chip_id == OCTEON_CN66XX) {
octnet_gpio_access(netdev, VITESSE_PHY_GPIO_CFG,
VITESSE_PHY_GPIO_DRIVEON);
return 2;
} else if (oct->chip_id == OCTEON_CN68XX) {
/* Save the current LED settings */
ret = octnet_mdio45_access(lio, 0,
LIO68XX_LED_BEACON_ADDR,
&lio->phy_beacon_val);
if (ret)
return ret;
ret = octnet_mdio45_access(lio, 0,
LIO68XX_LED_CTRL_ADDR,
&lio->led_ctrl_val);
if (ret)
return ret;
/* Configure Beacon values */
value = LIO68XX_LED_BEACON_CFGON;
ret =
octnet_mdio45_access(lio, 1,
LIO68XX_LED_BEACON_ADDR,
&value);
if (ret)
return ret;
value = LIO68XX_LED_CTRL_CFGON;
ret =
octnet_mdio45_access(lio, 1,
LIO68XX_LED_CTRL_ADDR,
&value);
if (ret)
return ret;
} else {
return -EINVAL;
}
break;
case ETHTOOL_ID_ON:
if (oct->chip_id == OCTEON_CN66XX) {
octnet_gpio_access(netdev, VITESSE_PHY_GPIO_CFG,
VITESSE_PHY_GPIO_HIGH);
} else if (oct->chip_id == OCTEON_CN68XX) {
return -EINVAL;
} else {
return -EINVAL;
}
break;
case ETHTOOL_ID_OFF:
if (oct->chip_id == OCTEON_CN66XX)
octnet_gpio_access(netdev, VITESSE_PHY_GPIO_CFG,
VITESSE_PHY_GPIO_LOW);
else if (oct->chip_id == OCTEON_CN68XX)
return -EINVAL;
else
return -EINVAL;
break;
case ETHTOOL_ID_INACTIVE:
if (oct->chip_id == OCTEON_CN66XX) {
octnet_gpio_access(netdev, VITESSE_PHY_GPIO_CFG,
VITESSE_PHY_GPIO_DRIVEOFF);
} else if (oct->chip_id == OCTEON_CN68XX) {
/* Restore LED settings */
ret = octnet_mdio45_access(lio, 1,
LIO68XX_LED_CTRL_ADDR,
&lio->led_ctrl_val);
if (ret)
return ret;
ret = octnet_mdio45_access(lio, 1,
LIO68XX_LED_BEACON_ADDR,
&lio->phy_beacon_val);
if (ret)
return ret;
} else {
return -EINVAL;
}
break;
default:
return -EINVAL;
}
return 0;
}
static void
lio_ethtool_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ering)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
u32 tx_max_pending = 0, rx_max_pending = 0, tx_pending = 0,
rx_pending = 0;
if (OCTEON_CN6XXX(oct)) {
struct octeon_config *conf6x = CHIP_FIELD(oct, cn6xxx, conf);
tx_max_pending = CN6XXX_MAX_IQ_DESCRIPTORS;
rx_max_pending = CN6XXX_MAX_OQ_DESCRIPTORS;
rx_pending = CFG_GET_NUM_RX_DESCS_NIC_IF(conf6x, lio->ifidx);
tx_pending = CFG_GET_NUM_TX_DESCS_NIC_IF(conf6x, lio->ifidx);
}
if (lio->mtu > OCTNET_DEFAULT_FRM_SIZE) {
ering->rx_pending = 0;
ering->rx_max_pending = 0;
ering->rx_mini_pending = 0;
ering->rx_jumbo_pending = rx_pending;
ering->rx_mini_max_pending = 0;
ering->rx_jumbo_max_pending = rx_max_pending;
} else {
ering->rx_pending = rx_pending;
ering->rx_max_pending = rx_max_pending;
ering->rx_mini_pending = 0;
ering->rx_jumbo_pending = 0;
ering->rx_mini_max_pending = 0;
ering->rx_jumbo_max_pending = 0;
}
ering->tx_pending = tx_pending;
ering->tx_max_pending = tx_max_pending;
}
static u32 lio_get_msglevel(struct net_device *netdev)
{
struct lio *lio = GET_LIO(netdev);
return lio->msg_enable;
}
static void lio_set_msglevel(struct net_device *netdev, u32 msglvl)
{
struct lio *lio = GET_LIO(netdev);
if ((msglvl ^ lio->msg_enable) & NETIF_MSG_HW) {
if (msglvl & NETIF_MSG_HW)
liquidio_set_feature(netdev,
OCTNET_CMD_VERBOSE_ENABLE);
else
liquidio_set_feature(netdev,
OCTNET_CMD_VERBOSE_DISABLE);
}
lio->msg_enable = msglvl;
}
static void
lio_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause)
{
/* Notes: Not supporting any auto negotiation in these
* drivers. Just report pause frame support.
*/
pause->tx_pause = 1;
pause->rx_pause = 1; /* TODO: Need to support RX pause frame!!. */
}
static void
lio_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, u64 *data)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct_dev = lio->oct_dev;
int i = 0, j;
for (j = 0; j < MAX_OCTEON_INSTR_QUEUES; j++) {
if (!(oct_dev->io_qmask.iq & (1UL << j)))
continue;
data[i++] =
CVM_CAST64(oct_dev->instr_queue[j]->stats.instr_posted);
data[i++] =
CVM_CAST64(
oct_dev->instr_queue[j]->stats.instr_processed);
data[i++] =
CVM_CAST64(
oct_dev->instr_queue[j]->stats.instr_dropped);
data[i++] =
CVM_CAST64(oct_dev->instr_queue[j]->stats.bytes_sent);
data[i++] =
CVM_CAST64(oct_dev->instr_queue[j]->stats.sgentry_sent);
data[i++] =
readl(oct_dev->instr_queue[j]->inst_cnt_reg);
data[i++] =
CVM_CAST64(oct_dev->instr_queue[j]->stats.tx_done);
data[i++] =
CVM_CAST64(oct_dev->instr_queue[j]->stats.tx_iq_busy);
data[i++] =
CVM_CAST64(oct_dev->instr_queue[j]->stats.tx_dropped);
data[i++] =
CVM_CAST64(oct_dev->instr_queue[j]->stats.tx_tot_bytes);
}
/* for (j = 0; j < oct_dev->num_oqs; j++){ */
for (j = 0; j < MAX_OCTEON_OUTPUT_QUEUES; j++) {
if (!(oct_dev->io_qmask.oq & (1UL << j)))
continue;
data[i++] = CVM_CAST64(oct_dev->droq[j]->stats.pkts_received);
data[i++] = CVM_CAST64(oct_dev->droq[j]->stats.bytes_received);
data[i++] =
CVM_CAST64(oct_dev->droq[j]->stats.dropped_nodispatch);
data[i++] = CVM_CAST64(oct_dev->droq[j]->stats.dropped_nomem);
data[i++] = CVM_CAST64(oct_dev->droq[j]->stats.dropped_toomany);
data[i++] =
CVM_CAST64(oct_dev->droq[j]->stats.rx_pkts_received);
data[i++] =
CVM_CAST64(oct_dev->droq[j]->stats.rx_bytes_received);
data[i++] =
CVM_CAST64(oct_dev->droq[j]->stats.rx_dropped);
}
}
static void lio_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct_dev = lio->oct_dev;
int num_iq_stats, num_oq_stats, i, j;
num_iq_stats = ARRAY_SIZE(oct_iq_stats_strings);
for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
if (!(oct_dev->io_qmask.iq & (1UL << i)))
continue;
for (j = 0; j < num_iq_stats; j++) {
sprintf(data, "IQ%d %s", i, oct_iq_stats_strings[j]);
data += ETH_GSTRING_LEN;
}
}
num_oq_stats = ARRAY_SIZE(oct_droq_stats_strings);
/* for (i = 0; i < oct_dev->num_oqs; i++) { */
for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
if (!(oct_dev->io_qmask.oq & (1UL << i)))
continue;
for (j = 0; j < num_oq_stats; j++) {
sprintf(data, "OQ%d %s", i, oct_droq_stats_strings[j]);
data += ETH_GSTRING_LEN;
}
}
}
static int lio_get_sset_count(struct net_device *netdev, int sset)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct_dev = lio->oct_dev;
return (ARRAY_SIZE(oct_iq_stats_strings) * oct_dev->num_iqs) +
(ARRAY_SIZE(oct_droq_stats_strings) * oct_dev->num_oqs);
}
static int lio_get_intr_coalesce(struct net_device *netdev,
struct ethtool_coalesce *intr_coal)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
struct octeon_instr_queue *iq;
struct oct_intrmod_cfg *intrmod_cfg;
intrmod_cfg = &oct->intrmod;
switch (oct->chip_id) {
/* case OCTEON_CN73XX: Todo */
/* break; */
case OCTEON_CN68XX:
case OCTEON_CN66XX:
if (!intrmod_cfg->intrmod_enable) {
intr_coal->rx_coalesce_usecs =
CFG_GET_OQ_INTR_TIME(cn6xxx->conf);
intr_coal->rx_max_coalesced_frames =
CFG_GET_OQ_INTR_PKT(cn6xxx->conf);
} else {
intr_coal->use_adaptive_rx_coalesce =
intrmod_cfg->intrmod_enable;
intr_coal->rate_sample_interval =
intrmod_cfg->intrmod_check_intrvl;
intr_coal->pkt_rate_high =
intrmod_cfg->intrmod_maxpkt_ratethr;
intr_coal->pkt_rate_low =
intrmod_cfg->intrmod_minpkt_ratethr;
intr_coal->rx_max_coalesced_frames_high =
intrmod_cfg->intrmod_maxcnt_trigger;
intr_coal->rx_coalesce_usecs_high =
intrmod_cfg->intrmod_maxtmr_trigger;
intr_coal->rx_coalesce_usecs_low =
intrmod_cfg->intrmod_mintmr_trigger;
intr_coal->rx_max_coalesced_frames_low =
intrmod_cfg->intrmod_mincnt_trigger;
}
iq = oct->instr_queue[lio->linfo.txpciq[0]];
intr_coal->tx_max_coalesced_frames = iq->fill_threshold;
break;
default:
netif_info(lio, drv, lio->netdev, "Unknown Chip !!\n");
return -EINVAL;
}
return 0;
}
/* Callback function for intrmod */
static void octnet_intrmod_callback(struct octeon_device *oct_dev,
u32 status,
void *ptr)
{
struct oct_intrmod_cmd *cmd = ptr;
struct octeon_soft_command *sc = cmd->sc;
oct_dev = cmd->oct_dev;
if (status)
dev_err(&oct_dev->pci_dev->dev, "intrmod config failed. Status: %llx\n",
CVM_CAST64(status));
else
dev_info(&oct_dev->pci_dev->dev,
"Rx-Adaptive Interrupt moderation enabled:%llx\n",
oct_dev->intrmod.intrmod_enable);
octeon_free_soft_command(oct_dev, sc);
}
/* Configure interrupt moderation parameters */
static int octnet_set_intrmod_cfg(void *oct, struct oct_intrmod_cfg *intr_cfg)
{
struct octeon_soft_command *sc;
struct oct_intrmod_cmd *cmd;
struct oct_intrmod_cfg *cfg;
int retval;
struct octeon_device *oct_dev = (struct octeon_device *)oct;
/* Alloc soft command */
sc = (struct octeon_soft_command *)
octeon_alloc_soft_command(oct_dev,
sizeof(struct oct_intrmod_cfg),
0,
sizeof(struct oct_intrmod_cmd));
if (!sc)
return -ENOMEM;
cmd = (struct oct_intrmod_cmd *)sc->ctxptr;
cfg = (struct oct_intrmod_cfg *)sc->virtdptr;
memcpy(cfg, intr_cfg, sizeof(struct oct_intrmod_cfg));
octeon_swap_8B_data((u64 *)cfg, (sizeof(struct oct_intrmod_cfg)) / 8);
cmd->sc = sc;
cmd->cfg = cfg;
cmd->oct_dev = oct_dev;
octeon_prepare_soft_command(oct_dev, sc, OPCODE_NIC,
OPCODE_NIC_INTRMOD_CFG, 0, 0, 0);
sc->callback = octnet_intrmod_callback;
sc->callback_arg = cmd;
sc->wait_time = 1000;
retval = octeon_send_soft_command(oct_dev, sc);
if (retval == IQ_SEND_FAILED) {
octeon_free_soft_command(oct_dev, sc);
return -EINVAL;
}
return 0;
}
/* Enable/Disable auto interrupt Moderation */
static int oct_cfg_adaptive_intr(struct lio *lio, struct ethtool_coalesce
*intr_coal, int adaptive)
{
int ret = 0;
struct octeon_device *oct = lio->oct_dev;
struct oct_intrmod_cfg *intrmod_cfg;
intrmod_cfg = &oct->intrmod;
if (adaptive) {
if (intr_coal->rate_sample_interval)
intrmod_cfg->intrmod_check_intrvl =
intr_coal->rate_sample_interval;
else
intrmod_cfg->intrmod_check_intrvl =
LIO_INTRMOD_CHECK_INTERVAL;
if (intr_coal->pkt_rate_high)
intrmod_cfg->intrmod_maxpkt_ratethr =
intr_coal->pkt_rate_high;
else
intrmod_cfg->intrmod_maxpkt_ratethr =
LIO_INTRMOD_MAXPKT_RATETHR;
if (intr_coal->pkt_rate_low)
intrmod_cfg->intrmod_minpkt_ratethr =
intr_coal->pkt_rate_low;
else
intrmod_cfg->intrmod_minpkt_ratethr =
LIO_INTRMOD_MINPKT_RATETHR;
if (intr_coal->rx_max_coalesced_frames_high)
intrmod_cfg->intrmod_maxcnt_trigger =
intr_coal->rx_max_coalesced_frames_high;
else
intrmod_cfg->intrmod_maxcnt_trigger =
LIO_INTRMOD_MAXCNT_TRIGGER;
if (intr_coal->rx_coalesce_usecs_high)
intrmod_cfg->intrmod_maxtmr_trigger =
intr_coal->rx_coalesce_usecs_high;
else
intrmod_cfg->intrmod_maxtmr_trigger =
LIO_INTRMOD_MAXTMR_TRIGGER;
if (intr_coal->rx_coalesce_usecs_low)
intrmod_cfg->intrmod_mintmr_trigger =
intr_coal->rx_coalesce_usecs_low;
else
intrmod_cfg->intrmod_mintmr_trigger =
LIO_INTRMOD_MINTMR_TRIGGER;
if (intr_coal->rx_max_coalesced_frames_low)
intrmod_cfg->intrmod_mincnt_trigger =
intr_coal->rx_max_coalesced_frames_low;
else
intrmod_cfg->intrmod_mincnt_trigger =
LIO_INTRMOD_MINCNT_TRIGGER;
}
intrmod_cfg->intrmod_enable = adaptive;
ret = octnet_set_intrmod_cfg(oct, intrmod_cfg);
return ret;
}
static int
oct_cfg_rx_intrcnt(struct lio *lio, struct ethtool_coalesce *intr_coal)
{
int ret;
struct octeon_device *oct = lio->oct_dev;
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
u32 rx_max_coalesced_frames;
if (!intr_coal->rx_max_coalesced_frames)
rx_max_coalesced_frames = CN6XXX_OQ_INTR_PKT;
else
rx_max_coalesced_frames = intr_coal->rx_max_coalesced_frames;
/* Disable adaptive interrupt modulation */
ret = oct_cfg_adaptive_intr(lio, intr_coal, 0);
if (ret)
return ret;
/* Config Cnt based interrupt values */
octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_PKTS,
rx_max_coalesced_frames);
CFG_SET_OQ_INTR_PKT(cn6xxx->conf, rx_max_coalesced_frames);
return 0;
}
static int oct_cfg_rx_intrtime(struct lio *lio, struct ethtool_coalesce
*intr_coal)
{
int ret;
struct octeon_device *oct = lio->oct_dev;
struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
u32 time_threshold, rx_coalesce_usecs;
if (!intr_coal->rx_coalesce_usecs)
rx_coalesce_usecs = CN6XXX_OQ_INTR_TIME;
else
rx_coalesce_usecs = intr_coal->rx_coalesce_usecs;
/* Disable adaptive interrupt modulation */
ret = oct_cfg_adaptive_intr(lio, intr_coal, 0);
if (ret)
return ret;
/* Config Time based interrupt values */
time_threshold = lio_cn6xxx_get_oq_ticks(oct, rx_coalesce_usecs);
octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_TIME, time_threshold);
CFG_SET_OQ_INTR_TIME(cn6xxx->conf, rx_coalesce_usecs);
return 0;
}
static int lio_set_intr_coalesce(struct net_device *netdev,
struct ethtool_coalesce *intr_coal)
{
struct lio *lio = GET_LIO(netdev);
int ret;
struct octeon_device *oct = lio->oct_dev;
u32 j, q_no;
if ((intr_coal->tx_max_coalesced_frames >= CN6XXX_DB_MIN) &&
(intr_coal->tx_max_coalesced_frames <= CN6XXX_DB_MAX)) {
for (j = 0; j < lio->linfo.num_txpciq; j++) {
q_no = lio->linfo.txpciq[j];
oct->instr_queue[q_no]->fill_threshold =
intr_coal->tx_max_coalesced_frames;
}
} else {
dev_err(&oct->pci_dev->dev,
"LIQUIDIO: Invalid tx-frames:%d. Range is min:%d max:%d\n",
intr_coal->tx_max_coalesced_frames, CN6XXX_DB_MIN,
CN6XXX_DB_MAX);
return -EINVAL;
}
/* User requested adaptive-rx on */
if (intr_coal->use_adaptive_rx_coalesce) {
ret = oct_cfg_adaptive_intr(lio, intr_coal, 1);
if (ret)
goto ret_intrmod;
}
/* User requested adaptive-rx off and rx coalesce */
if ((intr_coal->rx_coalesce_usecs) &&
(!intr_coal->use_adaptive_rx_coalesce)) {
ret = oct_cfg_rx_intrtime(lio, intr_coal);
if (ret)
goto ret_intrmod;
}
/* User requested adaptive-rx off and rx coalesce */
if ((intr_coal->rx_max_coalesced_frames) &&
(!intr_coal->use_adaptive_rx_coalesce)) {
ret = oct_cfg_rx_intrcnt(lio, intr_coal);
if (ret)
goto ret_intrmod;
}
/* User requested adaptive-rx off, so use default coalesce params */
if ((!intr_coal->rx_max_coalesced_frames) &&
(!intr_coal->use_adaptive_rx_coalesce) &&
(!intr_coal->rx_coalesce_usecs)) {
dev_info(&oct->pci_dev->dev,
"Turning off adaptive-rx interrupt moderation\n");
dev_info(&oct->pci_dev->dev,
"Using RX Coalesce Default values rx_coalesce_usecs:%d rx_max_coalesced_frames:%d\n",
CN6XXX_OQ_INTR_TIME, CN6XXX_OQ_INTR_PKT);
ret = oct_cfg_rx_intrtime(lio, intr_coal);
if (ret)
goto ret_intrmod;
ret = oct_cfg_rx_intrcnt(lio, intr_coal);
if (ret)
goto ret_intrmod;
}
return 0;
ret_intrmod:
return ret;
}
static int lio_get_ts_info(struct net_device *netdev,
struct ethtool_ts_info *info)
{
struct lio *lio = GET_LIO(netdev);
info->so_timestamping =
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_TX_SOFTWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RX_SOFTWARE |
SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_RAW_HARDWARE;
if (lio->ptp_clock)
info->phc_index = ptp_clock_index(lio->ptp_clock);
else
info->phc_index = -1;
info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT);
return 0;
}
static int lio_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
{
struct lio *lio = GET_LIO(netdev);
struct octeon_device *oct = lio->oct_dev;
struct oct_link_info *linfo;
struct octnic_ctrl_pkt nctrl;
struct octnic_ctrl_params nparams;
int ret = 0;
/* get the link info */
linfo = &lio->linfo;
if (ecmd->autoneg != AUTONEG_ENABLE && ecmd->autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (ecmd->autoneg == AUTONEG_DISABLE && ((ecmd->speed != SPEED_100 &&
ecmd->speed != SPEED_10) ||
(ecmd->duplex != DUPLEX_HALF &&
ecmd->duplex != DUPLEX_FULL)))
return -EINVAL;
/* Ethtool Support is not provided for XAUI and RXAUI Interfaces
* as they operate at fixed Speed and Duplex settings
*/
if (linfo->link.s.interface == INTERFACE_MODE_XAUI ||
linfo->link.s.interface == INTERFACE_MODE_RXAUI) {
dev_info(&oct->pci_dev->dev, "XAUI IFs settings cannot be modified.\n");
return -EINVAL;
}
memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
nctrl.ncmd.u64 = 0;
nctrl.ncmd.s.cmd = OCTNET_CMD_SET_SETTINGS;
nctrl.wait_time = 1000;
nctrl.netpndev = (u64)netdev;
nctrl.ncmd.s.param1 = lio->linfo.ifidx;
nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
/* Passing the parameters sent by ethtool like Speed, Autoneg & Duplex
* to SE core application using ncmd.s.more & ncmd.s.param
*/
if (ecmd->autoneg == AUTONEG_ENABLE) {
/* Autoneg ON */
nctrl.ncmd.s.more = OCTNIC_NCMD_PHY_ON |
OCTNIC_NCMD_AUTONEG_ON;
nctrl.ncmd.s.param2 = ecmd->advertising;
} else {
/* Autoneg OFF */
nctrl.ncmd.s.more = OCTNIC_NCMD_PHY_ON;
nctrl.ncmd.s.param3 = ecmd->duplex;
nctrl.ncmd.s.param2 = ecmd->speed;
}
nparams.resp_order = OCTEON_RESP_ORDERED;
ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
if (ret < 0) {
dev_err(&oct->pci_dev->dev, "Failed to set settings\n");
return -1;
}
return 0;
}
static int lio_nway_reset(struct net_device *netdev)
{
if (netif_running(netdev)) {
struct ethtool_cmd ecmd;
memset(&ecmd, 0, sizeof(struct ethtool_cmd));
ecmd.autoneg = 0;
ecmd.speed = 0;
ecmd.duplex = 0;
lio_set_settings(netdev, &ecmd);
}
return 0;
}
/* Return register dump len. */
static int lio_get_regs_len(struct net_device *dev)
{
return OCT_ETHTOOL_REGDUMP_LEN;
}
static int cn6xxx_read_csr_reg(char *s, struct octeon_device *oct)
{
u32 reg;
int i, len = 0;
/* PCI Window Registers */
len += sprintf(s + len, "\n\t Octeon CSR Registers\n\n");
reg = CN6XXX_WIN_WR_ADDR_LO;
len += sprintf(s + len, "\n[%02x] (WIN_WR_ADDR_LO): %08x\n",
CN6XXX_WIN_WR_ADDR_LO, octeon_read_csr(oct, reg));
reg = CN6XXX_WIN_WR_ADDR_HI;
len += sprintf(s + len, "[%02x] (WIN_WR_ADDR_HI): %08x\n",
CN6XXX_WIN_WR_ADDR_HI, octeon_read_csr(oct, reg));
reg = CN6XXX_WIN_RD_ADDR_LO;
len += sprintf(s + len, "[%02x] (WIN_RD_ADDR_LO): %08x\n",
CN6XXX_WIN_RD_ADDR_LO, octeon_read_csr(oct, reg));
reg = CN6XXX_WIN_RD_ADDR_HI;
len += sprintf(s + len, "[%02x] (WIN_RD_ADDR_HI): %08x\n",
CN6XXX_WIN_RD_ADDR_HI, octeon_read_csr(oct, reg));
reg = CN6XXX_WIN_WR_DATA_LO;
len += sprintf(s + len, "[%02x] (WIN_WR_DATA_LO): %08x\n",
CN6XXX_WIN_WR_DATA_LO, octeon_read_csr(oct, reg));
reg = CN6XXX_WIN_WR_DATA_HI;
len += sprintf(s + len, "[%02x] (WIN_WR_DATA_HI): %08x\n",
CN6XXX_WIN_WR_DATA_HI, octeon_read_csr(oct, reg));
len += sprintf(s + len, "[%02x] (WIN_WR_MASK_REG): %08x\n",
CN6XXX_WIN_WR_MASK_REG,
octeon_read_csr(oct, CN6XXX_WIN_WR_MASK_REG));
/* PCI Interrupt Register */
len += sprintf(s + len, "\n[%x] (INT_ENABLE PORT 0): %08x\n",
CN6XXX_SLI_INT_ENB64_PORT0, octeon_read_csr(oct,
CN6XXX_SLI_INT_ENB64_PORT0));
len += sprintf(s + len, "\n[%x] (INT_ENABLE PORT 1): %08x\n",
CN6XXX_SLI_INT_ENB64_PORT1,
octeon_read_csr(oct, CN6XXX_SLI_INT_ENB64_PORT1));
len += sprintf(s + len, "[%x] (INT_SUM): %08x\n", CN6XXX_SLI_INT_SUM64,
octeon_read_csr(oct, CN6XXX_SLI_INT_SUM64));
/* PCI Output queue registers */
for (i = 0; i < oct->num_oqs; i++) {
reg = CN6XXX_SLI_OQ_PKTS_SENT(i);
len += sprintf(s + len, "\n[%x] (PKTS_SENT_%d): %08x\n",
reg, i, octeon_read_csr(oct, reg));
reg = CN6XXX_SLI_OQ_PKTS_CREDIT(i);
len += sprintf(s + len, "[%x] (PKT_CREDITS_%d): %08x\n",
reg, i, octeon_read_csr(oct, reg));
}
reg = CN6XXX_SLI_OQ_INT_LEVEL_PKTS;
len += sprintf(s + len, "\n[%x] (PKTS_SENT_INT_LEVEL): %08x\n",
reg, octeon_read_csr(oct, reg));
reg = CN6XXX_SLI_OQ_INT_LEVEL_TIME;
len += sprintf(s + len, "[%x] (PKTS_SENT_TIME): %08x\n",
reg, octeon_read_csr(oct, reg));
/* PCI Input queue registers */
for (i = 0; i <= 3; i++) {
u32 reg;
reg = CN6XXX_SLI_IQ_DOORBELL(i);
len += sprintf(s + len, "\n[%x] (INSTR_DOORBELL_%d): %08x\n",
reg, i, octeon_read_csr(oct, reg));
reg = CN6XXX_SLI_IQ_INSTR_COUNT(i);
len += sprintf(s + len, "[%x] (INSTR_COUNT_%d): %08x\n",
reg, i, octeon_read_csr(oct, reg));
}
/* PCI DMA registers */
len += sprintf(s + len, "\n[%x] (DMA_CNT_0): %08x\n",
CN6XXX_DMA_CNT(0),
octeon_read_csr(oct, CN6XXX_DMA_CNT(0)));
reg = CN6XXX_DMA_PKT_INT_LEVEL(0);
len += sprintf(s + len, "[%x] (DMA_INT_LEV_0): %08x\n",
CN6XXX_DMA_PKT_INT_LEVEL(0), octeon_read_csr(oct, reg));
reg = CN6XXX_DMA_TIME_INT_LEVEL(0);
len += sprintf(s + len, "[%x] (DMA_TIME_0): %08x\n",
CN6XXX_DMA_TIME_INT_LEVEL(0),
octeon_read_csr(oct, reg));
len += sprintf(s + len, "\n[%x] (DMA_CNT_1): %08x\n",
CN6XXX_DMA_CNT(1),
octeon_read_csr(oct, CN6XXX_DMA_CNT(1)));
reg = CN6XXX_DMA_PKT_INT_LEVEL(1);
len += sprintf(s + len, "[%x] (DMA_INT_LEV_1): %08x\n",
CN6XXX_DMA_PKT_INT_LEVEL(1),
octeon_read_csr(oct, reg));
reg = CN6XXX_DMA_PKT_INT_LEVEL(1);
len += sprintf(s + len, "[%x] (DMA_TIME_1): %08x\n",
CN6XXX_DMA_TIME_INT_LEVEL(1),
octeon_read_csr(oct, reg));
/* PCI Index registers */
len += sprintf(s + len, "\n");
for (i = 0; i < 16; i++) {
reg = lio_pci_readq(oct, CN6XXX_BAR1_REG(i, oct->pcie_port));
len += sprintf(s + len, "[%llx] (BAR1_INDEX_%02d): %08x\n",
CN6XXX_BAR1_REG(i, oct->pcie_port), i, reg);
}
return len;
}
static int cn6xxx_read_config_reg(char *s, struct octeon_device *oct)
{
u32 val;
int i, len = 0;
/* PCI CONFIG Registers */
len += sprintf(s + len,
"\n\t Octeon Config space Registers\n\n");
for (i = 0; i <= 13; i++) {
pci_read_config_dword(oct->pci_dev, (i * 4), &val);
len += sprintf(s + len, "[0x%x] (Config[%d]): 0x%08x\n",
(i * 4), i, val);
}
for (i = 30; i <= 34; i++) {
pci_read_config_dword(oct->pci_dev, (i * 4), &val);
len += sprintf(s + len, "[0x%x] (Config[%d]): 0x%08x\n",
(i * 4), i, val);
}
return len;
}
/* Return register dump user app. */
static void lio_get_regs(struct net_device *dev,
struct ethtool_regs *regs, void *regbuf)
{
struct lio *lio = GET_LIO(dev);
int len = 0;
struct octeon_device *oct = lio->oct_dev;
memset(regbuf, 0, OCT_ETHTOOL_REGDUMP_LEN);
regs->version = OCT_ETHTOOL_REGSVER;
switch (oct->chip_id) {
/* case OCTEON_CN73XX: Todo */
case OCTEON_CN68XX:
case OCTEON_CN66XX:
len += cn6xxx_read_csr_reg(regbuf + len, oct);
len += cn6xxx_read_config_reg(regbuf + len, oct);
break;
default:
dev_err(&oct->pci_dev->dev, "%s Unknown chipid: %d\n",
__func__, oct->chip_id);
}
}
static const struct ethtool_ops lio_ethtool_ops = {
.get_settings = lio_get_settings,
.get_link = ethtool_op_get_link,
.get_drvinfo = lio_get_drvinfo,
.get_ringparam = lio_ethtool_get_ringparam,
.get_channels = lio_ethtool_get_channels,
.set_phys_id = lio_set_phys_id,
.get_eeprom_len = lio_get_eeprom_len,
.get_eeprom = lio_get_eeprom,
.get_strings = lio_get_strings,
.get_ethtool_stats = lio_get_ethtool_stats,
.get_pauseparam = lio_get_pauseparam,
.get_regs_len = lio_get_regs_len,
.get_regs = lio_get_regs,
.get_msglevel = lio_get_msglevel,
.set_msglevel = lio_set_msglevel,
.get_sset_count = lio_get_sset_count,
.nway_reset = lio_nway_reset,
.set_settings = lio_set_settings,
.get_coalesce = lio_get_intr_coalesce,
.set_coalesce = lio_set_intr_coalesce,
.get_ts_info = lio_get_ts_info,
};
void liquidio_set_ethtool_ops(struct net_device *netdev)
{
netdev->ethtool_ops = &lio_ethtool_ops;
}