linux_dsm_epyc7002/drivers/phy/allwinner/phy-sun4i-usb.c
Chen-Yu Tsai 1396929e8a phy: sun4i-usb: Support set_mode to USB_HOST for non-OTG PHYs
While only the first PHY supports mode switching, the remaining PHYs
work in USB host mode. They should support set_mode with mode=USB_HOST
instead of failing. This is especially needed now that the USB core does
set_mode for all USB ports, which was added in commit b97a313483 ("usb:
core: comply to PHY framework").

Make set_mode with mode=USB_HOST a no-op instead of failing for the
non-OTG USB PHYs.

Fixes: 6ba43c2919 ("phy-sun4i-usb: Add support for phy_set_mode")
Signed-off-by: Chen-Yu Tsai <wens@csie.org>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-26 16:48:55 +09:00

1011 lines
26 KiB
C

/*
* Allwinner sun4i USB phy driver
*
* Copyright (C) 2014-2015 Hans de Goede <hdegoede@redhat.com>
*
* Based on code from
* Allwinner Technology Co., Ltd. <www.allwinnertech.com>
*
* Modelled after: Samsung S5P/EXYNOS SoC series MIPI CSIS/DSIM DPHY driver
* Copyright (C) 2013 Samsung Electronics Co., Ltd.
* Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/extcon-provider.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/phy/phy.h>
#include <linux/phy/phy-sun4i-usb.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/spinlock.h>
#include <linux/usb/of.h>
#include <linux/workqueue.h>
#define REG_ISCR 0x00
#define REG_PHYCTL_A10 0x04
#define REG_PHYBIST 0x08
#define REG_PHYTUNE 0x0c
#define REG_PHYCTL_A33 0x10
#define REG_PHY_OTGCTL 0x20
#define REG_PMU_UNK1 0x10
#define PHYCTL_DATA BIT(7)
#define OTGCTL_ROUTE_MUSB BIT(0)
#define SUNXI_AHB_ICHR8_EN BIT(10)
#define SUNXI_AHB_INCR4_BURST_EN BIT(9)
#define SUNXI_AHB_INCRX_ALIGN_EN BIT(8)
#define SUNXI_ULPI_BYPASS_EN BIT(0)
/* ISCR, Interface Status and Control bits */
#define ISCR_ID_PULLUP_EN (1 << 17)
#define ISCR_DPDM_PULLUP_EN (1 << 16)
/* sunxi has the phy id/vbus pins not connected, so we use the force bits */
#define ISCR_FORCE_ID_MASK (3 << 14)
#define ISCR_FORCE_ID_LOW (2 << 14)
#define ISCR_FORCE_ID_HIGH (3 << 14)
#define ISCR_FORCE_VBUS_MASK (3 << 12)
#define ISCR_FORCE_VBUS_LOW (2 << 12)
#define ISCR_FORCE_VBUS_HIGH (3 << 12)
/* Common Control Bits for Both PHYs */
#define PHY_PLL_BW 0x03
#define PHY_RES45_CAL_EN 0x0c
/* Private Control Bits for Each PHY */
#define PHY_TX_AMPLITUDE_TUNE 0x20
#define PHY_TX_SLEWRATE_TUNE 0x22
#define PHY_VBUSVALID_TH_SEL 0x25
#define PHY_PULLUP_RES_SEL 0x27
#define PHY_OTG_FUNC_EN 0x28
#define PHY_VBUS_DET_EN 0x29
#define PHY_DISCON_TH_SEL 0x2a
#define PHY_SQUELCH_DETECT 0x3c
/* A83T specific control bits for PHY0 */
#define PHY_CTL_VBUSVLDEXT BIT(5)
#define PHY_CTL_SIDDQ BIT(3)
/* A83T specific control bits for PHY2 HSIC */
#define SUNXI_EHCI_HS_FORCE BIT(20)
#define SUNXI_HSIC_CONNECT_DET BIT(17)
#define SUNXI_HSIC_CONNECT_INT BIT(16)
#define SUNXI_HSIC BIT(1)
#define MAX_PHYS 4
/*
* Note do not raise the debounce time, we must report Vusb high within 100ms
* otherwise we get Vbus errors
*/
#define DEBOUNCE_TIME msecs_to_jiffies(50)
#define POLL_TIME msecs_to_jiffies(250)
enum sun4i_usb_phy_type {
sun4i_a10_phy,
sun6i_a31_phy,
sun8i_a33_phy,
sun8i_a83t_phy,
sun8i_h3_phy,
sun8i_r40_phy,
sun8i_v3s_phy,
sun50i_a64_phy,
sun50i_h6_phy,
};
struct sun4i_usb_phy_cfg {
int num_phys;
int hsic_index;
enum sun4i_usb_phy_type type;
u32 disc_thresh;
u8 phyctl_offset;
bool dedicated_clocks;
bool enable_pmu_unk1;
bool phy0_dual_route;
int missing_phys;
};
struct sun4i_usb_phy_data {
void __iomem *base;
const struct sun4i_usb_phy_cfg *cfg;
enum usb_dr_mode dr_mode;
spinlock_t reg_lock; /* guard access to phyctl reg */
struct sun4i_usb_phy {
struct phy *phy;
void __iomem *pmu;
struct regulator *vbus;
struct reset_control *reset;
struct clk *clk;
struct clk *clk2;
bool regulator_on;
int index;
} phys[MAX_PHYS];
/* phy0 / otg related variables */
struct extcon_dev *extcon;
bool phy0_init;
struct gpio_desc *id_det_gpio;
struct gpio_desc *vbus_det_gpio;
struct power_supply *vbus_power_supply;
struct notifier_block vbus_power_nb;
bool vbus_power_nb_registered;
bool force_session_end;
int id_det_irq;
int vbus_det_irq;
int id_det;
int vbus_det;
struct delayed_work detect;
};
#define to_sun4i_usb_phy_data(phy) \
container_of((phy), struct sun4i_usb_phy_data, phys[(phy)->index])
static void sun4i_usb_phy0_update_iscr(struct phy *_phy, u32 clr, u32 set)
{
struct sun4i_usb_phy *phy = phy_get_drvdata(_phy);
struct sun4i_usb_phy_data *data = to_sun4i_usb_phy_data(phy);
u32 iscr;
iscr = readl(data->base + REG_ISCR);
iscr &= ~clr;
iscr |= set;
writel(iscr, data->base + REG_ISCR);
}
static void sun4i_usb_phy0_set_id_detect(struct phy *phy, u32 val)
{
if (val)
val = ISCR_FORCE_ID_HIGH;
else
val = ISCR_FORCE_ID_LOW;
sun4i_usb_phy0_update_iscr(phy, ISCR_FORCE_ID_MASK, val);
}
static void sun4i_usb_phy0_set_vbus_detect(struct phy *phy, u32 val)
{
if (val)
val = ISCR_FORCE_VBUS_HIGH;
else
val = ISCR_FORCE_VBUS_LOW;
sun4i_usb_phy0_update_iscr(phy, ISCR_FORCE_VBUS_MASK, val);
}
static void sun4i_usb_phy_write(struct sun4i_usb_phy *phy, u32 addr, u32 data,
int len)
{
struct sun4i_usb_phy_data *phy_data = to_sun4i_usb_phy_data(phy);
u32 temp, usbc_bit = BIT(phy->index * 2);
void __iomem *phyctl = phy_data->base + phy_data->cfg->phyctl_offset;
unsigned long flags;
int i;
spin_lock_irqsave(&phy_data->reg_lock, flags);
if (phy_data->cfg->phyctl_offset == REG_PHYCTL_A33) {
/* SoCs newer than A33 need us to set phyctl to 0 explicitly */
writel(0, phyctl);
}
for (i = 0; i < len; i++) {
temp = readl(phyctl);
/* clear the address portion */
temp &= ~(0xff << 8);
/* set the address */
temp |= ((addr + i) << 8);
writel(temp, phyctl);
/* set the data bit and clear usbc bit*/
temp = readb(phyctl);
if (data & 0x1)
temp |= PHYCTL_DATA;
else
temp &= ~PHYCTL_DATA;
temp &= ~usbc_bit;
writeb(temp, phyctl);
/* pulse usbc_bit */
temp = readb(phyctl);
temp |= usbc_bit;
writeb(temp, phyctl);
temp = readb(phyctl);
temp &= ~usbc_bit;
writeb(temp, phyctl);
data >>= 1;
}
spin_unlock_irqrestore(&phy_data->reg_lock, flags);
}
static void sun4i_usb_phy_passby(struct sun4i_usb_phy *phy, int enable)
{
struct sun4i_usb_phy_data *phy_data = to_sun4i_usb_phy_data(phy);
u32 bits, reg_value;
if (!phy->pmu)
return;
bits = SUNXI_AHB_ICHR8_EN | SUNXI_AHB_INCR4_BURST_EN |
SUNXI_AHB_INCRX_ALIGN_EN | SUNXI_ULPI_BYPASS_EN;
/* A83T USB2 is HSIC */
if (phy_data->cfg->type == sun8i_a83t_phy && phy->index == 2)
bits |= SUNXI_EHCI_HS_FORCE | SUNXI_HSIC_CONNECT_INT |
SUNXI_HSIC;
reg_value = readl(phy->pmu);
if (enable)
reg_value |= bits;
else
reg_value &= ~bits;
writel(reg_value, phy->pmu);
}
static int sun4i_usb_phy_init(struct phy *_phy)
{
struct sun4i_usb_phy *phy = phy_get_drvdata(_phy);
struct sun4i_usb_phy_data *data = to_sun4i_usb_phy_data(phy);
int ret;
u32 val;
ret = clk_prepare_enable(phy->clk);
if (ret)
return ret;
ret = clk_prepare_enable(phy->clk2);
if (ret) {
clk_disable_unprepare(phy->clk);
return ret;
}
ret = reset_control_deassert(phy->reset);
if (ret) {
clk_disable_unprepare(phy->clk2);
clk_disable_unprepare(phy->clk);
return ret;
}
if (data->cfg->type == sun8i_a83t_phy ||
data->cfg->type == sun50i_h6_phy) {
if (phy->index == 0) {
val = readl(data->base + data->cfg->phyctl_offset);
val |= PHY_CTL_VBUSVLDEXT;
val &= ~PHY_CTL_SIDDQ;
writel(val, data->base + data->cfg->phyctl_offset);
}
} else {
if (phy->pmu && data->cfg->enable_pmu_unk1) {
val = readl(phy->pmu + REG_PMU_UNK1);
writel(val & ~2, phy->pmu + REG_PMU_UNK1);
}
/* Enable USB 45 Ohm resistor calibration */
if (phy->index == 0)
sun4i_usb_phy_write(phy, PHY_RES45_CAL_EN, 0x01, 1);
/* Adjust PHY's magnitude and rate */
sun4i_usb_phy_write(phy, PHY_TX_AMPLITUDE_TUNE, 0x14, 5);
/* Disconnect threshold adjustment */
sun4i_usb_phy_write(phy, PHY_DISCON_TH_SEL,
data->cfg->disc_thresh, 2);
}
sun4i_usb_phy_passby(phy, 1);
if (phy->index == 0) {
data->phy0_init = true;
/* Enable pull-ups */
sun4i_usb_phy0_update_iscr(_phy, 0, ISCR_DPDM_PULLUP_EN);
sun4i_usb_phy0_update_iscr(_phy, 0, ISCR_ID_PULLUP_EN);
/* Force ISCR and cable state updates */
data->id_det = -1;
data->vbus_det = -1;
queue_delayed_work(system_wq, &data->detect, 0);
}
return 0;
}
static int sun4i_usb_phy_exit(struct phy *_phy)
{
struct sun4i_usb_phy *phy = phy_get_drvdata(_phy);
struct sun4i_usb_phy_data *data = to_sun4i_usb_phy_data(phy);
if (phy->index == 0) {
if (data->cfg->type == sun8i_a83t_phy ||
data->cfg->type == sun50i_h6_phy) {
void __iomem *phyctl = data->base +
data->cfg->phyctl_offset;
writel(readl(phyctl) | PHY_CTL_SIDDQ, phyctl);
}
/* Disable pull-ups */
sun4i_usb_phy0_update_iscr(_phy, ISCR_DPDM_PULLUP_EN, 0);
sun4i_usb_phy0_update_iscr(_phy, ISCR_ID_PULLUP_EN, 0);
data->phy0_init = false;
}
sun4i_usb_phy_passby(phy, 0);
reset_control_assert(phy->reset);
clk_disable_unprepare(phy->clk2);
clk_disable_unprepare(phy->clk);
return 0;
}
static int sun4i_usb_phy0_get_id_det(struct sun4i_usb_phy_data *data)
{
switch (data->dr_mode) {
case USB_DR_MODE_OTG:
if (data->id_det_gpio)
return gpiod_get_value_cansleep(data->id_det_gpio);
else
return 1; /* Fallback to peripheral mode */
case USB_DR_MODE_HOST:
return 0;
case USB_DR_MODE_PERIPHERAL:
default:
return 1;
}
}
static int sun4i_usb_phy0_get_vbus_det(struct sun4i_usb_phy_data *data)
{
if (data->vbus_det_gpio)
return gpiod_get_value_cansleep(data->vbus_det_gpio);
if (data->vbus_power_supply) {
union power_supply_propval val;
int r;
r = power_supply_get_property(data->vbus_power_supply,
POWER_SUPPLY_PROP_PRESENT, &val);
if (r == 0)
return val.intval;
}
/* Fallback: report vbus as high */
return 1;
}
static bool sun4i_usb_phy0_have_vbus_det(struct sun4i_usb_phy_data *data)
{
return data->vbus_det_gpio || data->vbus_power_supply;
}
static bool sun4i_usb_phy0_poll(struct sun4i_usb_phy_data *data)
{
if ((data->id_det_gpio && data->id_det_irq <= 0) ||
(data->vbus_det_gpio && data->vbus_det_irq <= 0))
return true;
/*
* The A31/A23/A33 companion pmics (AXP221/AXP223) do not
* generate vbus change interrupts when the board is driving
* vbus using the N_VBUSEN pin on the pmic, so we must poll
* when using the pmic for vbus-det _and_ we're driving vbus.
*/
if ((data->cfg->type == sun6i_a31_phy ||
data->cfg->type == sun8i_a33_phy) &&
data->vbus_power_supply && data->phys[0].regulator_on)
return true;
return false;
}
static int sun4i_usb_phy_power_on(struct phy *_phy)
{
struct sun4i_usb_phy *phy = phy_get_drvdata(_phy);
struct sun4i_usb_phy_data *data = to_sun4i_usb_phy_data(phy);
int ret;
if (!phy->vbus || phy->regulator_on)
return 0;
/* For phy0 only turn on Vbus if we don't have an ext. Vbus */
if (phy->index == 0 && sun4i_usb_phy0_have_vbus_det(data) &&
data->vbus_det) {
dev_warn(&_phy->dev, "External vbus detected, not enabling our own vbus\n");
return 0;
}
ret = regulator_enable(phy->vbus);
if (ret)
return ret;
phy->regulator_on = true;
/* We must report Vbus high within OTG_TIME_A_WAIT_VRISE msec. */
if (phy->index == 0 && sun4i_usb_phy0_poll(data))
mod_delayed_work(system_wq, &data->detect, DEBOUNCE_TIME);
return 0;
}
static int sun4i_usb_phy_power_off(struct phy *_phy)
{
struct sun4i_usb_phy *phy = phy_get_drvdata(_phy);
struct sun4i_usb_phy_data *data = to_sun4i_usb_phy_data(phy);
if (!phy->vbus || !phy->regulator_on)
return 0;
regulator_disable(phy->vbus);
phy->regulator_on = false;
/*
* phy0 vbus typically slowly discharges, sometimes this causes the
* Vbus gpio to not trigger an edge irq on Vbus off, so force a rescan.
*/
if (phy->index == 0 && !sun4i_usb_phy0_poll(data))
mod_delayed_work(system_wq, &data->detect, POLL_TIME);
return 0;
}
static int sun4i_usb_phy_set_mode(struct phy *_phy,
enum phy_mode mode, int submode)
{
struct sun4i_usb_phy *phy = phy_get_drvdata(_phy);
struct sun4i_usb_phy_data *data = to_sun4i_usb_phy_data(phy);
int new_mode;
if (phy->index != 0) {
if (mode == PHY_MODE_USB_HOST)
return 0;
return -EINVAL;
}
switch (mode) {
case PHY_MODE_USB_HOST:
new_mode = USB_DR_MODE_HOST;
break;
case PHY_MODE_USB_DEVICE:
new_mode = USB_DR_MODE_PERIPHERAL;
break;
case PHY_MODE_USB_OTG:
new_mode = USB_DR_MODE_OTG;
break;
default:
return -EINVAL;
}
if (new_mode != data->dr_mode) {
dev_info(&_phy->dev, "Changing dr_mode to %d\n", new_mode);
data->dr_mode = new_mode;
}
data->id_det = -1; /* Force reprocessing of id */
data->force_session_end = true;
queue_delayed_work(system_wq, &data->detect, 0);
return 0;
}
void sun4i_usb_phy_set_squelch_detect(struct phy *_phy, bool enabled)
{
struct sun4i_usb_phy *phy = phy_get_drvdata(_phy);
sun4i_usb_phy_write(phy, PHY_SQUELCH_DETECT, enabled ? 0 : 2, 2);
}
EXPORT_SYMBOL_GPL(sun4i_usb_phy_set_squelch_detect);
static const struct phy_ops sun4i_usb_phy_ops = {
.init = sun4i_usb_phy_init,
.exit = sun4i_usb_phy_exit,
.power_on = sun4i_usb_phy_power_on,
.power_off = sun4i_usb_phy_power_off,
.set_mode = sun4i_usb_phy_set_mode,
.owner = THIS_MODULE,
};
static void sun4i_usb_phy0_reroute(struct sun4i_usb_phy_data *data, int id_det)
{
u32 regval;
regval = readl(data->base + REG_PHY_OTGCTL);
if (id_det == 0) {
/* Host mode. Route phy0 to EHCI/OHCI */
regval &= ~OTGCTL_ROUTE_MUSB;
} else {
/* Peripheral mode. Route phy0 to MUSB */
regval |= OTGCTL_ROUTE_MUSB;
}
writel(regval, data->base + REG_PHY_OTGCTL);
}
static void sun4i_usb_phy0_id_vbus_det_scan(struct work_struct *work)
{
struct sun4i_usb_phy_data *data =
container_of(work, struct sun4i_usb_phy_data, detect.work);
struct phy *phy0 = data->phys[0].phy;
bool force_session_end, id_notify = false, vbus_notify = false;
int id_det, vbus_det;
if (phy0 == NULL)
return;
id_det = sun4i_usb_phy0_get_id_det(data);
vbus_det = sun4i_usb_phy0_get_vbus_det(data);
mutex_lock(&phy0->mutex);
if (!data->phy0_init) {
mutex_unlock(&phy0->mutex);
return;
}
force_session_end = data->force_session_end;
data->force_session_end = false;
if (id_det != data->id_det) {
/* id-change, force session end if we've no vbus detection */
if (data->dr_mode == USB_DR_MODE_OTG &&
!sun4i_usb_phy0_have_vbus_det(data))
force_session_end = true;
/* When entering host mode (id = 0) force end the session now */
if (force_session_end && id_det == 0) {
sun4i_usb_phy0_set_vbus_detect(phy0, 0);
msleep(200);
sun4i_usb_phy0_set_vbus_detect(phy0, 1);
}
sun4i_usb_phy0_set_id_detect(phy0, id_det);
data->id_det = id_det;
id_notify = true;
}
if (vbus_det != data->vbus_det) {
sun4i_usb_phy0_set_vbus_detect(phy0, vbus_det);
data->vbus_det = vbus_det;
vbus_notify = true;
}
mutex_unlock(&phy0->mutex);
if (id_notify) {
extcon_set_state_sync(data->extcon, EXTCON_USB_HOST,
!id_det);
/* When leaving host mode force end the session here */
if (force_session_end && id_det == 1) {
mutex_lock(&phy0->mutex);
sun4i_usb_phy0_set_vbus_detect(phy0, 0);
msleep(1000);
sun4i_usb_phy0_set_vbus_detect(phy0, 1);
mutex_unlock(&phy0->mutex);
}
/* Re-route PHY0 if necessary */
if (data->cfg->phy0_dual_route)
sun4i_usb_phy0_reroute(data, id_det);
}
if (vbus_notify)
extcon_set_state_sync(data->extcon, EXTCON_USB, vbus_det);
if (sun4i_usb_phy0_poll(data))
queue_delayed_work(system_wq, &data->detect, POLL_TIME);
}
static irqreturn_t sun4i_usb_phy0_id_vbus_det_irq(int irq, void *dev_id)
{
struct sun4i_usb_phy_data *data = dev_id;
/* vbus or id changed, let the pins settle and then scan them */
mod_delayed_work(system_wq, &data->detect, DEBOUNCE_TIME);
return IRQ_HANDLED;
}
static int sun4i_usb_phy0_vbus_notify(struct notifier_block *nb,
unsigned long val, void *v)
{
struct sun4i_usb_phy_data *data =
container_of(nb, struct sun4i_usb_phy_data, vbus_power_nb);
struct power_supply *psy = v;
/* Properties on the vbus_power_supply changed, scan vbus_det */
if (val == PSY_EVENT_PROP_CHANGED && psy == data->vbus_power_supply)
mod_delayed_work(system_wq, &data->detect, DEBOUNCE_TIME);
return NOTIFY_OK;
}
static struct phy *sun4i_usb_phy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct sun4i_usb_phy_data *data = dev_get_drvdata(dev);
if (args->args[0] >= data->cfg->num_phys)
return ERR_PTR(-ENODEV);
if (data->cfg->missing_phys & BIT(args->args[0]))
return ERR_PTR(-ENODEV);
return data->phys[args->args[0]].phy;
}
static int sun4i_usb_phy_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sun4i_usb_phy_data *data = dev_get_drvdata(dev);
if (data->vbus_power_nb_registered)
power_supply_unreg_notifier(&data->vbus_power_nb);
if (data->id_det_irq > 0)
devm_free_irq(dev, data->id_det_irq, data);
if (data->vbus_det_irq > 0)
devm_free_irq(dev, data->vbus_det_irq, data);
cancel_delayed_work_sync(&data->detect);
return 0;
}
static const unsigned int sun4i_usb_phy0_cable[] = {
EXTCON_USB,
EXTCON_USB_HOST,
EXTCON_NONE,
};
static int sun4i_usb_phy_probe(struct platform_device *pdev)
{
struct sun4i_usb_phy_data *data;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct phy_provider *phy_provider;
struct resource *res;
int i, ret;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
spin_lock_init(&data->reg_lock);
INIT_DELAYED_WORK(&data->detect, sun4i_usb_phy0_id_vbus_det_scan);
dev_set_drvdata(dev, data);
data->cfg = of_device_get_match_data(dev);
if (!data->cfg)
return -EINVAL;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy_ctrl");
data->base = devm_ioremap_resource(dev, res);
if (IS_ERR(data->base))
return PTR_ERR(data->base);
data->id_det_gpio = devm_gpiod_get_optional(dev, "usb0_id_det",
GPIOD_IN);
if (IS_ERR(data->id_det_gpio)) {
dev_err(dev, "Couldn't request ID GPIO\n");
return PTR_ERR(data->id_det_gpio);
}
data->vbus_det_gpio = devm_gpiod_get_optional(dev, "usb0_vbus_det",
GPIOD_IN);
if (IS_ERR(data->vbus_det_gpio)) {
dev_err(dev, "Couldn't request VBUS detect GPIO\n");
return PTR_ERR(data->vbus_det_gpio);
}
if (of_find_property(np, "usb0_vbus_power-supply", NULL)) {
data->vbus_power_supply = devm_power_supply_get_by_phandle(dev,
"usb0_vbus_power-supply");
if (IS_ERR(data->vbus_power_supply)) {
dev_err(dev, "Couldn't get the VBUS power supply\n");
return PTR_ERR(data->vbus_power_supply);
}
if (!data->vbus_power_supply)
return -EPROBE_DEFER;
}
data->dr_mode = of_usb_get_dr_mode_by_phy(np, 0);
data->extcon = devm_extcon_dev_allocate(dev, sun4i_usb_phy0_cable);
if (IS_ERR(data->extcon)) {
dev_err(dev, "Couldn't allocate our extcon device\n");
return PTR_ERR(data->extcon);
}
ret = devm_extcon_dev_register(dev, data->extcon);
if (ret) {
dev_err(dev, "failed to register extcon: %d\n", ret);
return ret;
}
for (i = 0; i < data->cfg->num_phys; i++) {
struct sun4i_usb_phy *phy = data->phys + i;
char name[16];
if (data->cfg->missing_phys & BIT(i))
continue;
snprintf(name, sizeof(name), "usb%d_vbus", i);
phy->vbus = devm_regulator_get_optional(dev, name);
if (IS_ERR(phy->vbus)) {
if (PTR_ERR(phy->vbus) == -EPROBE_DEFER) {
dev_err(dev,
"Couldn't get regulator %s... Deferring probe\n",
name);
return -EPROBE_DEFER;
}
phy->vbus = NULL;
}
if (data->cfg->dedicated_clocks)
snprintf(name, sizeof(name), "usb%d_phy", i);
else
strlcpy(name, "usb_phy", sizeof(name));
phy->clk = devm_clk_get(dev, name);
if (IS_ERR(phy->clk)) {
dev_err(dev, "failed to get clock %s\n", name);
return PTR_ERR(phy->clk);
}
/* The first PHY is always tied to OTG, and never HSIC */
if (data->cfg->hsic_index && i == data->cfg->hsic_index) {
/* HSIC needs secondary clock */
snprintf(name, sizeof(name), "usb%d_hsic_12M", i);
phy->clk2 = devm_clk_get(dev, name);
if (IS_ERR(phy->clk2)) {
dev_err(dev, "failed to get clock %s\n", name);
return PTR_ERR(phy->clk2);
}
}
snprintf(name, sizeof(name), "usb%d_reset", i);
phy->reset = devm_reset_control_get(dev, name);
if (IS_ERR(phy->reset)) {
dev_err(dev, "failed to get reset %s\n", name);
return PTR_ERR(phy->reset);
}
if (i || data->cfg->phy0_dual_route) { /* No pmu for musb */
snprintf(name, sizeof(name), "pmu%d", i);
res = platform_get_resource_byname(pdev,
IORESOURCE_MEM, name);
phy->pmu = devm_ioremap_resource(dev, res);
if (IS_ERR(phy->pmu))
return PTR_ERR(phy->pmu);
}
phy->phy = devm_phy_create(dev, NULL, &sun4i_usb_phy_ops);
if (IS_ERR(phy->phy)) {
dev_err(dev, "failed to create PHY %d\n", i);
return PTR_ERR(phy->phy);
}
phy->index = i;
phy_set_drvdata(phy->phy, &data->phys[i]);
}
data->id_det_irq = gpiod_to_irq(data->id_det_gpio);
if (data->id_det_irq > 0) {
ret = devm_request_irq(dev, data->id_det_irq,
sun4i_usb_phy0_id_vbus_det_irq,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"usb0-id-det", data);
if (ret) {
dev_err(dev, "Err requesting id-det-irq: %d\n", ret);
return ret;
}
}
data->vbus_det_irq = gpiod_to_irq(data->vbus_det_gpio);
if (data->vbus_det_irq > 0) {
ret = devm_request_irq(dev, data->vbus_det_irq,
sun4i_usb_phy0_id_vbus_det_irq,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"usb0-vbus-det", data);
if (ret) {
dev_err(dev, "Err requesting vbus-det-irq: %d\n", ret);
data->vbus_det_irq = -1;
sun4i_usb_phy_remove(pdev); /* Stop detect work */
return ret;
}
}
if (data->vbus_power_supply) {
data->vbus_power_nb.notifier_call = sun4i_usb_phy0_vbus_notify;
data->vbus_power_nb.priority = 0;
ret = power_supply_reg_notifier(&data->vbus_power_nb);
if (ret) {
sun4i_usb_phy_remove(pdev); /* Stop detect work */
return ret;
}
data->vbus_power_nb_registered = true;
}
phy_provider = devm_of_phy_provider_register(dev, sun4i_usb_phy_xlate);
if (IS_ERR(phy_provider)) {
sun4i_usb_phy_remove(pdev); /* Stop detect work */
return PTR_ERR(phy_provider);
}
dev_dbg(dev, "successfully loaded\n");
return 0;
}
static const struct sun4i_usb_phy_cfg sun4i_a10_cfg = {
.num_phys = 3,
.type = sun4i_a10_phy,
.disc_thresh = 3,
.phyctl_offset = REG_PHYCTL_A10,
.dedicated_clocks = false,
.enable_pmu_unk1 = false,
};
static const struct sun4i_usb_phy_cfg sun5i_a13_cfg = {
.num_phys = 2,
.type = sun4i_a10_phy,
.disc_thresh = 2,
.phyctl_offset = REG_PHYCTL_A10,
.dedicated_clocks = false,
.enable_pmu_unk1 = false,
};
static const struct sun4i_usb_phy_cfg sun6i_a31_cfg = {
.num_phys = 3,
.type = sun6i_a31_phy,
.disc_thresh = 3,
.phyctl_offset = REG_PHYCTL_A10,
.dedicated_clocks = true,
.enable_pmu_unk1 = false,
};
static const struct sun4i_usb_phy_cfg sun7i_a20_cfg = {
.num_phys = 3,
.type = sun4i_a10_phy,
.disc_thresh = 2,
.phyctl_offset = REG_PHYCTL_A10,
.dedicated_clocks = false,
.enable_pmu_unk1 = false,
};
static const struct sun4i_usb_phy_cfg sun8i_a23_cfg = {
.num_phys = 2,
.type = sun6i_a31_phy,
.disc_thresh = 3,
.phyctl_offset = REG_PHYCTL_A10,
.dedicated_clocks = true,
.enable_pmu_unk1 = false,
};
static const struct sun4i_usb_phy_cfg sun8i_a33_cfg = {
.num_phys = 2,
.type = sun8i_a33_phy,
.disc_thresh = 3,
.phyctl_offset = REG_PHYCTL_A33,
.dedicated_clocks = true,
.enable_pmu_unk1 = false,
};
static const struct sun4i_usb_phy_cfg sun8i_a83t_cfg = {
.num_phys = 3,
.hsic_index = 2,
.type = sun8i_a83t_phy,
.phyctl_offset = REG_PHYCTL_A33,
.dedicated_clocks = true,
};
static const struct sun4i_usb_phy_cfg sun8i_h3_cfg = {
.num_phys = 4,
.type = sun8i_h3_phy,
.disc_thresh = 3,
.phyctl_offset = REG_PHYCTL_A33,
.dedicated_clocks = true,
.enable_pmu_unk1 = true,
.phy0_dual_route = true,
};
static const struct sun4i_usb_phy_cfg sun8i_r40_cfg = {
.num_phys = 3,
.type = sun8i_r40_phy,
.disc_thresh = 3,
.phyctl_offset = REG_PHYCTL_A33,
.dedicated_clocks = true,
.enable_pmu_unk1 = true,
.phy0_dual_route = true,
};
static const struct sun4i_usb_phy_cfg sun8i_v3s_cfg = {
.num_phys = 1,
.type = sun8i_v3s_phy,
.disc_thresh = 3,
.phyctl_offset = REG_PHYCTL_A33,
.dedicated_clocks = true,
.enable_pmu_unk1 = true,
.phy0_dual_route = true,
};
static const struct sun4i_usb_phy_cfg sun50i_a64_cfg = {
.num_phys = 2,
.type = sun50i_a64_phy,
.disc_thresh = 3,
.phyctl_offset = REG_PHYCTL_A33,
.dedicated_clocks = true,
.enable_pmu_unk1 = true,
.phy0_dual_route = true,
};
static const struct sun4i_usb_phy_cfg sun50i_h6_cfg = {
.num_phys = 4,
.type = sun50i_h6_phy,
.disc_thresh = 3,
.phyctl_offset = REG_PHYCTL_A33,
.dedicated_clocks = true,
.enable_pmu_unk1 = true,
.phy0_dual_route = true,
.missing_phys = BIT(1) | BIT(2),
};
static const struct of_device_id sun4i_usb_phy_of_match[] = {
{ .compatible = "allwinner,sun4i-a10-usb-phy", .data = &sun4i_a10_cfg },
{ .compatible = "allwinner,sun5i-a13-usb-phy", .data = &sun5i_a13_cfg },
{ .compatible = "allwinner,sun6i-a31-usb-phy", .data = &sun6i_a31_cfg },
{ .compatible = "allwinner,sun7i-a20-usb-phy", .data = &sun7i_a20_cfg },
{ .compatible = "allwinner,sun8i-a23-usb-phy", .data = &sun8i_a23_cfg },
{ .compatible = "allwinner,sun8i-a33-usb-phy", .data = &sun8i_a33_cfg },
{ .compatible = "allwinner,sun8i-a83t-usb-phy", .data = &sun8i_a83t_cfg },
{ .compatible = "allwinner,sun8i-h3-usb-phy", .data = &sun8i_h3_cfg },
{ .compatible = "allwinner,sun8i-r40-usb-phy", .data = &sun8i_r40_cfg },
{ .compatible = "allwinner,sun8i-v3s-usb-phy", .data = &sun8i_v3s_cfg },
{ .compatible = "allwinner,sun50i-a64-usb-phy",
.data = &sun50i_a64_cfg},
{ .compatible = "allwinner,sun50i-h6-usb-phy", .data = &sun50i_h6_cfg },
{ },
};
MODULE_DEVICE_TABLE(of, sun4i_usb_phy_of_match);
static struct platform_driver sun4i_usb_phy_driver = {
.probe = sun4i_usb_phy_probe,
.remove = sun4i_usb_phy_remove,
.driver = {
.of_match_table = sun4i_usb_phy_of_match,
.name = "sun4i-usb-phy",
}
};
module_platform_driver(sun4i_usb_phy_driver);
MODULE_DESCRIPTION("Allwinner sun4i USB phy driver");
MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
MODULE_LICENSE("GPL v2");