mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 02:09:26 +07:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
1784 lines
56 KiB
C
1784 lines
56 KiB
C
/* fdomain.c -- Future Domain TMC-16x0 SCSI driver
|
|
* Created: Sun May 3 18:53:19 1992 by faith@cs.unc.edu
|
|
* Revised: Mon Dec 28 21:59:02 1998 by faith@acm.org
|
|
* Author: Rickard E. Faith, faith@cs.unc.edu
|
|
* Copyright 1992-1996, 1998 Rickard E. Faith (faith@acm.org)
|
|
* Shared IRQ supported added 7/7/2001 Alan Cox <alan@lxorguk.ukuu.org.uk>
|
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2, or (at your option) any
|
|
* later version.
|
|
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
**************************************************************************
|
|
|
|
SUMMARY:
|
|
|
|
Future Domain BIOS versions supported for autodetect:
|
|
2.0, 3.0, 3.2, 3.4 (1.0), 3.5 (2.0), 3.6, 3.61
|
|
Chips are supported:
|
|
TMC-1800, TMC-18C50, TMC-18C30, TMC-36C70
|
|
Boards supported:
|
|
Future Domain TMC-1650, TMC-1660, TMC-1670, TMC-1680, TMC-1610M/MER/MEX
|
|
Future Domain TMC-3260 (PCI)
|
|
Quantum ISA-200S, ISA-250MG
|
|
Adaptec AHA-2920A (PCI) [BUT *NOT* AHA-2920C -- use aic7xxx instead]
|
|
IBM ?
|
|
LILO/INSMOD command-line options:
|
|
fdomain=<PORT_BASE>,<IRQ>[,<ADAPTER_ID>]
|
|
|
|
|
|
|
|
NOTE:
|
|
|
|
The Adaptec AHA-2920C has an Adaptec AIC-7850 chip on it.
|
|
Use the aic7xxx driver for this board.
|
|
|
|
The Adaptec AHA-2920A has a Future Domain chip on it, so this is the right
|
|
driver for that card. Unfortunately, the boxes will probably just say
|
|
"2920", so you'll have to look on the card for a Future Domain logo, or a
|
|
letter after the 2920.
|
|
|
|
|
|
|
|
THANKS:
|
|
|
|
Thanks to Adaptec for providing PCI boards for testing. This finally
|
|
enabled me to test the PCI detection and correct it for PCI boards that do
|
|
not have a BIOS at a standard ISA location. For PCI boards, LILO/INSMOD
|
|
command-line options should no longer be needed. --RF 18Nov98
|
|
|
|
|
|
|
|
DESCRIPTION:
|
|
|
|
This is the Linux low-level SCSI driver for Future Domain TMC-1660/1680
|
|
TMC-1650/1670, and TMC-3260 SCSI host adapters. The 1650 and 1670 have a
|
|
25-pin external connector, whereas the 1660 and 1680 have a SCSI-2 50-pin
|
|
high-density external connector. The 1670 and 1680 have floppy disk
|
|
controllers built in. The TMC-3260 is a PCI bus card.
|
|
|
|
Future Domain's older boards are based on the TMC-1800 chip, and this
|
|
driver was originally written for a TMC-1680 board with the TMC-1800 chip.
|
|
More recently, boards are being produced with the TMC-18C50 and TMC-18C30
|
|
chips. The latest and greatest board may not work with this driver. If
|
|
you have to patch this driver so that it will recognize your board's BIOS
|
|
signature, then the driver may fail to function after the board is
|
|
detected.
|
|
|
|
Please note that the drive ordering that Future Domain implemented in BIOS
|
|
versions 3.4 and 3.5 is the opposite of the order (currently) used by the
|
|
rest of the SCSI industry. If you have BIOS version 3.4 or 3.5, and have
|
|
more than one drive, then the drive ordering will be the reverse of that
|
|
which you see under DOS. For example, under DOS SCSI ID 0 will be D: and
|
|
SCSI ID 1 will be C: (the boot device). Under Linux, SCSI ID 0 will be
|
|
/dev/sda and SCSI ID 1 will be /dev/sdb. The Linux ordering is consistent
|
|
with that provided by all the other SCSI drivers for Linux. If you want
|
|
this changed, you will probably have to patch the higher level SCSI code.
|
|
If you do so, please send me patches that are protected by #ifdefs.
|
|
|
|
If you have a TMC-8xx or TMC-9xx board, then this is not the driver for
|
|
your board. Please refer to the Seagate driver for more information and
|
|
possible support.
|
|
|
|
|
|
|
|
HISTORY:
|
|
|
|
Linux Driver Driver
|
|
Version Version Date Support/Notes
|
|
|
|
0.0 3 May 1992 V2.0 BIOS; 1800 chip
|
|
0.97 1.9 28 Jul 1992
|
|
0.98.6 3.1 27 Nov 1992
|
|
0.99 3.2 9 Dec 1992
|
|
|
|
0.99.3 3.3 10 Jan 1993 V3.0 BIOS
|
|
0.99.5 3.5 18 Feb 1993
|
|
0.99.10 3.6 15 May 1993 V3.2 BIOS; 18C50 chip
|
|
0.99.11 3.17 3 Jul 1993 (now under RCS)
|
|
0.99.12 3.18 13 Aug 1993
|
|
0.99.14 5.6 31 Oct 1993 (reselection code removed)
|
|
|
|
0.99.15 5.9 23 Jan 1994 V3.4 BIOS (preliminary)
|
|
1.0.8/1.1.1 5.15 1 Apr 1994 V3.4 BIOS; 18C30 chip (preliminary)
|
|
1.0.9/1.1.3 5.16 7 Apr 1994 V3.4 BIOS; 18C30 chip
|
|
1.1.38 5.18 30 Jul 1994 36C70 chip (PCI version of 18C30)
|
|
1.1.62 5.20 2 Nov 1994 V3.5 BIOS
|
|
1.1.73 5.22 7 Dec 1994 Quantum ISA-200S board; V2.0 BIOS
|
|
|
|
1.1.82 5.26 14 Jan 1995 V3.5 BIOS; TMC-1610M/MER/MEX board
|
|
1.2.10 5.28 5 Jun 1995 Quantum ISA-250MG board; V2.0, V2.01 BIOS
|
|
1.3.4 5.31 23 Jun 1995 PCI BIOS-32 detection (preliminary)
|
|
1.3.7 5.33 4 Jul 1995 PCI BIOS-32 detection
|
|
1.3.28 5.36 17 Sep 1995 V3.61 BIOS; LILO command-line support
|
|
1.3.34 5.39 12 Oct 1995 V3.60 BIOS; /proc
|
|
1.3.72 5.39 8 Feb 1996 Adaptec AHA-2920 board
|
|
1.3.85 5.41 4 Apr 1996
|
|
2.0.12 5.44 8 Aug 1996 Use ID 7 for all PCI cards
|
|
2.1.1 5.45 2 Oct 1996 Update ROM accesses for 2.1.x
|
|
2.1.97 5.46 23 Apr 1998 Rewritten PCI detection routines [mj]
|
|
2.1.11x 5.47 9 Aug 1998 Touched for 8 SCSI disk majors support
|
|
5.48 18 Nov 1998 BIOS no longer needed for PCI detection
|
|
2.2.0 5.50 28 Dec 1998 Support insmod parameters
|
|
|
|
|
|
REFERENCES USED:
|
|
|
|
"TMC-1800 SCSI Chip Specification (FDC-1800T)", Future Domain Corporation,
|
|
1990.
|
|
|
|
"Technical Reference Manual: 18C50 SCSI Host Adapter Chip", Future Domain
|
|
Corporation, January 1992.
|
|
|
|
"LXT SCSI Products: Specifications and OEM Technical Manual (Revision
|
|
B/September 1991)", Maxtor Corporation, 1991.
|
|
|
|
"7213S product Manual (Revision P3)", Maxtor Corporation, 1992.
|
|
|
|
"Draft Proposed American National Standard: Small Computer System
|
|
Interface - 2 (SCSI-2)", Global Engineering Documents. (X3T9.2/86-109,
|
|
revision 10h, October 17, 1991)
|
|
|
|
Private communications, Drew Eckhardt (drew@cs.colorado.edu) and Eric
|
|
Youngdale (ericy@cais.com), 1992.
|
|
|
|
Private communication, Tuong Le (Future Domain Engineering department),
|
|
1994. (Disk geometry computations for Future Domain BIOS version 3.4, and
|
|
TMC-18C30 detection.)
|
|
|
|
Hogan, Thom. The Programmer's PC Sourcebook. Microsoft Press, 1988. Page
|
|
60 (2.39: Disk Partition Table Layout).
|
|
|
|
"18C30 Technical Reference Manual", Future Domain Corporation, 1993, page
|
|
6-1.
|
|
|
|
|
|
|
|
NOTES ON REFERENCES:
|
|
|
|
The Maxtor manuals were free. Maxtor telephone technical support is
|
|
great!
|
|
|
|
The Future Domain manuals were $25 and $35. They document the chip, not
|
|
the TMC-16x0 boards, so some information I had to guess at. In 1992,
|
|
Future Domain sold DOS BIOS source for $250 and the UN*X driver source was
|
|
$750, but these required a non-disclosure agreement, so even if I could
|
|
have afforded them, they would *not* have been useful for writing this
|
|
publically distributable driver. Future Domain technical support has
|
|
provided some information on the phone and have sent a few useful FAXs.
|
|
They have been much more helpful since they started to recognize that the
|
|
word "Linux" refers to an operating system :-).
|
|
|
|
|
|
|
|
ALPHA TESTERS:
|
|
|
|
There are many other alpha testers that come and go as the driver
|
|
develops. The people listed here were most helpful in times of greatest
|
|
need (mostly early on -- I've probably left out a few worthy people in
|
|
more recent times):
|
|
|
|
Todd Carrico (todd@wutc.wustl.edu), Dan Poirier (poirier@cs.unc.edu ), Ken
|
|
Corey (kenc@sol.acs.unt.edu), C. de Bruin (bruin@bruin@sterbbs.nl), Sakari
|
|
Aaltonen (sakaria@vipunen.hit.fi), John Rice (rice@xanth.cs.odu.edu), Brad
|
|
Yearwood (brad@optilink.com), and Ray Toy (toy@soho.crd.ge.com).
|
|
|
|
Special thanks to Tien-Wan Yang (twyang@cs.uh.edu), who graciously lent me
|
|
his 18C50-based card for debugging. He is the sole reason that this
|
|
driver works with the 18C50 chip.
|
|
|
|
Thanks to Dave Newman (dnewman@crl.com) for providing initial patches for
|
|
the version 3.4 BIOS.
|
|
|
|
Thanks to James T. McKinley (mckinley@msupa.pa.msu.edu) for providing
|
|
patches that support the TMC-3260, a PCI bus card with the 36C70 chip.
|
|
The 36C70 chip appears to be "completely compatible" with the 18C30 chip.
|
|
|
|
Thanks to Eric Kasten (tigger@petroglyph.cl.msu.edu) for providing the
|
|
patch for the version 3.5 BIOS.
|
|
|
|
Thanks for Stephen Henson (shenson@nyx10.cs.du.edu) for providing the
|
|
patch for the Quantum ISA-200S SCSI adapter.
|
|
|
|
Thanks to Adam Bowen for the signature to the 1610M/MER/MEX scsi cards, to
|
|
Martin Andrews (andrewm@ccfadm.eeg.ccf.org) for the signature to some
|
|
random TMC-1680 repackaged by IBM; and to Mintak Ng (mintak@panix.com) for
|
|
the version 3.61 BIOS signature.
|
|
|
|
Thanks for Mark Singer (elf@netcom.com) and Richard Simpson
|
|
(rsimpson@ewrcsdra.demon.co.uk) for more Quantum signatures and detective
|
|
work on the Quantum RAM layout.
|
|
|
|
Special thanks to James T. McKinley (mckinley@msupa.pa.msu.edu) for
|
|
providing patches for proper PCI BIOS32-mediated detection of the TMC-3260
|
|
card (a PCI bus card with the 36C70 chip). Please send James PCI-related
|
|
bug reports.
|
|
|
|
Thanks to Tom Cavin (tec@usa1.com) for preliminary command-line option
|
|
patches.
|
|
|
|
New PCI detection code written by Martin Mares <mj@atrey.karlin.mff.cuni.cz>
|
|
|
|
Insmod parameter code based on patches from Daniel Graham
|
|
<graham@balance.uoregon.edu>.
|
|
|
|
All of the alpha testers deserve much thanks.
|
|
|
|
|
|
|
|
NOTES ON USER DEFINABLE OPTIONS:
|
|
|
|
DEBUG: This turns on the printing of various debug information.
|
|
|
|
ENABLE_PARITY: This turns on SCSI parity checking. With the current
|
|
driver, all attached devices must support SCSI parity. If none of your
|
|
devices support parity, then you can probably get the driver to work by
|
|
turning this option off. I have no way of testing this, however, and it
|
|
would appear that no one ever uses this option.
|
|
|
|
FIFO_COUNT: The host adapter has an 8K cache (host adapters based on the
|
|
18C30 chip have a 2k cache). When this many 512 byte blocks are filled by
|
|
the SCSI device, an interrupt will be raised. Therefore, this could be as
|
|
low as 0, or as high as 16. Note, however, that values which are too high
|
|
or too low seem to prevent any interrupts from occurring, and thereby lock
|
|
up the machine. I have found that 2 is a good number, but throughput may
|
|
be increased by changing this value to values which are close to 2.
|
|
Please let me know if you try any different values.
|
|
|
|
RESELECTION: This is no longer an option, since I gave up trying to
|
|
implement it in version 4.x of this driver. It did not improve
|
|
performance at all and made the driver unstable (because I never found one
|
|
of the two race conditions which were introduced by the multiple
|
|
outstanding command code). The instability seems a very high price to pay
|
|
just so that you don't have to wait for the tape to rewind. If you want
|
|
this feature implemented, send me patches. I'll be happy to send a copy
|
|
of my (broken) driver to anyone who would like to see a copy.
|
|
|
|
**************************************************************************/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <scsi/scsicam.h>
|
|
|
|
#include <asm/system.h>
|
|
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsi_ioctl.h>
|
|
#include "fdomain.h"
|
|
|
|
#ifndef PCMCIA
|
|
MODULE_AUTHOR("Rickard E. Faith");
|
|
MODULE_DESCRIPTION("Future domain SCSI driver");
|
|
MODULE_LICENSE("GPL");
|
|
#endif
|
|
|
|
|
|
#define VERSION "$Revision: 5.51 $"
|
|
|
|
/* START OF USER DEFINABLE OPTIONS */
|
|
|
|
#define DEBUG 0 /* Enable debugging output */
|
|
#define ENABLE_PARITY 1 /* Enable SCSI Parity */
|
|
#define FIFO_COUNT 2 /* Number of 512 byte blocks before INTR */
|
|
|
|
/* END OF USER DEFINABLE OPTIONS */
|
|
|
|
#if DEBUG
|
|
#define EVERY_ACCESS 0 /* Write a line on every scsi access */
|
|
#define ERRORS_ONLY 1 /* Only write a line if there is an error */
|
|
#define DEBUG_DETECT 0 /* Debug fdomain_16x0_detect() */
|
|
#define DEBUG_MESSAGES 1 /* Debug MESSAGE IN phase */
|
|
#define DEBUG_ABORT 1 /* Debug abort() routine */
|
|
#define DEBUG_RESET 1 /* Debug reset() routine */
|
|
#define DEBUG_RACE 1 /* Debug interrupt-driven race condition */
|
|
#else
|
|
#define EVERY_ACCESS 0 /* LEAVE THESE ALONE--CHANGE THE ONES ABOVE */
|
|
#define ERRORS_ONLY 0
|
|
#define DEBUG_DETECT 0
|
|
#define DEBUG_MESSAGES 0
|
|
#define DEBUG_ABORT 0
|
|
#define DEBUG_RESET 0
|
|
#define DEBUG_RACE 0
|
|
#endif
|
|
|
|
/* Errors are reported on the line, so we don't need to report them again */
|
|
#if EVERY_ACCESS
|
|
#undef ERRORS_ONLY
|
|
#define ERRORS_ONLY 0
|
|
#endif
|
|
|
|
#if ENABLE_PARITY
|
|
#define PARITY_MASK 0x08
|
|
#else
|
|
#define PARITY_MASK 0x00
|
|
#endif
|
|
|
|
enum chip_type {
|
|
unknown = 0x00,
|
|
tmc1800 = 0x01,
|
|
tmc18c50 = 0x02,
|
|
tmc18c30 = 0x03,
|
|
};
|
|
|
|
enum {
|
|
in_arbitration = 0x02,
|
|
in_selection = 0x04,
|
|
in_other = 0x08,
|
|
disconnect = 0x10,
|
|
aborted = 0x20,
|
|
sent_ident = 0x40,
|
|
};
|
|
|
|
enum in_port_type {
|
|
Read_SCSI_Data = 0,
|
|
SCSI_Status = 1,
|
|
TMC_Status = 2,
|
|
FIFO_Status = 3, /* tmc18c50/tmc18c30 only */
|
|
Interrupt_Cond = 4, /* tmc18c50/tmc18c30 only */
|
|
LSB_ID_Code = 5,
|
|
MSB_ID_Code = 6,
|
|
Read_Loopback = 7,
|
|
SCSI_Data_NoACK = 8,
|
|
Interrupt_Status = 9,
|
|
Configuration1 = 10,
|
|
Configuration2 = 11, /* tmc18c50/tmc18c30 only */
|
|
Read_FIFO = 12,
|
|
FIFO_Data_Count = 14
|
|
};
|
|
|
|
enum out_port_type {
|
|
Write_SCSI_Data = 0,
|
|
SCSI_Cntl = 1,
|
|
Interrupt_Cntl = 2,
|
|
SCSI_Mode_Cntl = 3,
|
|
TMC_Cntl = 4,
|
|
Memory_Cntl = 5, /* tmc18c50/tmc18c30 only */
|
|
Write_Loopback = 7,
|
|
IO_Control = 11, /* tmc18c30 only */
|
|
Write_FIFO = 12
|
|
};
|
|
|
|
/* .bss will zero all the static variables below */
|
|
static int port_base;
|
|
static unsigned long bios_base;
|
|
static void __iomem * bios_mem;
|
|
static int bios_major;
|
|
static int bios_minor;
|
|
static int PCI_bus;
|
|
#ifdef CONFIG_PCI
|
|
static struct pci_dev *PCI_dev;
|
|
#endif
|
|
static int Quantum; /* Quantum board variant */
|
|
static int interrupt_level;
|
|
static volatile int in_command;
|
|
static struct scsi_cmnd *current_SC;
|
|
static enum chip_type chip = unknown;
|
|
static int adapter_mask;
|
|
static int this_id;
|
|
static int setup_called;
|
|
|
|
#if DEBUG_RACE
|
|
static volatile int in_interrupt_flag;
|
|
#endif
|
|
|
|
static int FIFO_Size = 0x2000; /* 8k FIFO for
|
|
pre-tmc18c30 chips */
|
|
|
|
static irqreturn_t do_fdomain_16x0_intr( int irq, void *dev_id );
|
|
/* Allow insmod parameters to be like LILO parameters. For example:
|
|
insmod fdomain fdomain=0x140,11 */
|
|
static char * fdomain = NULL;
|
|
module_param(fdomain, charp, 0);
|
|
|
|
#ifndef PCMCIA
|
|
|
|
static unsigned long addresses[] = {
|
|
0xc8000,
|
|
0xca000,
|
|
0xce000,
|
|
0xde000,
|
|
0xcc000, /* Extra addresses for PCI boards */
|
|
0xd0000,
|
|
0xe0000,
|
|
};
|
|
#define ADDRESS_COUNT ARRAY_SIZE(addresses)
|
|
|
|
static unsigned short ports[] = { 0x140, 0x150, 0x160, 0x170 };
|
|
#define PORT_COUNT ARRAY_SIZE(ports)
|
|
|
|
static unsigned short ints[] = { 3, 5, 10, 11, 12, 14, 15, 0 };
|
|
|
|
#endif /* !PCMCIA */
|
|
|
|
/*
|
|
|
|
READ THIS BEFORE YOU ADD A SIGNATURE!
|
|
|
|
READING THIS SHORT NOTE CAN SAVE YOU LOTS OF TIME!
|
|
|
|
READ EVERY WORD, ESPECIALLY THE WORD *NOT*
|
|
|
|
This driver works *ONLY* for Future Domain cards using the TMC-1800,
|
|
TMC-18C50, or TMC-18C30 chip. This includes models TMC-1650, 1660, 1670,
|
|
and 1680. These are all 16-bit cards.
|
|
|
|
The following BIOS signature signatures are for boards which do *NOT*
|
|
work with this driver (these TMC-8xx and TMC-9xx boards may work with the
|
|
Seagate driver):
|
|
|
|
FUTURE DOMAIN CORP. (C) 1986-1988 V4.0I 03/16/88
|
|
FUTURE DOMAIN CORP. (C) 1986-1989 V5.0C2/14/89
|
|
FUTURE DOMAIN CORP. (C) 1986-1989 V6.0A7/28/89
|
|
FUTURE DOMAIN CORP. (C) 1986-1990 V6.0105/31/90
|
|
FUTURE DOMAIN CORP. (C) 1986-1990 V6.0209/18/90
|
|
FUTURE DOMAIN CORP. (C) 1986-1990 V7.009/18/90
|
|
FUTURE DOMAIN CORP. (C) 1992 V8.00.004/02/92
|
|
|
|
(The cards which do *NOT* work are all 8-bit cards -- although some of
|
|
them have a 16-bit form-factor, the upper 8-bits are used only for IRQs
|
|
and are *NOT* used for data. You can tell the difference by following
|
|
the tracings on the circuit board -- if only the IRQ lines are involved,
|
|
you have a "8-bit" card, and should *NOT* use this driver.)
|
|
|
|
*/
|
|
|
|
#ifndef PCMCIA
|
|
|
|
static struct signature {
|
|
const char *signature;
|
|
int sig_offset;
|
|
int sig_length;
|
|
int major_bios_version;
|
|
int minor_bios_version;
|
|
int flag; /* 1 == PCI_bus, 2 == ISA_200S, 3 == ISA_250MG, 4 == ISA_200S */
|
|
} signatures[] = {
|
|
/* 1 2 3 4 5 6 */
|
|
/* 123456789012345678901234567890123456789012345678901234567890 */
|
|
{ "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.07/28/89", 5, 50, 2, 0, 0 },
|
|
{ "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V1.07/28/89", 5, 50, 2, 0, 0 },
|
|
{ "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.07/28/89", 72, 50, 2, 0, 2 },
|
|
{ "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.0", 73, 43, 2, 0, 3 },
|
|
{ "FUTURE DOMAIN CORP. (C) 1991 1800-V2.0.", 72, 39, 2, 0, 4 },
|
|
{ "FUTURE DOMAIN CORP. (C) 1992 V3.00.004/02/92", 5, 44, 3, 0, 0 },
|
|
{ "FUTURE DOMAIN TMC-18XX (C) 1993 V3.203/12/93", 5, 44, 3, 2, 0 },
|
|
{ "IBM F1 P2 BIOS v1.0104/29/93", 5, 28, 3, -1, 0 },
|
|
{ "Future Domain Corp. V1.0008/18/93", 5, 33, 3, 4, 0 },
|
|
{ "Future Domain Corp. V1.0008/18/93", 26, 33, 3, 4, 1 },
|
|
{ "Adaptec AHA-2920 PCI-SCSI Card", 42, 31, 3, -1, 1 },
|
|
{ "IBM F1 P264/32", 5, 14, 3, -1, 1 },
|
|
/* This next signature may not be a 3.5 bios */
|
|
{ "Future Domain Corp. V2.0108/18/93", 5, 33, 3, 5, 0 },
|
|
{ "FUTURE DOMAIN CORP. V3.5008/18/93", 5, 34, 3, 5, 0 },
|
|
{ "FUTURE DOMAIN 18c30/18c50/1800 (C) 1994 V3.5", 5, 44, 3, 5, 0 },
|
|
{ "FUTURE DOMAIN CORP. V3.6008/18/93", 5, 34, 3, 6, 0 },
|
|
{ "FUTURE DOMAIN CORP. V3.6108/18/93", 5, 34, 3, 6, 0 },
|
|
{ "FUTURE DOMAIN TMC-18XX", 5, 22, -1, -1, 0 },
|
|
|
|
/* READ NOTICE ABOVE *BEFORE* YOU WASTE YOUR TIME ADDING A SIGNATURE
|
|
Also, fix the disk geometry code for your signature and send your
|
|
changes for faith@cs.unc.edu. Above all, do *NOT* change any old
|
|
signatures!
|
|
|
|
Note that the last line will match a "generic" 18XX bios. Because
|
|
Future Domain has changed the host SCSI ID and/or the location of the
|
|
geometry information in the on-board RAM area for each of the first
|
|
three BIOS's, it is still important to enter a fully qualified
|
|
signature in the table for any new BIOS's (after the host SCSI ID and
|
|
geometry location are verified). */
|
|
};
|
|
|
|
#define SIGNATURE_COUNT ARRAY_SIZE(signatures)
|
|
|
|
#endif /* !PCMCIA */
|
|
|
|
static void print_banner( struct Scsi_Host *shpnt )
|
|
{
|
|
if (!shpnt) return; /* This won't ever happen */
|
|
|
|
if (bios_major < 0 && bios_minor < 0) {
|
|
printk(KERN_INFO "scsi%d: <fdomain> No BIOS; using scsi id %d\n",
|
|
shpnt->host_no, shpnt->this_id);
|
|
} else {
|
|
printk(KERN_INFO "scsi%d: <fdomain> BIOS version ", shpnt->host_no);
|
|
|
|
if (bios_major >= 0) printk("%d.", bios_major);
|
|
else printk("?.");
|
|
|
|
if (bios_minor >= 0) printk("%d", bios_minor);
|
|
else printk("?.");
|
|
|
|
printk( " at 0x%lx using scsi id %d\n",
|
|
bios_base, shpnt->this_id );
|
|
}
|
|
|
|
/* If this driver works for later FD PCI
|
|
boards, we will have to modify banner
|
|
for additional PCI cards, but for now if
|
|
it's PCI it's a TMC-3260 - JTM */
|
|
printk(KERN_INFO "scsi%d: <fdomain> %s chip at 0x%x irq ",
|
|
shpnt->host_no,
|
|
chip == tmc1800 ? "TMC-1800" : (chip == tmc18c50 ? "TMC-18C50" : (chip == tmc18c30 ? (PCI_bus ? "TMC-36C70 (PCI bus)" : "TMC-18C30") : "Unknown")),
|
|
port_base);
|
|
|
|
if (interrupt_level)
|
|
printk("%d", interrupt_level);
|
|
else
|
|
printk("<none>");
|
|
|
|
printk( "\n" );
|
|
}
|
|
|
|
int fdomain_setup(char *str)
|
|
{
|
|
int ints[4];
|
|
|
|
(void)get_options(str, ARRAY_SIZE(ints), ints);
|
|
|
|
if (setup_called++ || ints[0] < 2 || ints[0] > 3) {
|
|
printk(KERN_INFO "scsi: <fdomain> Usage: fdomain=<PORT_BASE>,<IRQ>[,<ADAPTER_ID>]\n");
|
|
printk(KERN_ERR "scsi: <fdomain> Bad LILO/INSMOD parameters?\n");
|
|
return 0;
|
|
}
|
|
|
|
port_base = ints[0] >= 1 ? ints[1] : 0;
|
|
interrupt_level = ints[0] >= 2 ? ints[2] : 0;
|
|
this_id = ints[0] >= 3 ? ints[3] : 0;
|
|
|
|
bios_major = bios_minor = -1; /* Use geometry for BIOS version >= 3.4 */
|
|
++setup_called;
|
|
return 1;
|
|
}
|
|
|
|
__setup("fdomain=", fdomain_setup);
|
|
|
|
|
|
static void do_pause(unsigned amount) /* Pause for amount*10 milliseconds */
|
|
{
|
|
mdelay(10*amount);
|
|
}
|
|
|
|
static inline void fdomain_make_bus_idle( void )
|
|
{
|
|
outb(0, port_base + SCSI_Cntl);
|
|
outb(0, port_base + SCSI_Mode_Cntl);
|
|
if (chip == tmc18c50 || chip == tmc18c30)
|
|
outb(0x21 | PARITY_MASK, port_base + TMC_Cntl); /* Clear forced intr. */
|
|
else
|
|
outb(0x01 | PARITY_MASK, port_base + TMC_Cntl);
|
|
}
|
|
|
|
static int fdomain_is_valid_port( int port )
|
|
{
|
|
#if DEBUG_DETECT
|
|
printk( " (%x%x),",
|
|
inb( port + MSB_ID_Code ), inb( port + LSB_ID_Code ) );
|
|
#endif
|
|
|
|
/* The MCA ID is a unique id for each MCA compatible board. We
|
|
are using ISA boards, but Future Domain provides the MCA ID
|
|
anyway. We can use this ID to ensure that this is a Future
|
|
Domain TMC-1660/TMC-1680.
|
|
*/
|
|
|
|
if (inb( port + LSB_ID_Code ) != 0xe9) { /* test for 0x6127 id */
|
|
if (inb( port + LSB_ID_Code ) != 0x27) return 0;
|
|
if (inb( port + MSB_ID_Code ) != 0x61) return 0;
|
|
chip = tmc1800;
|
|
} else { /* test for 0xe960 id */
|
|
if (inb( port + MSB_ID_Code ) != 0x60) return 0;
|
|
chip = tmc18c50;
|
|
|
|
/* Try to toggle 32-bit mode. This only
|
|
works on an 18c30 chip. (User reports
|
|
say this works, so we should switch to
|
|
it in the near future.) */
|
|
|
|
outb( 0x80, port + IO_Control );
|
|
if ((inb( port + Configuration2 ) & 0x80) == 0x80) {
|
|
outb( 0x00, port + IO_Control );
|
|
if ((inb( port + Configuration2 ) & 0x80) == 0x00) {
|
|
chip = tmc18c30;
|
|
FIFO_Size = 0x800; /* 2k FIFO */
|
|
}
|
|
}
|
|
/* If that failed, we are an 18c50. */
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int fdomain_test_loopback( void )
|
|
{
|
|
int i;
|
|
int result;
|
|
|
|
for (i = 0; i < 255; i++) {
|
|
outb( i, port_base + Write_Loopback );
|
|
result = inb( port_base + Read_Loopback );
|
|
if (i != result)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef PCMCIA
|
|
|
|
/* fdomain_get_irq assumes that we have a valid MCA ID for a
|
|
TMC-1660/TMC-1680 Future Domain board. Now, check to be sure the
|
|
bios_base matches these ports. If someone was unlucky enough to have
|
|
purchased more than one Future Domain board, then they will have to
|
|
modify this code, as we only detect one board here. [The one with the
|
|
lowest bios_base.]
|
|
|
|
Note that this routine is only used for systems without a PCI BIOS32
|
|
(e.g., ISA bus). For PCI bus systems, this routine will likely fail
|
|
unless one of the IRQs listed in the ints array is used by the board.
|
|
Sometimes it is possible to use the computer's BIOS setup screen to
|
|
configure a PCI system so that one of these IRQs will be used by the
|
|
Future Domain card. */
|
|
|
|
static int fdomain_get_irq( int base )
|
|
{
|
|
int options = inb(base + Configuration1);
|
|
|
|
#if DEBUG_DETECT
|
|
printk("scsi: <fdomain> Options = %x\n", options);
|
|
#endif
|
|
|
|
/* Check for board with lowest bios_base --
|
|
this isn't valid for the 18c30 or for
|
|
boards on the PCI bus, so just assume we
|
|
have the right board. */
|
|
|
|
if (chip != tmc18c30 && !PCI_bus && addresses[(options & 0xc0) >> 6 ] != bios_base)
|
|
return 0;
|
|
return ints[(options & 0x0e) >> 1];
|
|
}
|
|
|
|
static int fdomain_isa_detect( int *irq, int *iobase )
|
|
{
|
|
int i, j;
|
|
int base = 0xdeadbeef;
|
|
int flag = 0;
|
|
|
|
#if DEBUG_DETECT
|
|
printk( "scsi: <fdomain> fdomain_isa_detect:" );
|
|
#endif
|
|
|
|
for (i = 0; i < ADDRESS_COUNT; i++) {
|
|
void __iomem *p = ioremap(addresses[i], 0x2000);
|
|
if (!p)
|
|
continue;
|
|
#if DEBUG_DETECT
|
|
printk( " %lx(%lx),", addresses[i], bios_base );
|
|
#endif
|
|
for (j = 0; j < SIGNATURE_COUNT; j++) {
|
|
if (check_signature(p + signatures[j].sig_offset,
|
|
signatures[j].signature,
|
|
signatures[j].sig_length )) {
|
|
bios_major = signatures[j].major_bios_version;
|
|
bios_minor = signatures[j].minor_bios_version;
|
|
PCI_bus = (signatures[j].flag == 1);
|
|
Quantum = (signatures[j].flag > 1) ? signatures[j].flag : 0;
|
|
bios_base = addresses[i];
|
|
bios_mem = p;
|
|
goto found;
|
|
}
|
|
}
|
|
iounmap(p);
|
|
}
|
|
|
|
found:
|
|
if (bios_major == 2) {
|
|
/* The TMC-1660/TMC-1680 has a RAM area just after the BIOS ROM.
|
|
Assuming the ROM is enabled (otherwise we wouldn't have been
|
|
able to read the ROM signature :-), then the ROM sets up the
|
|
RAM area with some magic numbers, such as a list of port
|
|
base addresses and a list of the disk "geometry" reported to
|
|
DOS (this geometry has nothing to do with physical geometry).
|
|
*/
|
|
|
|
switch (Quantum) {
|
|
case 2: /* ISA_200S */
|
|
case 3: /* ISA_250MG */
|
|
base = readb(bios_mem + 0x1fa2) + (readb(bios_mem + 0x1fa3) << 8);
|
|
break;
|
|
case 4: /* ISA_200S (another one) */
|
|
base = readb(bios_mem + 0x1fa3) + (readb(bios_mem + 0x1fa4) << 8);
|
|
break;
|
|
default:
|
|
base = readb(bios_mem + 0x1fcc) + (readb(bios_mem + 0x1fcd) << 8);
|
|
break;
|
|
}
|
|
|
|
#if DEBUG_DETECT
|
|
printk( " %x,", base );
|
|
#endif
|
|
|
|
for (i = 0; i < PORT_COUNT; i++) {
|
|
if (base == ports[i]) {
|
|
if (!request_region(base, 0x10, "fdomain"))
|
|
break;
|
|
if (!fdomain_is_valid_port(base)) {
|
|
release_region(base, 0x10);
|
|
break;
|
|
}
|
|
*irq = fdomain_get_irq( base );
|
|
*iobase = base;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* This is a bad sign. It usually means that someone patched the
|
|
BIOS signature list (the signatures variable) to contain a BIOS
|
|
signature for a board *OTHER THAN* the TMC-1660/TMC-1680. */
|
|
|
|
#if DEBUG_DETECT
|
|
printk( " RAM FAILED, " );
|
|
#endif
|
|
}
|
|
|
|
/* Anyway, the alternative to finding the address in the RAM is to just
|
|
search through every possible port address for one that is attached
|
|
to the Future Domain card. Don't panic, though, about reading all
|
|
these random port addresses -- there are rumors that the Future
|
|
Domain BIOS does something very similar.
|
|
|
|
Do not, however, check ports which the kernel knows are being used by
|
|
another driver. */
|
|
|
|
for (i = 0; i < PORT_COUNT; i++) {
|
|
base = ports[i];
|
|
if (!request_region(base, 0x10, "fdomain")) {
|
|
#if DEBUG_DETECT
|
|
printk( " (%x inuse),", base );
|
|
#endif
|
|
continue;
|
|
}
|
|
#if DEBUG_DETECT
|
|
printk( " %x,", base );
|
|
#endif
|
|
flag = fdomain_is_valid_port(base);
|
|
if (flag)
|
|
break;
|
|
release_region(base, 0x10);
|
|
}
|
|
|
|
#if DEBUG_DETECT
|
|
if (flag) printk( " SUCCESS\n" );
|
|
else printk( " FAILURE\n" );
|
|
#endif
|
|
|
|
if (!flag) return 0; /* iobase not found */
|
|
|
|
*irq = fdomain_get_irq( base );
|
|
*iobase = base;
|
|
|
|
return 1; /* success */
|
|
}
|
|
|
|
#else /* PCMCIA */
|
|
|
|
static int fdomain_isa_detect( int *irq, int *iobase )
|
|
{
|
|
if (irq)
|
|
*irq = 0;
|
|
if (iobase)
|
|
*iobase = 0;
|
|
return 0;
|
|
}
|
|
|
|
#endif /* !PCMCIA */
|
|
|
|
|
|
/* PCI detection function: int fdomain_pci_bios_detect(int* irq, int*
|
|
iobase) This function gets the Interrupt Level and I/O base address from
|
|
the PCI configuration registers. */
|
|
|
|
#ifdef CONFIG_PCI
|
|
static int fdomain_pci_bios_detect( int *irq, int *iobase, struct pci_dev **ret_pdev )
|
|
{
|
|
unsigned int pci_irq; /* PCI interrupt line */
|
|
unsigned long pci_base; /* PCI I/O base address */
|
|
struct pci_dev *pdev = NULL;
|
|
|
|
#if DEBUG_DETECT
|
|
/* Tell how to print a list of the known PCI devices from bios32 and
|
|
list vendor and device IDs being used if in debug mode. */
|
|
|
|
printk( "scsi: <fdomain> INFO: use lspci -v to see list of PCI devices\n" );
|
|
printk( "scsi: <fdomain> TMC-3260 detect:"
|
|
" Using Vendor ID: 0x%x and Device ID: 0x%x\n",
|
|
PCI_VENDOR_ID_FD,
|
|
PCI_DEVICE_ID_FD_36C70 );
|
|
#endif
|
|
|
|
if ((pdev = pci_get_device(PCI_VENDOR_ID_FD, PCI_DEVICE_ID_FD_36C70, pdev)) == NULL)
|
|
return 0;
|
|
if (pci_enable_device(pdev))
|
|
goto fail;
|
|
|
|
#if DEBUG_DETECT
|
|
printk( "scsi: <fdomain> TMC-3260 detect:"
|
|
" PCI bus %u, device %u, function %u\n",
|
|
pdev->bus->number,
|
|
PCI_SLOT(pdev->devfn),
|
|
PCI_FUNC(pdev->devfn));
|
|
#endif
|
|
|
|
/* We now have the appropriate device function for the FD board so we
|
|
just read the PCI config info from the registers. */
|
|
|
|
pci_base = pci_resource_start(pdev, 0);
|
|
pci_irq = pdev->irq;
|
|
|
|
if (!request_region( pci_base, 0x10, "fdomain" ))
|
|
goto fail;
|
|
|
|
/* Now we have the I/O base address and interrupt from the PCI
|
|
configuration registers. */
|
|
|
|
*irq = pci_irq;
|
|
*iobase = pci_base;
|
|
*ret_pdev = pdev;
|
|
|
|
#if DEBUG_DETECT
|
|
printk( "scsi: <fdomain> TMC-3260 detect:"
|
|
" IRQ = %d, I/O base = 0x%x [0x%lx]\n", *irq, *iobase, pci_base );
|
|
#endif
|
|
|
|
if (!fdomain_is_valid_port(pci_base)) {
|
|
printk(KERN_ERR "scsi: <fdomain> PCI card detected, but driver not loaded (invalid port)\n" );
|
|
release_region(pci_base, 0x10);
|
|
goto fail;
|
|
}
|
|
|
|
/* Fill in a few global variables. Ugh. */
|
|
bios_major = bios_minor = -1;
|
|
PCI_bus = 1;
|
|
PCI_dev = pdev;
|
|
Quantum = 0;
|
|
bios_base = 0;
|
|
|
|
return 1;
|
|
fail:
|
|
pci_dev_put(pdev);
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
struct Scsi_Host *__fdomain_16x0_detect(struct scsi_host_template *tpnt )
|
|
{
|
|
int retcode;
|
|
struct Scsi_Host *shpnt;
|
|
struct pci_dev *pdev = NULL;
|
|
|
|
if (setup_called) {
|
|
#if DEBUG_DETECT
|
|
printk( "scsi: <fdomain> No BIOS, using port_base = 0x%x, irq = %d\n",
|
|
port_base, interrupt_level );
|
|
#endif
|
|
if (!request_region(port_base, 0x10, "fdomain")) {
|
|
printk( "scsi: <fdomain> port 0x%x is busy\n", port_base );
|
|
printk( "scsi: <fdomain> Bad LILO/INSMOD parameters?\n" );
|
|
return NULL;
|
|
}
|
|
if (!fdomain_is_valid_port( port_base )) {
|
|
printk( "scsi: <fdomain> Cannot locate chip at port base 0x%x\n",
|
|
port_base );
|
|
printk( "scsi: <fdomain> Bad LILO/INSMOD parameters?\n" );
|
|
release_region(port_base, 0x10);
|
|
return NULL;
|
|
}
|
|
} else {
|
|
int flag = 0;
|
|
|
|
#ifdef CONFIG_PCI
|
|
/* Try PCI detection first */
|
|
flag = fdomain_pci_bios_detect( &interrupt_level, &port_base, &pdev );
|
|
#endif
|
|
if (!flag) {
|
|
/* Then try ISA bus detection */
|
|
flag = fdomain_isa_detect( &interrupt_level, &port_base );
|
|
|
|
if (!flag) {
|
|
printk( "scsi: <fdomain> Detection failed (no card)\n" );
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
fdomain_16x0_bus_reset(NULL);
|
|
|
|
if (fdomain_test_loopback()) {
|
|
printk(KERN_ERR "scsi: <fdomain> Detection failed (loopback test failed at port base 0x%x)\n", port_base);
|
|
if (setup_called) {
|
|
printk(KERN_ERR "scsi: <fdomain> Bad LILO/INSMOD parameters?\n");
|
|
}
|
|
goto fail;
|
|
}
|
|
|
|
if (this_id) {
|
|
tpnt->this_id = (this_id & 0x07);
|
|
adapter_mask = (1 << tpnt->this_id);
|
|
} else {
|
|
if (PCI_bus || (bios_major == 3 && bios_minor >= 2) || bios_major < 0) {
|
|
tpnt->this_id = 7;
|
|
adapter_mask = 0x80;
|
|
} else {
|
|
tpnt->this_id = 6;
|
|
adapter_mask = 0x40;
|
|
}
|
|
}
|
|
|
|
/* Print out a banner here in case we can't
|
|
get resources. */
|
|
|
|
shpnt = scsi_register( tpnt, 0 );
|
|
if(shpnt == NULL) {
|
|
release_region(port_base, 0x10);
|
|
return NULL;
|
|
}
|
|
shpnt->irq = interrupt_level;
|
|
shpnt->io_port = port_base;
|
|
shpnt->n_io_port = 0x10;
|
|
print_banner( shpnt );
|
|
|
|
/* Log IRQ with kernel */
|
|
if (!interrupt_level) {
|
|
printk(KERN_ERR "scsi: <fdomain> Card Detected, but driver not loaded (no IRQ)\n" );
|
|
goto fail;
|
|
} else {
|
|
/* Register the IRQ with the kernel */
|
|
|
|
retcode = request_irq( interrupt_level,
|
|
do_fdomain_16x0_intr, pdev?IRQF_SHARED:0, "fdomain", shpnt);
|
|
|
|
if (retcode < 0) {
|
|
if (retcode == -EINVAL) {
|
|
printk(KERN_ERR "scsi: <fdomain> IRQ %d is bad!\n", interrupt_level );
|
|
printk(KERN_ERR " This shouldn't happen!\n" );
|
|
printk(KERN_ERR " Send mail to faith@acm.org\n" );
|
|
} else if (retcode == -EBUSY) {
|
|
printk(KERN_ERR "scsi: <fdomain> IRQ %d is already in use!\n", interrupt_level );
|
|
printk(KERN_ERR " Please use another IRQ!\n" );
|
|
} else {
|
|
printk(KERN_ERR "scsi: <fdomain> Error getting IRQ %d\n", interrupt_level );
|
|
printk(KERN_ERR " This shouldn't happen!\n" );
|
|
printk(KERN_ERR " Send mail to faith@acm.org\n" );
|
|
}
|
|
printk(KERN_ERR "scsi: <fdomain> Detected, but driver not loaded (IRQ)\n" );
|
|
goto fail;
|
|
}
|
|
}
|
|
return shpnt;
|
|
fail:
|
|
pci_dev_put(pdev);
|
|
release_region(port_base, 0x10);
|
|
return NULL;
|
|
}
|
|
|
|
static int fdomain_16x0_detect(struct scsi_host_template *tpnt)
|
|
{
|
|
if (fdomain)
|
|
fdomain_setup(fdomain);
|
|
return (__fdomain_16x0_detect(tpnt) != NULL);
|
|
}
|
|
|
|
static const char *fdomain_16x0_info( struct Scsi_Host *ignore )
|
|
{
|
|
static char buffer[128];
|
|
char *pt;
|
|
|
|
strcpy( buffer, "Future Domain 16-bit SCSI Driver Version" );
|
|
if (strchr( VERSION, ':')) { /* Assume VERSION is an RCS Revision string */
|
|
strcat( buffer, strchr( VERSION, ':' ) + 1 );
|
|
pt = strrchr( buffer, '$') - 1;
|
|
if (!pt) /* Stripped RCS Revision string? */
|
|
pt = buffer + strlen( buffer ) - 1;
|
|
if (*pt != ' ')
|
|
++pt;
|
|
*pt = '\0';
|
|
} else { /* Assume VERSION is a number */
|
|
strcat( buffer, " " VERSION );
|
|
}
|
|
|
|
return buffer;
|
|
}
|
|
|
|
#if 0
|
|
static int fdomain_arbitrate( void )
|
|
{
|
|
int status = 0;
|
|
unsigned long timeout;
|
|
|
|
#if EVERY_ACCESS
|
|
printk( "fdomain_arbitrate()\n" );
|
|
#endif
|
|
|
|
outb(0x00, port_base + SCSI_Cntl); /* Disable data drivers */
|
|
outb(adapter_mask, port_base + SCSI_Data_NoACK); /* Set our id bit */
|
|
outb(0x04 | PARITY_MASK, port_base + TMC_Cntl); /* Start arbitration */
|
|
|
|
timeout = 500;
|
|
do {
|
|
status = inb(port_base + TMC_Status); /* Read adapter status */
|
|
if (status & 0x02) /* Arbitration complete */
|
|
return 0;
|
|
mdelay(1); /* Wait one millisecond */
|
|
} while (--timeout);
|
|
|
|
/* Make bus idle */
|
|
fdomain_make_bus_idle();
|
|
|
|
#if EVERY_ACCESS
|
|
printk( "Arbitration failed, status = %x\n", status );
|
|
#endif
|
|
#if ERRORS_ONLY
|
|
printk( "scsi: <fdomain> Arbitration failed, status = %x\n", status );
|
|
#endif
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static int fdomain_select( int target )
|
|
{
|
|
int status;
|
|
unsigned long timeout;
|
|
#if ERRORS_ONLY
|
|
static int flag = 0;
|
|
#endif
|
|
|
|
outb(0x82, port_base + SCSI_Cntl); /* Bus Enable + Select */
|
|
outb(adapter_mask | (1 << target), port_base + SCSI_Data_NoACK);
|
|
|
|
/* Stop arbitration and enable parity */
|
|
outb(PARITY_MASK, port_base + TMC_Cntl);
|
|
|
|
timeout = 350; /* 350 msec */
|
|
|
|
do {
|
|
status = inb(port_base + SCSI_Status); /* Read adapter status */
|
|
if (status & 1) { /* Busy asserted */
|
|
/* Enable SCSI Bus (on error, should make bus idle with 0) */
|
|
outb(0x80, port_base + SCSI_Cntl);
|
|
return 0;
|
|
}
|
|
mdelay(1); /* wait one msec */
|
|
} while (--timeout);
|
|
/* Make bus idle */
|
|
fdomain_make_bus_idle();
|
|
#if EVERY_ACCESS
|
|
if (!target) printk( "Selection failed\n" );
|
|
#endif
|
|
#if ERRORS_ONLY
|
|
if (!target) {
|
|
if (!flag) /* Skip first failure for all chips. */
|
|
++flag;
|
|
else
|
|
printk( "scsi: <fdomain> Selection failed\n" );
|
|
}
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
static void my_done(int error)
|
|
{
|
|
if (in_command) {
|
|
in_command = 0;
|
|
outb(0x00, port_base + Interrupt_Cntl);
|
|
fdomain_make_bus_idle();
|
|
current_SC->result = error;
|
|
if (current_SC->scsi_done)
|
|
current_SC->scsi_done( current_SC );
|
|
else panic( "scsi: <fdomain> current_SC->scsi_done() == NULL" );
|
|
} else {
|
|
panic( "scsi: <fdomain> my_done() called outside of command\n" );
|
|
}
|
|
#if DEBUG_RACE
|
|
in_interrupt_flag = 0;
|
|
#endif
|
|
}
|
|
|
|
static irqreturn_t do_fdomain_16x0_intr(int irq, void *dev_id)
|
|
{
|
|
unsigned long flags;
|
|
int status;
|
|
int done = 0;
|
|
unsigned data_count;
|
|
|
|
/* The fdomain_16x0_intr is only called via
|
|
the interrupt handler. The goal of the
|
|
sti() here is to allow other
|
|
interruptions while this routine is
|
|
running. */
|
|
|
|
/* Check for other IRQ sources */
|
|
if ((inb(port_base + TMC_Status) & 0x01) == 0)
|
|
return IRQ_NONE;
|
|
|
|
/* It is our IRQ */
|
|
outb(0x00, port_base + Interrupt_Cntl);
|
|
|
|
/* We usually have one spurious interrupt after each command. Ignore it. */
|
|
if (!in_command || !current_SC) { /* Spurious interrupt */
|
|
#if EVERY_ACCESS
|
|
printk( "Spurious interrupt, in_command = %d, current_SC = %x\n",
|
|
in_command, current_SC );
|
|
#endif
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
/* Abort calls my_done, so we do nothing here. */
|
|
if (current_SC->SCp.phase & aborted) {
|
|
#if DEBUG_ABORT
|
|
printk( "scsi: <fdomain> Interrupt after abort, ignoring\n" );
|
|
#endif
|
|
/*
|
|
return IRQ_HANDLED; */
|
|
}
|
|
|
|
#if DEBUG_RACE
|
|
++in_interrupt_flag;
|
|
#endif
|
|
|
|
if (current_SC->SCp.phase & in_arbitration) {
|
|
status = inb(port_base + TMC_Status); /* Read adapter status */
|
|
if (!(status & 0x02)) {
|
|
#if EVERY_ACCESS
|
|
printk( " AFAIL " );
|
|
#endif
|
|
spin_lock_irqsave(current_SC->device->host->host_lock, flags);
|
|
my_done( DID_BUS_BUSY << 16 );
|
|
spin_unlock_irqrestore(current_SC->device->host->host_lock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
current_SC->SCp.phase = in_selection;
|
|
|
|
outb(0x40 | FIFO_COUNT, port_base + Interrupt_Cntl);
|
|
|
|
outb(0x82, port_base + SCSI_Cntl); /* Bus Enable + Select */
|
|
outb(adapter_mask | (1 << scmd_id(current_SC)), port_base + SCSI_Data_NoACK);
|
|
|
|
/* Stop arbitration and enable parity */
|
|
outb(0x10 | PARITY_MASK, port_base + TMC_Cntl);
|
|
#if DEBUG_RACE
|
|
in_interrupt_flag = 0;
|
|
#endif
|
|
return IRQ_HANDLED;
|
|
} else if (current_SC->SCp.phase & in_selection) {
|
|
status = inb(port_base + SCSI_Status);
|
|
if (!(status & 0x01)) {
|
|
/* Try again, for slow devices */
|
|
if (fdomain_select( scmd_id(current_SC) )) {
|
|
#if EVERY_ACCESS
|
|
printk( " SFAIL " );
|
|
#endif
|
|
spin_lock_irqsave(current_SC->device->host->host_lock, flags);
|
|
my_done( DID_NO_CONNECT << 16 );
|
|
spin_unlock_irqrestore(current_SC->device->host->host_lock, flags);
|
|
return IRQ_HANDLED;
|
|
} else {
|
|
#if EVERY_ACCESS
|
|
printk( " AltSel " );
|
|
#endif
|
|
/* Stop arbitration and enable parity */
|
|
outb(0x10 | PARITY_MASK, port_base + TMC_Cntl);
|
|
}
|
|
}
|
|
current_SC->SCp.phase = in_other;
|
|
outb(0x90 | FIFO_COUNT, port_base + Interrupt_Cntl);
|
|
outb(0x80, port_base + SCSI_Cntl);
|
|
#if DEBUG_RACE
|
|
in_interrupt_flag = 0;
|
|
#endif
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* current_SC->SCp.phase == in_other: this is the body of the routine */
|
|
|
|
status = inb(port_base + SCSI_Status);
|
|
|
|
if (status & 0x10) { /* REQ */
|
|
|
|
switch (status & 0x0e) {
|
|
|
|
case 0x08: /* COMMAND OUT */
|
|
outb(current_SC->cmnd[current_SC->SCp.sent_command++],
|
|
port_base + Write_SCSI_Data);
|
|
#if EVERY_ACCESS
|
|
printk( "CMD = %x,",
|
|
current_SC->cmnd[ current_SC->SCp.sent_command - 1] );
|
|
#endif
|
|
break;
|
|
case 0x00: /* DATA OUT -- tmc18c50/tmc18c30 only */
|
|
if (chip != tmc1800 && !current_SC->SCp.have_data_in) {
|
|
current_SC->SCp.have_data_in = -1;
|
|
outb(0xd0 | PARITY_MASK, port_base + TMC_Cntl);
|
|
}
|
|
break;
|
|
case 0x04: /* DATA IN -- tmc18c50/tmc18c30 only */
|
|
if (chip != tmc1800 && !current_SC->SCp.have_data_in) {
|
|
current_SC->SCp.have_data_in = 1;
|
|
outb(0x90 | PARITY_MASK, port_base + TMC_Cntl);
|
|
}
|
|
break;
|
|
case 0x0c: /* STATUS IN */
|
|
current_SC->SCp.Status = inb(port_base + Read_SCSI_Data);
|
|
#if EVERY_ACCESS
|
|
printk( "Status = %x, ", current_SC->SCp.Status );
|
|
#endif
|
|
#if ERRORS_ONLY
|
|
if (current_SC->SCp.Status
|
|
&& current_SC->SCp.Status != 2
|
|
&& current_SC->SCp.Status != 8) {
|
|
printk( "scsi: <fdomain> target = %d, command = %x, status = %x\n",
|
|
current_SC->device->id,
|
|
current_SC->cmnd[0],
|
|
current_SC->SCp.Status );
|
|
}
|
|
#endif
|
|
break;
|
|
case 0x0a: /* MESSAGE OUT */
|
|
outb(MESSAGE_REJECT, port_base + Write_SCSI_Data); /* Reject */
|
|
break;
|
|
case 0x0e: /* MESSAGE IN */
|
|
current_SC->SCp.Message = inb(port_base + Read_SCSI_Data);
|
|
#if EVERY_ACCESS
|
|
printk( "Message = %x, ", current_SC->SCp.Message );
|
|
#endif
|
|
if (!current_SC->SCp.Message) ++done;
|
|
#if DEBUG_MESSAGES || EVERY_ACCESS
|
|
if (current_SC->SCp.Message) {
|
|
printk( "scsi: <fdomain> message = %x\n",
|
|
current_SC->SCp.Message );
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (chip == tmc1800 && !current_SC->SCp.have_data_in
|
|
&& (current_SC->SCp.sent_command >= current_SC->cmd_len)) {
|
|
|
|
if(current_SC->sc_data_direction == DMA_TO_DEVICE)
|
|
{
|
|
current_SC->SCp.have_data_in = -1;
|
|
outb(0xd0 | PARITY_MASK, port_base + TMC_Cntl);
|
|
}
|
|
else
|
|
{
|
|
current_SC->SCp.have_data_in = 1;
|
|
outb(0x90 | PARITY_MASK, port_base + TMC_Cntl);
|
|
}
|
|
}
|
|
|
|
if (current_SC->SCp.have_data_in == -1) { /* DATA OUT */
|
|
while ((data_count = FIFO_Size - inw(port_base + FIFO_Data_Count)) > 512) {
|
|
#if EVERY_ACCESS
|
|
printk( "DC=%d, ", data_count ) ;
|
|
#endif
|
|
if (data_count > current_SC->SCp.this_residual)
|
|
data_count = current_SC->SCp.this_residual;
|
|
if (data_count > 0) {
|
|
#if EVERY_ACCESS
|
|
printk( "%d OUT, ", data_count );
|
|
#endif
|
|
if (data_count == 1) {
|
|
outb(*current_SC->SCp.ptr++, port_base + Write_FIFO);
|
|
--current_SC->SCp.this_residual;
|
|
} else {
|
|
data_count >>= 1;
|
|
outsw(port_base + Write_FIFO, current_SC->SCp.ptr, data_count);
|
|
current_SC->SCp.ptr += 2 * data_count;
|
|
current_SC->SCp.this_residual -= 2 * data_count;
|
|
}
|
|
}
|
|
if (!current_SC->SCp.this_residual) {
|
|
if (current_SC->SCp.buffers_residual) {
|
|
--current_SC->SCp.buffers_residual;
|
|
++current_SC->SCp.buffer;
|
|
current_SC->SCp.ptr = sg_virt(current_SC->SCp.buffer);
|
|
current_SC->SCp.this_residual = current_SC->SCp.buffer->length;
|
|
} else
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (current_SC->SCp.have_data_in == 1) { /* DATA IN */
|
|
while ((data_count = inw(port_base + FIFO_Data_Count)) > 0) {
|
|
#if EVERY_ACCESS
|
|
printk( "DC=%d, ", data_count );
|
|
#endif
|
|
if (data_count > current_SC->SCp.this_residual)
|
|
data_count = current_SC->SCp.this_residual;
|
|
if (data_count) {
|
|
#if EVERY_ACCESS
|
|
printk( "%d IN, ", data_count );
|
|
#endif
|
|
if (data_count == 1) {
|
|
*current_SC->SCp.ptr++ = inb(port_base + Read_FIFO);
|
|
--current_SC->SCp.this_residual;
|
|
} else {
|
|
data_count >>= 1; /* Number of words */
|
|
insw(port_base + Read_FIFO, current_SC->SCp.ptr, data_count);
|
|
current_SC->SCp.ptr += 2 * data_count;
|
|
current_SC->SCp.this_residual -= 2 * data_count;
|
|
}
|
|
}
|
|
if (!current_SC->SCp.this_residual
|
|
&& current_SC->SCp.buffers_residual) {
|
|
--current_SC->SCp.buffers_residual;
|
|
++current_SC->SCp.buffer;
|
|
current_SC->SCp.ptr = sg_virt(current_SC->SCp.buffer);
|
|
current_SC->SCp.this_residual = current_SC->SCp.buffer->length;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (done) {
|
|
#if EVERY_ACCESS
|
|
printk( " ** IN DONE %d ** ", current_SC->SCp.have_data_in );
|
|
#endif
|
|
|
|
#if ERRORS_ONLY
|
|
if (current_SC->cmnd[0] == REQUEST_SENSE && !current_SC->SCp.Status) {
|
|
char *buf = scsi_sglist(current_SC);
|
|
if ((unsigned char)(*(buf + 2)) & 0x0f) {
|
|
unsigned char key;
|
|
unsigned char code;
|
|
unsigned char qualifier;
|
|
|
|
key = (unsigned char)(*(buf + 2)) & 0x0f;
|
|
code = (unsigned char)(*(buf + 12));
|
|
qualifier = (unsigned char)(*(buf + 13));
|
|
|
|
if (key != UNIT_ATTENTION
|
|
&& !(key == NOT_READY
|
|
&& code == 0x04
|
|
&& (!qualifier || qualifier == 0x02 || qualifier == 0x01))
|
|
&& !(key == ILLEGAL_REQUEST && (code == 0x25
|
|
|| code == 0x24
|
|
|| !code)))
|
|
|
|
printk( "scsi: <fdomain> REQUEST SENSE"
|
|
" Key = %x, Code = %x, Qualifier = %x\n",
|
|
key, code, qualifier );
|
|
}
|
|
}
|
|
#endif
|
|
#if EVERY_ACCESS
|
|
printk( "BEFORE MY_DONE. . ." );
|
|
#endif
|
|
spin_lock_irqsave(current_SC->device->host->host_lock, flags);
|
|
my_done( (current_SC->SCp.Status & 0xff)
|
|
| ((current_SC->SCp.Message & 0xff) << 8) | (DID_OK << 16) );
|
|
spin_unlock_irqrestore(current_SC->device->host->host_lock, flags);
|
|
#if EVERY_ACCESS
|
|
printk( "RETURNING.\n" );
|
|
#endif
|
|
|
|
} else {
|
|
if (current_SC->SCp.phase & disconnect) {
|
|
outb(0xd0 | FIFO_COUNT, port_base + Interrupt_Cntl);
|
|
outb(0x00, port_base + SCSI_Cntl);
|
|
} else {
|
|
outb(0x90 | FIFO_COUNT, port_base + Interrupt_Cntl);
|
|
}
|
|
}
|
|
#if DEBUG_RACE
|
|
in_interrupt_flag = 0;
|
|
#endif
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int fdomain_16x0_queue(struct scsi_cmnd *SCpnt,
|
|
void (*done)(struct scsi_cmnd *))
|
|
{
|
|
if (in_command) {
|
|
panic( "scsi: <fdomain> fdomain_16x0_queue() NOT REENTRANT!\n" );
|
|
}
|
|
#if EVERY_ACCESS
|
|
printk( "queue: target = %d cmnd = 0x%02x pieces = %d size = %u\n",
|
|
SCpnt->target,
|
|
*(unsigned char *)SCpnt->cmnd,
|
|
scsi_sg_count(SCpnt),
|
|
scsi_bufflen(SCpnt));
|
|
#endif
|
|
|
|
fdomain_make_bus_idle();
|
|
|
|
current_SC = SCpnt; /* Save this for the done function */
|
|
current_SC->scsi_done = done;
|
|
|
|
/* Initialize static data */
|
|
|
|
if (scsi_sg_count(current_SC)) {
|
|
current_SC->SCp.buffer = scsi_sglist(current_SC);
|
|
current_SC->SCp.ptr = sg_virt(current_SC->SCp.buffer);
|
|
current_SC->SCp.this_residual = current_SC->SCp.buffer->length;
|
|
current_SC->SCp.buffers_residual = scsi_sg_count(current_SC) - 1;
|
|
} else {
|
|
current_SC->SCp.ptr = NULL;
|
|
current_SC->SCp.this_residual = 0;
|
|
current_SC->SCp.buffer = NULL;
|
|
current_SC->SCp.buffers_residual = 0;
|
|
}
|
|
|
|
current_SC->SCp.Status = 0;
|
|
current_SC->SCp.Message = 0;
|
|
current_SC->SCp.have_data_in = 0;
|
|
current_SC->SCp.sent_command = 0;
|
|
current_SC->SCp.phase = in_arbitration;
|
|
|
|
/* Start arbitration */
|
|
outb(0x00, port_base + Interrupt_Cntl);
|
|
outb(0x00, port_base + SCSI_Cntl); /* Disable data drivers */
|
|
outb(adapter_mask, port_base + SCSI_Data_NoACK); /* Set our id bit */
|
|
++in_command;
|
|
outb(0x20, port_base + Interrupt_Cntl);
|
|
outb(0x14 | PARITY_MASK, port_base + TMC_Cntl); /* Start arbitration */
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if DEBUG_ABORT
|
|
static void print_info(struct scsi_cmnd *SCpnt)
|
|
{
|
|
unsigned int imr;
|
|
unsigned int irr;
|
|
unsigned int isr;
|
|
|
|
if (!SCpnt || !SCpnt->device || !SCpnt->device->host) {
|
|
printk(KERN_WARNING "scsi: <fdomain> Cannot provide detailed information\n");
|
|
return;
|
|
}
|
|
|
|
printk(KERN_INFO "%s\n", fdomain_16x0_info( SCpnt->device->host ) );
|
|
print_banner(SCpnt->device->host);
|
|
switch (SCpnt->SCp.phase) {
|
|
case in_arbitration: printk("arbitration"); break;
|
|
case in_selection: printk("selection"); break;
|
|
case in_other: printk("other"); break;
|
|
default: printk("unknown"); break;
|
|
}
|
|
|
|
printk( " (%d), target = %d cmnd = 0x%02x pieces = %d size = %u\n",
|
|
SCpnt->SCp.phase,
|
|
SCpnt->device->id,
|
|
*(unsigned char *)SCpnt->cmnd,
|
|
scsi_sg_count(SCpnt),
|
|
scsi_bufflen(SCpnt));
|
|
printk( "sent_command = %d, have_data_in = %d, timeout = %d\n",
|
|
SCpnt->SCp.sent_command,
|
|
SCpnt->SCp.have_data_in,
|
|
SCpnt->timeout );
|
|
#if DEBUG_RACE
|
|
printk( "in_interrupt_flag = %d\n", in_interrupt_flag );
|
|
#endif
|
|
|
|
imr = (inb( 0x0a1 ) << 8) + inb( 0x21 );
|
|
outb( 0x0a, 0xa0 );
|
|
irr = inb( 0xa0 ) << 8;
|
|
outb( 0x0a, 0x20 );
|
|
irr += inb( 0x20 );
|
|
outb( 0x0b, 0xa0 );
|
|
isr = inb( 0xa0 ) << 8;
|
|
outb( 0x0b, 0x20 );
|
|
isr += inb( 0x20 );
|
|
|
|
/* Print out interesting information */
|
|
printk( "IMR = 0x%04x", imr );
|
|
if (imr & (1 << interrupt_level))
|
|
printk( " (masked)" );
|
|
printk( ", IRR = 0x%04x, ISR = 0x%04x\n", irr, isr );
|
|
|
|
printk( "SCSI Status = 0x%02x\n", inb(port_base + SCSI_Status));
|
|
printk( "TMC Status = 0x%02x", inb(port_base + TMC_Status));
|
|
if (inb((port_base + TMC_Status) & 1))
|
|
printk( " (interrupt)" );
|
|
printk( "\n" );
|
|
printk("Interrupt Status = 0x%02x", inb(port_base + Interrupt_Status));
|
|
if (inb(port_base + Interrupt_Status) & 0x08)
|
|
printk( " (enabled)" );
|
|
printk( "\n" );
|
|
if (chip == tmc18c50 || chip == tmc18c30) {
|
|
printk("FIFO Status = 0x%02x\n", inb(port_base + FIFO_Status));
|
|
printk( "Int. Condition = 0x%02x\n",
|
|
inb( port_base + Interrupt_Cond ) );
|
|
}
|
|
printk( "Configuration 1 = 0x%02x\n", inb( port_base + Configuration1 ) );
|
|
if (chip == tmc18c50 || chip == tmc18c30)
|
|
printk( "Configuration 2 = 0x%02x\n",
|
|
inb( port_base + Configuration2 ) );
|
|
}
|
|
#endif
|
|
|
|
static int fdomain_16x0_abort(struct scsi_cmnd *SCpnt)
|
|
{
|
|
#if EVERY_ACCESS || ERRORS_ONLY || DEBUG_ABORT
|
|
printk( "scsi: <fdomain> abort " );
|
|
#endif
|
|
|
|
if (!in_command) {
|
|
#if EVERY_ACCESS || ERRORS_ONLY
|
|
printk( " (not in command)\n" );
|
|
#endif
|
|
return FAILED;
|
|
} else printk( "\n" );
|
|
|
|
#if DEBUG_ABORT
|
|
print_info( SCpnt );
|
|
#endif
|
|
|
|
fdomain_make_bus_idle();
|
|
current_SC->SCp.phase |= aborted;
|
|
current_SC->result = DID_ABORT << 16;
|
|
|
|
/* Aborts are not done well. . . */
|
|
my_done(DID_ABORT << 16);
|
|
return SUCCESS;
|
|
}
|
|
|
|
int fdomain_16x0_bus_reset(struct scsi_cmnd *SCpnt)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
outb(1, port_base + SCSI_Cntl);
|
|
do_pause( 2 );
|
|
outb(0, port_base + SCSI_Cntl);
|
|
do_pause( 115 );
|
|
outb(0, port_base + SCSI_Mode_Cntl);
|
|
outb(PARITY_MASK, port_base + TMC_Cntl);
|
|
|
|
local_irq_restore(flags);
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int fdomain_16x0_biosparam(struct scsi_device *sdev,
|
|
struct block_device *bdev,
|
|
sector_t capacity, int *info_array)
|
|
{
|
|
int drive;
|
|
int size = capacity;
|
|
unsigned long offset;
|
|
struct drive_info {
|
|
unsigned short cylinders;
|
|
unsigned char heads;
|
|
unsigned char sectors;
|
|
} i;
|
|
|
|
/* NOTES:
|
|
The RAM area starts at 0x1f00 from the bios_base address.
|
|
|
|
For BIOS Version 2.0:
|
|
|
|
The drive parameter table seems to start at 0x1f30.
|
|
The first byte's purpose is not known.
|
|
Next is the cylinder, head, and sector information.
|
|
The last 4 bytes appear to be the drive's size in sectors.
|
|
The other bytes in the drive parameter table are unknown.
|
|
If anyone figures them out, please send me mail, and I will
|
|
update these notes.
|
|
|
|
Tape drives do not get placed in this table.
|
|
|
|
There is another table at 0x1fea:
|
|
If the byte is 0x01, then the SCSI ID is not in use.
|
|
If the byte is 0x18 or 0x48, then the SCSI ID is in use,
|
|
although tapes don't seem to be in this table. I haven't
|
|
seen any other numbers (in a limited sample).
|
|
|
|
0x1f2d is a drive count (i.e., not including tapes)
|
|
|
|
The table at 0x1fcc are I/O ports addresses for the various
|
|
operations. I calculate these by hand in this driver code.
|
|
|
|
|
|
|
|
For the ISA-200S version of BIOS Version 2.0:
|
|
|
|
The drive parameter table starts at 0x1f33.
|
|
|
|
WARNING: Assume that the table entry is 25 bytes long. Someone needs
|
|
to check this for the Quantum ISA-200S card.
|
|
|
|
|
|
|
|
For BIOS Version 3.2:
|
|
|
|
The drive parameter table starts at 0x1f70. Each entry is
|
|
0x0a bytes long. Heads are one less than we need to report.
|
|
*/
|
|
|
|
if (MAJOR(bdev->bd_dev) != SCSI_DISK0_MAJOR) {
|
|
printk("scsi: <fdomain> fdomain_16x0_biosparam: too many disks");
|
|
return 0;
|
|
}
|
|
drive = MINOR(bdev->bd_dev) >> 4;
|
|
|
|
if (bios_major == 2) {
|
|
switch (Quantum) {
|
|
case 2: /* ISA_200S */
|
|
/* The value of 25 has never been verified.
|
|
It should probably be 15. */
|
|
offset = 0x1f33 + drive * 25;
|
|
break;
|
|
case 3: /* ISA_250MG */
|
|
offset = 0x1f36 + drive * 15;
|
|
break;
|
|
case 4: /* ISA_200S (another one) */
|
|
offset = 0x1f34 + drive * 15;
|
|
break;
|
|
default:
|
|
offset = 0x1f31 + drive * 25;
|
|
break;
|
|
}
|
|
memcpy_fromio( &i, bios_mem + offset, sizeof( struct drive_info ) );
|
|
info_array[0] = i.heads;
|
|
info_array[1] = i.sectors;
|
|
info_array[2] = i.cylinders;
|
|
} else if (bios_major == 3
|
|
&& bios_minor >= 0
|
|
&& bios_minor < 4) { /* 3.0 and 3.2 BIOS */
|
|
memcpy_fromio( &i, bios_mem + 0x1f71 + drive * 10,
|
|
sizeof( struct drive_info ) );
|
|
info_array[0] = i.heads + 1;
|
|
info_array[1] = i.sectors;
|
|
info_array[2] = i.cylinders;
|
|
} else { /* 3.4 BIOS (and up?) */
|
|
/* This algorithm was provided by Future Domain (much thanks!). */
|
|
unsigned char *p = scsi_bios_ptable(bdev);
|
|
|
|
if (p && p[65] == 0xaa && p[64] == 0x55 /* Partition table valid */
|
|
&& p[4]) { /* Partition type */
|
|
|
|
/* The partition table layout is as follows:
|
|
|
|
Start: 0x1b3h
|
|
Offset: 0 = partition status
|
|
1 = starting head
|
|
2 = starting sector and cylinder (word, encoded)
|
|
4 = partition type
|
|
5 = ending head
|
|
6 = ending sector and cylinder (word, encoded)
|
|
8 = starting absolute sector (double word)
|
|
c = number of sectors (double word)
|
|
Signature: 0x1fe = 0x55aa
|
|
|
|
So, this algorithm assumes:
|
|
1) the first partition table is in use,
|
|
2) the data in the first entry is correct, and
|
|
3) partitions never divide cylinders
|
|
|
|
Note that (1) may be FALSE for NetBSD (and other BSD flavors),
|
|
as well as for Linux. Note also, that Linux doesn't pay any
|
|
attention to the fields that are used by this algorithm -- it
|
|
only uses the absolute sector data. Recent versions of Linux's
|
|
fdisk(1) will fill this data in correctly, and forthcoming
|
|
versions will check for consistency.
|
|
|
|
Checking for a non-zero partition type is not part of the
|
|
Future Domain algorithm, but it seemed to be a reasonable thing
|
|
to do, especially in the Linux and BSD worlds. */
|
|
|
|
info_array[0] = p[5] + 1; /* heads */
|
|
info_array[1] = p[6] & 0x3f; /* sectors */
|
|
} else {
|
|
|
|
/* Note that this new method guarantees that there will always be
|
|
less than 1024 cylinders on a platter. This is good for drives
|
|
up to approximately 7.85GB (where 1GB = 1024 * 1024 kB). */
|
|
|
|
if ((unsigned int)size >= 0x7e0000U) {
|
|
info_array[0] = 0xff; /* heads = 255 */
|
|
info_array[1] = 0x3f; /* sectors = 63 */
|
|
} else if ((unsigned int)size >= 0x200000U) {
|
|
info_array[0] = 0x80; /* heads = 128 */
|
|
info_array[1] = 0x3f; /* sectors = 63 */
|
|
} else {
|
|
info_array[0] = 0x40; /* heads = 64 */
|
|
info_array[1] = 0x20; /* sectors = 32 */
|
|
}
|
|
}
|
|
/* For both methods, compute the cylinders */
|
|
info_array[2] = (unsigned int)size / (info_array[0] * info_array[1] );
|
|
kfree(p);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fdomain_16x0_release(struct Scsi_Host *shpnt)
|
|
{
|
|
if (shpnt->irq)
|
|
free_irq(shpnt->irq, shpnt);
|
|
if (shpnt->io_port && shpnt->n_io_port)
|
|
release_region(shpnt->io_port, shpnt->n_io_port);
|
|
if (PCI_bus)
|
|
pci_dev_put(PCI_dev);
|
|
return 0;
|
|
}
|
|
|
|
struct scsi_host_template fdomain_driver_template = {
|
|
.module = THIS_MODULE,
|
|
.name = "fdomain",
|
|
.proc_name = "fdomain",
|
|
.detect = fdomain_16x0_detect,
|
|
.info = fdomain_16x0_info,
|
|
.queuecommand = fdomain_16x0_queue,
|
|
.eh_abort_handler = fdomain_16x0_abort,
|
|
.eh_bus_reset_handler = fdomain_16x0_bus_reset,
|
|
.bios_param = fdomain_16x0_biosparam,
|
|
.release = fdomain_16x0_release,
|
|
.can_queue = 1,
|
|
.this_id = 6,
|
|
.sg_tablesize = 64,
|
|
.cmd_per_lun = 1,
|
|
.use_clustering = DISABLE_CLUSTERING,
|
|
};
|
|
|
|
#ifndef PCMCIA
|
|
#ifdef CONFIG_PCI
|
|
|
|
static struct pci_device_id fdomain_pci_tbl[] __devinitdata = {
|
|
{ PCI_VENDOR_ID_FD, PCI_DEVICE_ID_FD_36C70,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, fdomain_pci_tbl);
|
|
#endif
|
|
#define driver_template fdomain_driver_template
|
|
#include "scsi_module.c"
|
|
|
|
#endif
|