linux_dsm_epyc7002/drivers/nvme/host/nvme.h
Anthony Iliopoulos 05b29021fb nvme: explicitly update mpath disk capacity on revalidation
Commit 3b4b19721e ("nvme: fix possible deadlock when I/O is
blocked") reverted multipath head disk revalidation due to deadlocks
caused by holding the bd_mutex during revalidate.

Updating the multipath disk blockdev size is still required though for
userspace to be able to observe any resizing while the device is
mounted. Directly update the bdev inode size to avoid unnecessarily
holding the bdev->bd_mutex.

Fixes: 3b4b19721e ("nvme: fix possible deadlock when I/O is
blocked")

Signed-off-by: Anthony Iliopoulos <ailiop@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-07-16 16:40:27 +02:00

729 lines
18 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2011-2014, Intel Corporation.
*/
#ifndef _NVME_H
#define _NVME_H
#include <linux/nvme.h>
#include <linux/cdev.h>
#include <linux/pci.h>
#include <linux/kref.h>
#include <linux/blk-mq.h>
#include <linux/lightnvm.h>
#include <linux/sed-opal.h>
#include <linux/fault-inject.h>
#include <linux/rcupdate.h>
#include <linux/wait.h>
#include <linux/t10-pi.h>
#include <trace/events/block.h>
extern unsigned int nvme_io_timeout;
#define NVME_IO_TIMEOUT (nvme_io_timeout * HZ)
extern unsigned int admin_timeout;
#define ADMIN_TIMEOUT (admin_timeout * HZ)
#define NVME_DEFAULT_KATO 5
#define NVME_KATO_GRACE 10
#ifdef CONFIG_ARCH_NO_SG_CHAIN
#define NVME_INLINE_SG_CNT 0
#define NVME_INLINE_METADATA_SG_CNT 0
#else
#define NVME_INLINE_SG_CNT 2
#define NVME_INLINE_METADATA_SG_CNT 1
#endif
extern struct workqueue_struct *nvme_wq;
extern struct workqueue_struct *nvme_reset_wq;
extern struct workqueue_struct *nvme_delete_wq;
enum {
NVME_NS_LBA = 0,
NVME_NS_LIGHTNVM = 1,
};
/*
* List of workarounds for devices that required behavior not specified in
* the standard.
*/
enum nvme_quirks {
/*
* Prefers I/O aligned to a stripe size specified in a vendor
* specific Identify field.
*/
NVME_QUIRK_STRIPE_SIZE = (1 << 0),
/*
* The controller doesn't handle Identify value others than 0 or 1
* correctly.
*/
NVME_QUIRK_IDENTIFY_CNS = (1 << 1),
/*
* The controller deterministically returns O's on reads to
* logical blocks that deallocate was called on.
*/
NVME_QUIRK_DEALLOCATE_ZEROES = (1 << 2),
/*
* The controller needs a delay before starts checking the device
* readiness, which is done by reading the NVME_CSTS_RDY bit.
*/
NVME_QUIRK_DELAY_BEFORE_CHK_RDY = (1 << 3),
/*
* APST should not be used.
*/
NVME_QUIRK_NO_APST = (1 << 4),
/*
* The deepest sleep state should not be used.
*/
NVME_QUIRK_NO_DEEPEST_PS = (1 << 5),
/*
* Supports the LighNVM command set if indicated in vs[1].
*/
NVME_QUIRK_LIGHTNVM = (1 << 6),
/*
* Set MEDIUM priority on SQ creation
*/
NVME_QUIRK_MEDIUM_PRIO_SQ = (1 << 7),
/*
* Ignore device provided subnqn.
*/
NVME_QUIRK_IGNORE_DEV_SUBNQN = (1 << 8),
/*
* Broken Write Zeroes.
*/
NVME_QUIRK_DISABLE_WRITE_ZEROES = (1 << 9),
/*
* Force simple suspend/resume path.
*/
NVME_QUIRK_SIMPLE_SUSPEND = (1 << 10),
/*
* Use only one interrupt vector for all queues
*/
NVME_QUIRK_SINGLE_VECTOR = (1 << 11),
/*
* Use non-standard 128 bytes SQEs.
*/
NVME_QUIRK_128_BYTES_SQES = (1 << 12),
/*
* Prevent tag overlap between queues
*/
NVME_QUIRK_SHARED_TAGS = (1 << 13),
/*
* Don't change the value of the temperature threshold feature
*/
NVME_QUIRK_NO_TEMP_THRESH_CHANGE = (1 << 14),
};
/*
* Common request structure for NVMe passthrough. All drivers must have
* this structure as the first member of their request-private data.
*/
struct nvme_request {
struct nvme_command *cmd;
union nvme_result result;
u8 retries;
u8 flags;
u16 status;
struct nvme_ctrl *ctrl;
};
/*
* Mark a bio as coming in through the mpath node.
*/
#define REQ_NVME_MPATH REQ_DRV
enum {
NVME_REQ_CANCELLED = (1 << 0),
NVME_REQ_USERCMD = (1 << 1),
};
static inline struct nvme_request *nvme_req(struct request *req)
{
return blk_mq_rq_to_pdu(req);
}
static inline u16 nvme_req_qid(struct request *req)
{
if (!req->rq_disk)
return 0;
return blk_mq_unique_tag_to_hwq(blk_mq_unique_tag(req)) + 1;
}
/* The below value is the specific amount of delay needed before checking
* readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the
* NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was
* found empirically.
*/
#define NVME_QUIRK_DELAY_AMOUNT 2300
enum nvme_ctrl_state {
NVME_CTRL_NEW,
NVME_CTRL_LIVE,
NVME_CTRL_RESETTING,
NVME_CTRL_CONNECTING,
NVME_CTRL_DELETING,
NVME_CTRL_DEAD,
};
struct nvme_fault_inject {
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
struct fault_attr attr;
struct dentry *parent;
bool dont_retry; /* DNR, do not retry */
u16 status; /* status code */
#endif
};
struct nvme_ctrl {
bool comp_seen;
enum nvme_ctrl_state state;
bool identified;
spinlock_t lock;
struct mutex scan_lock;
const struct nvme_ctrl_ops *ops;
struct request_queue *admin_q;
struct request_queue *connect_q;
struct request_queue *fabrics_q;
struct device *dev;
int instance;
int numa_node;
struct blk_mq_tag_set *tagset;
struct blk_mq_tag_set *admin_tagset;
struct list_head namespaces;
struct rw_semaphore namespaces_rwsem;
struct device ctrl_device;
struct device *device; /* char device */
struct cdev cdev;
struct work_struct reset_work;
struct work_struct delete_work;
wait_queue_head_t state_wq;
struct nvme_subsystem *subsys;
struct list_head subsys_entry;
struct opal_dev *opal_dev;
char name[12];
u16 cntlid;
u32 ctrl_config;
u16 mtfa;
u32 queue_count;
u64 cap;
u32 page_size;
u32 max_hw_sectors;
u32 max_segments;
u32 max_integrity_segments;
u16 crdt[3];
u16 oncs;
u16 oacs;
u16 nssa;
u16 nr_streams;
u16 sqsize;
u32 max_namespaces;
atomic_t abort_limit;
u8 vwc;
u32 vs;
u32 sgls;
u16 kas;
u8 npss;
u8 apsta;
u16 wctemp;
u16 cctemp;
u32 oaes;
u32 aen_result;
u32 ctratt;
unsigned int shutdown_timeout;
unsigned int kato;
bool subsystem;
unsigned long quirks;
struct nvme_id_power_state psd[32];
struct nvme_effects_log *effects;
struct work_struct scan_work;
struct work_struct async_event_work;
struct delayed_work ka_work;
struct nvme_command ka_cmd;
struct work_struct fw_act_work;
unsigned long events;
bool created;
#ifdef CONFIG_NVME_MULTIPATH
/* asymmetric namespace access: */
u8 anacap;
u8 anatt;
u32 anagrpmax;
u32 nanagrpid;
struct mutex ana_lock;
struct nvme_ana_rsp_hdr *ana_log_buf;
size_t ana_log_size;
struct timer_list anatt_timer;
struct work_struct ana_work;
#endif
/* Power saving configuration */
u64 ps_max_latency_us;
bool apst_enabled;
/* PCIe only: */
u32 hmpre;
u32 hmmin;
u32 hmminds;
u16 hmmaxd;
/* Fabrics only */
u32 ioccsz;
u32 iorcsz;
u16 icdoff;
u16 maxcmd;
int nr_reconnects;
struct nvmf_ctrl_options *opts;
struct page *discard_page;
unsigned long discard_page_busy;
struct nvme_fault_inject fault_inject;
};
enum nvme_iopolicy {
NVME_IOPOLICY_NUMA,
NVME_IOPOLICY_RR,
};
struct nvme_subsystem {
int instance;
struct device dev;
/*
* Because we unregister the device on the last put we need
* a separate refcount.
*/
struct kref ref;
struct list_head entry;
struct mutex lock;
struct list_head ctrls;
struct list_head nsheads;
char subnqn[NVMF_NQN_SIZE];
char serial[20];
char model[40];
char firmware_rev[8];
u8 cmic;
u16 vendor_id;
u16 awupf; /* 0's based awupf value. */
struct ida ns_ida;
#ifdef CONFIG_NVME_MULTIPATH
enum nvme_iopolicy iopolicy;
#endif
};
/*
* Container structure for uniqueue namespace identifiers.
*/
struct nvme_ns_ids {
u8 eui64[8];
u8 nguid[16];
uuid_t uuid;
};
/*
* Anchor structure for namespaces. There is one for each namespace in a
* NVMe subsystem that any of our controllers can see, and the namespace
* structure for each controller is chained of it. For private namespaces
* there is a 1:1 relation to our namespace structures, that is ->list
* only ever has a single entry for private namespaces.
*/
struct nvme_ns_head {
struct list_head list;
struct srcu_struct srcu;
struct nvme_subsystem *subsys;
unsigned ns_id;
struct nvme_ns_ids ids;
struct list_head entry;
struct kref ref;
bool shared;
int instance;
#ifdef CONFIG_NVME_MULTIPATH
struct gendisk *disk;
struct bio_list requeue_list;
spinlock_t requeue_lock;
struct work_struct requeue_work;
struct mutex lock;
unsigned long flags;
#define NVME_NSHEAD_DISK_LIVE 0
struct nvme_ns __rcu *current_path[];
#endif
};
enum nvme_ns_features {
NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */
NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */
};
struct nvme_ns {
struct list_head list;
struct nvme_ctrl *ctrl;
struct request_queue *queue;
struct gendisk *disk;
#ifdef CONFIG_NVME_MULTIPATH
enum nvme_ana_state ana_state;
u32 ana_grpid;
#endif
struct list_head siblings;
struct nvm_dev *ndev;
struct kref kref;
struct nvme_ns_head *head;
int lba_shift;
u16 ms;
u16 sgs;
u32 sws;
u8 pi_type;
unsigned long features;
unsigned long flags;
#define NVME_NS_REMOVING 0
#define NVME_NS_DEAD 1
#define NVME_NS_ANA_PENDING 2
struct nvme_fault_inject fault_inject;
};
/* NVMe ns supports metadata actions by the controller (generate/strip) */
static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
{
return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
}
struct nvme_ctrl_ops {
const char *name;
struct module *module;
unsigned int flags;
#define NVME_F_FABRICS (1 << 0)
#define NVME_F_METADATA_SUPPORTED (1 << 1)
#define NVME_F_PCI_P2PDMA (1 << 2)
int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
void (*free_ctrl)(struct nvme_ctrl *ctrl);
void (*submit_async_event)(struct nvme_ctrl *ctrl);
void (*delete_ctrl)(struct nvme_ctrl *ctrl);
int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size);
};
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
const char *dev_name);
void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject);
void nvme_should_fail(struct request *req);
#else
static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
const char *dev_name)
{
}
static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj)
{
}
static inline void nvme_should_fail(struct request *req) {}
#endif
static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl)
{
if (!ctrl->subsystem)
return -ENOTTY;
return ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65);
}
/*
* Convert a 512B sector number to a device logical block number.
*/
static inline u64 nvme_sect_to_lba(struct nvme_ns *ns, sector_t sector)
{
return sector >> (ns->lba_shift - SECTOR_SHIFT);
}
/*
* Convert a device logical block number to a 512B sector number.
*/
static inline sector_t nvme_lba_to_sect(struct nvme_ns *ns, u64 lba)
{
return lba << (ns->lba_shift - SECTOR_SHIFT);
}
/*
* Convert byte length to nvme's 0-based num dwords
*/
static inline u32 nvme_bytes_to_numd(size_t len)
{
return (len >> 2) - 1;
}
static inline void nvme_end_request(struct request *req, __le16 status,
union nvme_result result)
{
struct nvme_request *rq = nvme_req(req);
rq->status = le16_to_cpu(status) >> 1;
rq->result = result;
/* inject error when permitted by fault injection framework */
nvme_should_fail(req);
blk_mq_complete_request(req);
}
static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl)
{
get_device(ctrl->device);
}
static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl)
{
put_device(ctrl->device);
}
static inline bool nvme_is_aen_req(u16 qid, __u16 command_id)
{
return !qid && command_id >= NVME_AQ_BLK_MQ_DEPTH;
}
void nvme_complete_rq(struct request *req);
bool nvme_cancel_request(struct request *req, void *data, bool reserved);
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
enum nvme_ctrl_state new_state);
bool nvme_wait_reset(struct nvme_ctrl *ctrl);
int nvme_disable_ctrl(struct nvme_ctrl *ctrl);
int nvme_enable_ctrl(struct nvme_ctrl *ctrl);
int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl);
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
const struct nvme_ctrl_ops *ops, unsigned long quirks);
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl);
void nvme_start_ctrl(struct nvme_ctrl *ctrl);
void nvme_stop_ctrl(struct nvme_ctrl *ctrl);
int nvme_init_identify(struct nvme_ctrl *ctrl);
void nvme_remove_namespaces(struct nvme_ctrl *ctrl);
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
bool send);
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
volatile union nvme_result *res);
void nvme_stop_queues(struct nvme_ctrl *ctrl);
void nvme_start_queues(struct nvme_ctrl *ctrl);
void nvme_kill_queues(struct nvme_ctrl *ctrl);
void nvme_sync_queues(struct nvme_ctrl *ctrl);
void nvme_unfreeze(struct nvme_ctrl *ctrl);
void nvme_wait_freeze(struct nvme_ctrl *ctrl);
void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout);
void nvme_start_freeze(struct nvme_ctrl *ctrl);
#define NVME_QID_ANY -1
struct request *nvme_alloc_request(struct request_queue *q,
struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid);
void nvme_cleanup_cmd(struct request *req);
blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
struct nvme_command *cmd);
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buf, unsigned bufflen);
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
union nvme_result *result, void *buffer, unsigned bufflen,
unsigned timeout, int qid, int at_head,
blk_mq_req_flags_t flags, bool poll);
int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
unsigned int dword11, void *buffer, size_t buflen,
u32 *result);
int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
unsigned int dword11, void *buffer, size_t buflen,
u32 *result);
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count);
void nvme_stop_keep_alive(struct nvme_ctrl *ctrl);
int nvme_reset_ctrl(struct nvme_ctrl *ctrl);
int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl);
int nvme_try_sched_reset(struct nvme_ctrl *ctrl);
int nvme_delete_ctrl(struct nvme_ctrl *ctrl);
int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
void *log, size_t size, u64 offset);
extern const struct attribute_group *nvme_ns_id_attr_groups[];
extern const struct block_device_operations nvme_ns_head_ops;
#ifdef CONFIG_NVME_MULTIPATH
static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
{
return ctrl->ana_log_buf != NULL;
}
void nvme_mpath_unfreeze(struct nvme_subsystem *subsys);
void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys);
void nvme_mpath_start_freeze(struct nvme_subsystem *subsys);
void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
struct nvme_ctrl *ctrl, int *flags);
bool nvme_failover_req(struct request *req);
void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl);
int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head);
void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id);
void nvme_mpath_remove_disk(struct nvme_ns_head *head);
int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id);
void nvme_mpath_uninit(struct nvme_ctrl *ctrl);
void nvme_mpath_stop(struct nvme_ctrl *ctrl);
bool nvme_mpath_clear_current_path(struct nvme_ns *ns);
void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl);
struct nvme_ns *nvme_find_path(struct nvme_ns_head *head);
static inline void nvme_mpath_check_last_path(struct nvme_ns *ns)
{
struct nvme_ns_head *head = ns->head;
if (head->disk && list_empty(&head->list))
kblockd_schedule_work(&head->requeue_work);
}
static inline void nvme_trace_bio_complete(struct request *req,
blk_status_t status)
{
struct nvme_ns *ns = req->q->queuedata;
if (req->cmd_flags & REQ_NVME_MPATH)
trace_block_bio_complete(ns->head->disk->queue, req->bio);
}
static inline void nvme_mpath_update_disk_size(struct gendisk *disk)
{
struct block_device *bdev = bdget_disk(disk, 0);
if (bdev) {
bd_set_size(bdev, get_capacity(disk) << SECTOR_SHIFT);
bdput(bdev);
}
}
extern struct device_attribute dev_attr_ana_grpid;
extern struct device_attribute dev_attr_ana_state;
extern struct device_attribute subsys_attr_iopolicy;
#else
static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
{
return false;
}
/*
* Without the multipath code enabled, multiple controller per subsystems are
* visible as devices and thus we cannot use the subsystem instance.
*/
static inline void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
struct nvme_ctrl *ctrl, int *flags)
{
sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
}
static inline bool nvme_failover_req(struct request *req)
{
return false;
}
static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
{
}
static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,
struct nvme_ns_head *head)
{
return 0;
}
static inline void nvme_mpath_add_disk(struct nvme_ns *ns,
struct nvme_id_ns *id)
{
}
static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head)
{
}
static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
{
return false;
}
static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
{
}
static inline void nvme_mpath_check_last_path(struct nvme_ns *ns)
{
}
static inline void nvme_trace_bio_complete(struct request *req,
blk_status_t status)
{
}
static inline int nvme_mpath_init(struct nvme_ctrl *ctrl,
struct nvme_id_ctrl *id)
{
if (ctrl->subsys->cmic & (1 << 3))
dev_warn(ctrl->device,
"Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n");
return 0;
}
static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
{
}
static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl)
{
}
static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
{
}
static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
{
}
static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
{
}
static inline void nvme_mpath_update_disk_size(struct gendisk *disk)
{
}
#endif /* CONFIG_NVME_MULTIPATH */
#ifdef CONFIG_NVM
int nvme_nvm_register(struct nvme_ns *ns, char *disk_name, int node);
void nvme_nvm_unregister(struct nvme_ns *ns);
extern const struct attribute_group nvme_nvm_attr_group;
int nvme_nvm_ioctl(struct nvme_ns *ns, unsigned int cmd, unsigned long arg);
#else
static inline int nvme_nvm_register(struct nvme_ns *ns, char *disk_name,
int node)
{
return 0;
}
static inline void nvme_nvm_unregister(struct nvme_ns *ns) {};
static inline int nvme_nvm_ioctl(struct nvme_ns *ns, unsigned int cmd,
unsigned long arg)
{
return -ENOTTY;
}
#endif /* CONFIG_NVM */
static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev)
{
return dev_to_disk(dev)->private_data;
}
#ifdef CONFIG_NVME_HWMON
void nvme_hwmon_init(struct nvme_ctrl *ctrl);
#else
static inline void nvme_hwmon_init(struct nvme_ctrl *ctrl) { }
#endif
#endif /* _NVME_H */