mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 09:07:04 +07:00
dc0b177cf8
Parameter 'xhci' is no longer be used in function xhci_handshake(), just remove it. Signed-off-by: Lin Wang <lin.x.wang@intel.com> Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
3952 lines
120 KiB
C
3952 lines
120 KiB
C
/*
|
|
* xHCI host controller driver
|
|
*
|
|
* Copyright (C) 2008 Intel Corp.
|
|
*
|
|
* Author: Sarah Sharp
|
|
* Some code borrowed from the Linux EHCI driver.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
/*
|
|
* Ring initialization rules:
|
|
* 1. Each segment is initialized to zero, except for link TRBs.
|
|
* 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
|
|
* Consumer Cycle State (CCS), depending on ring function.
|
|
* 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
|
|
*
|
|
* Ring behavior rules:
|
|
* 1. A ring is empty if enqueue == dequeue. This means there will always be at
|
|
* least one free TRB in the ring. This is useful if you want to turn that
|
|
* into a link TRB and expand the ring.
|
|
* 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
|
|
* link TRB, then load the pointer with the address in the link TRB. If the
|
|
* link TRB had its toggle bit set, you may need to update the ring cycle
|
|
* state (see cycle bit rules). You may have to do this multiple times
|
|
* until you reach a non-link TRB.
|
|
* 3. A ring is full if enqueue++ (for the definition of increment above)
|
|
* equals the dequeue pointer.
|
|
*
|
|
* Cycle bit rules:
|
|
* 1. When a consumer increments a dequeue pointer and encounters a toggle bit
|
|
* in a link TRB, it must toggle the ring cycle state.
|
|
* 2. When a producer increments an enqueue pointer and encounters a toggle bit
|
|
* in a link TRB, it must toggle the ring cycle state.
|
|
*
|
|
* Producer rules:
|
|
* 1. Check if ring is full before you enqueue.
|
|
* 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
|
|
* Update enqueue pointer between each write (which may update the ring
|
|
* cycle state).
|
|
* 3. Notify consumer. If SW is producer, it rings the doorbell for command
|
|
* and endpoint rings. If HC is the producer for the event ring,
|
|
* and it generates an interrupt according to interrupt modulation rules.
|
|
*
|
|
* Consumer rules:
|
|
* 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
|
|
* the TRB is owned by the consumer.
|
|
* 2. Update dequeue pointer (which may update the ring cycle state) and
|
|
* continue processing TRBs until you reach a TRB which is not owned by you.
|
|
* 3. Notify the producer. SW is the consumer for the event ring, and it
|
|
* updates event ring dequeue pointer. HC is the consumer for the command and
|
|
* endpoint rings; it generates events on the event ring for these.
|
|
*/
|
|
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/slab.h>
|
|
#include "xhci.h"
|
|
#include "xhci-trace.h"
|
|
|
|
/*
|
|
* Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
|
|
* address of the TRB.
|
|
*/
|
|
dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
|
|
union xhci_trb *trb)
|
|
{
|
|
unsigned long segment_offset;
|
|
|
|
if (!seg || !trb || trb < seg->trbs)
|
|
return 0;
|
|
/* offset in TRBs */
|
|
segment_offset = trb - seg->trbs;
|
|
if (segment_offset > TRBS_PER_SEGMENT)
|
|
return 0;
|
|
return seg->dma + (segment_offset * sizeof(*trb));
|
|
}
|
|
|
|
/* Does this link TRB point to the first segment in a ring,
|
|
* or was the previous TRB the last TRB on the last segment in the ERST?
|
|
*/
|
|
static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
|
|
struct xhci_segment *seg, union xhci_trb *trb)
|
|
{
|
|
if (ring == xhci->event_ring)
|
|
return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
|
|
(seg->next == xhci->event_ring->first_seg);
|
|
else
|
|
return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
|
|
}
|
|
|
|
/* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
|
|
* segment? I.e. would the updated event TRB pointer step off the end of the
|
|
* event seg?
|
|
*/
|
|
static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
|
|
struct xhci_segment *seg, union xhci_trb *trb)
|
|
{
|
|
if (ring == xhci->event_ring)
|
|
return trb == &seg->trbs[TRBS_PER_SEGMENT];
|
|
else
|
|
return TRB_TYPE_LINK_LE32(trb->link.control);
|
|
}
|
|
|
|
static int enqueue_is_link_trb(struct xhci_ring *ring)
|
|
{
|
|
struct xhci_link_trb *link = &ring->enqueue->link;
|
|
return TRB_TYPE_LINK_LE32(link->control);
|
|
}
|
|
|
|
/* Updates trb to point to the next TRB in the ring, and updates seg if the next
|
|
* TRB is in a new segment. This does not skip over link TRBs, and it does not
|
|
* effect the ring dequeue or enqueue pointers.
|
|
*/
|
|
static void next_trb(struct xhci_hcd *xhci,
|
|
struct xhci_ring *ring,
|
|
struct xhci_segment **seg,
|
|
union xhci_trb **trb)
|
|
{
|
|
if (last_trb(xhci, ring, *seg, *trb)) {
|
|
*seg = (*seg)->next;
|
|
*trb = ((*seg)->trbs);
|
|
} else {
|
|
(*trb)++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See Cycle bit rules. SW is the consumer for the event ring only.
|
|
* Don't make a ring full of link TRBs. That would be dumb and this would loop.
|
|
*/
|
|
static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
|
|
{
|
|
ring->deq_updates++;
|
|
|
|
/*
|
|
* If this is not event ring, and the dequeue pointer
|
|
* is not on a link TRB, there is one more usable TRB
|
|
*/
|
|
if (ring->type != TYPE_EVENT &&
|
|
!last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
|
|
ring->num_trbs_free++;
|
|
|
|
do {
|
|
/*
|
|
* Update the dequeue pointer further if that was a link TRB or
|
|
* we're at the end of an event ring segment (which doesn't have
|
|
* link TRBS)
|
|
*/
|
|
if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
|
|
if (ring->type == TYPE_EVENT &&
|
|
last_trb_on_last_seg(xhci, ring,
|
|
ring->deq_seg, ring->dequeue)) {
|
|
ring->cycle_state ^= 1;
|
|
}
|
|
ring->deq_seg = ring->deq_seg->next;
|
|
ring->dequeue = ring->deq_seg->trbs;
|
|
} else {
|
|
ring->dequeue++;
|
|
}
|
|
} while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
|
|
}
|
|
|
|
/*
|
|
* See Cycle bit rules. SW is the consumer for the event ring only.
|
|
* Don't make a ring full of link TRBs. That would be dumb and this would loop.
|
|
*
|
|
* If we've just enqueued a TRB that is in the middle of a TD (meaning the
|
|
* chain bit is set), then set the chain bit in all the following link TRBs.
|
|
* If we've enqueued the last TRB in a TD, make sure the following link TRBs
|
|
* have their chain bit cleared (so that each Link TRB is a separate TD).
|
|
*
|
|
* Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
|
|
* set, but other sections talk about dealing with the chain bit set. This was
|
|
* fixed in the 0.96 specification errata, but we have to assume that all 0.95
|
|
* xHCI hardware can't handle the chain bit being cleared on a link TRB.
|
|
*
|
|
* @more_trbs_coming: Will you enqueue more TRBs before calling
|
|
* prepare_transfer()?
|
|
*/
|
|
static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
|
|
bool more_trbs_coming)
|
|
{
|
|
u32 chain;
|
|
union xhci_trb *next;
|
|
|
|
chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
|
|
/* If this is not event ring, there is one less usable TRB */
|
|
if (ring->type != TYPE_EVENT &&
|
|
!last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
|
|
ring->num_trbs_free--;
|
|
next = ++(ring->enqueue);
|
|
|
|
ring->enq_updates++;
|
|
/* Update the dequeue pointer further if that was a link TRB or we're at
|
|
* the end of an event ring segment (which doesn't have link TRBS)
|
|
*/
|
|
while (last_trb(xhci, ring, ring->enq_seg, next)) {
|
|
if (ring->type != TYPE_EVENT) {
|
|
/*
|
|
* If the caller doesn't plan on enqueueing more
|
|
* TDs before ringing the doorbell, then we
|
|
* don't want to give the link TRB to the
|
|
* hardware just yet. We'll give the link TRB
|
|
* back in prepare_ring() just before we enqueue
|
|
* the TD at the top of the ring.
|
|
*/
|
|
if (!chain && !more_trbs_coming)
|
|
break;
|
|
|
|
/* If we're not dealing with 0.95 hardware or
|
|
* isoc rings on AMD 0.96 host,
|
|
* carry over the chain bit of the previous TRB
|
|
* (which may mean the chain bit is cleared).
|
|
*/
|
|
if (!(ring->type == TYPE_ISOC &&
|
|
(xhci->quirks & XHCI_AMD_0x96_HOST))
|
|
&& !xhci_link_trb_quirk(xhci)) {
|
|
next->link.control &=
|
|
cpu_to_le32(~TRB_CHAIN);
|
|
next->link.control |=
|
|
cpu_to_le32(chain);
|
|
}
|
|
/* Give this link TRB to the hardware */
|
|
wmb();
|
|
next->link.control ^= cpu_to_le32(TRB_CYCLE);
|
|
|
|
/* Toggle the cycle bit after the last ring segment. */
|
|
if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
|
|
ring->cycle_state = (ring->cycle_state ? 0 : 1);
|
|
}
|
|
}
|
|
ring->enq_seg = ring->enq_seg->next;
|
|
ring->enqueue = ring->enq_seg->trbs;
|
|
next = ring->enqueue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if there's room to enqueue num_trbs on the ring and make sure
|
|
* enqueue pointer will not advance into dequeue segment. See rules above.
|
|
*/
|
|
static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
|
|
unsigned int num_trbs)
|
|
{
|
|
int num_trbs_in_deq_seg;
|
|
|
|
if (ring->num_trbs_free < num_trbs)
|
|
return 0;
|
|
|
|
if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
|
|
num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
|
|
if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Ring the host controller doorbell after placing a command on the ring */
|
|
void xhci_ring_cmd_db(struct xhci_hcd *xhci)
|
|
{
|
|
if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
|
|
return;
|
|
|
|
xhci_dbg(xhci, "// Ding dong!\n");
|
|
writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
|
|
/* Flush PCI posted writes */
|
|
readl(&xhci->dba->doorbell[0]);
|
|
}
|
|
|
|
static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
|
|
{
|
|
u64 temp_64;
|
|
int ret;
|
|
|
|
xhci_dbg(xhci, "Abort command ring\n");
|
|
|
|
temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
|
|
xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
|
|
xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
|
|
&xhci->op_regs->cmd_ring);
|
|
|
|
/* Section 4.6.1.2 of xHCI 1.0 spec says software should
|
|
* time the completion od all xHCI commands, including
|
|
* the Command Abort operation. If software doesn't see
|
|
* CRR negated in a timely manner (e.g. longer than 5
|
|
* seconds), then it should assume that the there are
|
|
* larger problems with the xHC and assert HCRST.
|
|
*/
|
|
ret = xhci_handshake(&xhci->op_regs->cmd_ring,
|
|
CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
|
|
if (ret < 0) {
|
|
xhci_err(xhci, "Stopped the command ring failed, "
|
|
"maybe the host is dead\n");
|
|
xhci->xhc_state |= XHCI_STATE_DYING;
|
|
xhci_quiesce(xhci);
|
|
xhci_halt(xhci);
|
|
return -ESHUTDOWN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
|
|
unsigned int slot_id,
|
|
unsigned int ep_index,
|
|
unsigned int stream_id)
|
|
{
|
|
__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
|
|
struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
|
|
unsigned int ep_state = ep->ep_state;
|
|
|
|
/* Don't ring the doorbell for this endpoint if there are pending
|
|
* cancellations because we don't want to interrupt processing.
|
|
* We don't want to restart any stream rings if there's a set dequeue
|
|
* pointer command pending because the device can choose to start any
|
|
* stream once the endpoint is on the HW schedule.
|
|
*/
|
|
if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
|
|
(ep_state & EP_HALTED))
|
|
return;
|
|
writel(DB_VALUE(ep_index, stream_id), db_addr);
|
|
/* The CPU has better things to do at this point than wait for a
|
|
* write-posting flush. It'll get there soon enough.
|
|
*/
|
|
}
|
|
|
|
/* Ring the doorbell for any rings with pending URBs */
|
|
static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
|
|
unsigned int slot_id,
|
|
unsigned int ep_index)
|
|
{
|
|
unsigned int stream_id;
|
|
struct xhci_virt_ep *ep;
|
|
|
|
ep = &xhci->devs[slot_id]->eps[ep_index];
|
|
|
|
/* A ring has pending URBs if its TD list is not empty */
|
|
if (!(ep->ep_state & EP_HAS_STREAMS)) {
|
|
if (ep->ring && !(list_empty(&ep->ring->td_list)))
|
|
xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
|
|
return;
|
|
}
|
|
|
|
for (stream_id = 1; stream_id < ep->stream_info->num_streams;
|
|
stream_id++) {
|
|
struct xhci_stream_info *stream_info = ep->stream_info;
|
|
if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
|
|
xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
|
|
stream_id);
|
|
}
|
|
}
|
|
|
|
static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
|
|
unsigned int slot_id, unsigned int ep_index,
|
|
unsigned int stream_id)
|
|
{
|
|
struct xhci_virt_ep *ep;
|
|
|
|
ep = &xhci->devs[slot_id]->eps[ep_index];
|
|
/* Common case: no streams */
|
|
if (!(ep->ep_state & EP_HAS_STREAMS))
|
|
return ep->ring;
|
|
|
|
if (stream_id == 0) {
|
|
xhci_warn(xhci,
|
|
"WARN: Slot ID %u, ep index %u has streams, "
|
|
"but URB has no stream ID.\n",
|
|
slot_id, ep_index);
|
|
return NULL;
|
|
}
|
|
|
|
if (stream_id < ep->stream_info->num_streams)
|
|
return ep->stream_info->stream_rings[stream_id];
|
|
|
|
xhci_warn(xhci,
|
|
"WARN: Slot ID %u, ep index %u has "
|
|
"stream IDs 1 to %u allocated, "
|
|
"but stream ID %u is requested.\n",
|
|
slot_id, ep_index,
|
|
ep->stream_info->num_streams - 1,
|
|
stream_id);
|
|
return NULL;
|
|
}
|
|
|
|
/* Get the right ring for the given URB.
|
|
* If the endpoint supports streams, boundary check the URB's stream ID.
|
|
* If the endpoint doesn't support streams, return the singular endpoint ring.
|
|
*/
|
|
static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
|
|
struct urb *urb)
|
|
{
|
|
return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
|
|
xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
|
|
}
|
|
|
|
/*
|
|
* Move the xHC's endpoint ring dequeue pointer past cur_td.
|
|
* Record the new state of the xHC's endpoint ring dequeue segment,
|
|
* dequeue pointer, and new consumer cycle state in state.
|
|
* Update our internal representation of the ring's dequeue pointer.
|
|
*
|
|
* We do this in three jumps:
|
|
* - First we update our new ring state to be the same as when the xHC stopped.
|
|
* - Then we traverse the ring to find the segment that contains
|
|
* the last TRB in the TD. We toggle the xHC's new cycle state when we pass
|
|
* any link TRBs with the toggle cycle bit set.
|
|
* - Finally we move the dequeue state one TRB further, toggling the cycle bit
|
|
* if we've moved it past a link TRB with the toggle cycle bit set.
|
|
*
|
|
* Some of the uses of xhci_generic_trb are grotty, but if they're done
|
|
* with correct __le32 accesses they should work fine. Only users of this are
|
|
* in here.
|
|
*/
|
|
void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
|
|
unsigned int slot_id, unsigned int ep_index,
|
|
unsigned int stream_id, struct xhci_td *cur_td,
|
|
struct xhci_dequeue_state *state)
|
|
{
|
|
struct xhci_virt_device *dev = xhci->devs[slot_id];
|
|
struct xhci_virt_ep *ep = &dev->eps[ep_index];
|
|
struct xhci_ring *ep_ring;
|
|
struct xhci_segment *new_seg;
|
|
union xhci_trb *new_deq;
|
|
dma_addr_t addr;
|
|
u64 hw_dequeue;
|
|
bool cycle_found = false;
|
|
bool td_last_trb_found = false;
|
|
|
|
ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
|
|
ep_index, stream_id);
|
|
if (!ep_ring) {
|
|
xhci_warn(xhci, "WARN can't find new dequeue state "
|
|
"for invalid stream ID %u.\n",
|
|
stream_id);
|
|
return;
|
|
}
|
|
|
|
/* Dig out the cycle state saved by the xHC during the stop ep cmd */
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Finding endpoint context");
|
|
/* 4.6.9 the css flag is written to the stream context for streams */
|
|
if (ep->ep_state & EP_HAS_STREAMS) {
|
|
struct xhci_stream_ctx *ctx =
|
|
&ep->stream_info->stream_ctx_array[stream_id];
|
|
hw_dequeue = le64_to_cpu(ctx->stream_ring);
|
|
} else {
|
|
struct xhci_ep_ctx *ep_ctx
|
|
= xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
|
|
hw_dequeue = le64_to_cpu(ep_ctx->deq);
|
|
}
|
|
|
|
new_seg = ep_ring->deq_seg;
|
|
new_deq = ep_ring->dequeue;
|
|
state->new_cycle_state = hw_dequeue & 0x1;
|
|
|
|
/*
|
|
* We want to find the pointer, segment and cycle state of the new trb
|
|
* (the one after current TD's last_trb). We know the cycle state at
|
|
* hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
|
|
* found.
|
|
*/
|
|
do {
|
|
if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
|
|
== (dma_addr_t)(hw_dequeue & ~0xf)) {
|
|
cycle_found = true;
|
|
if (td_last_trb_found)
|
|
break;
|
|
}
|
|
if (new_deq == cur_td->last_trb)
|
|
td_last_trb_found = true;
|
|
|
|
if (cycle_found &&
|
|
TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) &&
|
|
new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE))
|
|
state->new_cycle_state ^= 0x1;
|
|
|
|
next_trb(xhci, ep_ring, &new_seg, &new_deq);
|
|
|
|
/* Search wrapped around, bail out */
|
|
if (new_deq == ep->ring->dequeue) {
|
|
xhci_err(xhci, "Error: Failed finding new dequeue state\n");
|
|
state->new_deq_seg = NULL;
|
|
state->new_deq_ptr = NULL;
|
|
return;
|
|
}
|
|
|
|
} while (!cycle_found || !td_last_trb_found);
|
|
|
|
state->new_deq_seg = new_seg;
|
|
state->new_deq_ptr = new_deq;
|
|
|
|
/* Don't update the ring cycle state for the producer (us). */
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Cycle state = 0x%x", state->new_cycle_state);
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"New dequeue segment = %p (virtual)",
|
|
state->new_deq_seg);
|
|
addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"New dequeue pointer = 0x%llx (DMA)",
|
|
(unsigned long long) addr);
|
|
}
|
|
|
|
/* flip_cycle means flip the cycle bit of all but the first and last TRB.
|
|
* (The last TRB actually points to the ring enqueue pointer, which is not part
|
|
* of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
|
|
*/
|
|
static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
|
|
struct xhci_td *cur_td, bool flip_cycle)
|
|
{
|
|
struct xhci_segment *cur_seg;
|
|
union xhci_trb *cur_trb;
|
|
|
|
for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
|
|
true;
|
|
next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
|
|
if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
|
|
/* Unchain any chained Link TRBs, but
|
|
* leave the pointers intact.
|
|
*/
|
|
cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
|
|
/* Flip the cycle bit (link TRBs can't be the first
|
|
* or last TRB).
|
|
*/
|
|
if (flip_cycle)
|
|
cur_trb->generic.field[3] ^=
|
|
cpu_to_le32(TRB_CYCLE);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Cancel (unchain) link TRB");
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Address = %p (0x%llx dma); "
|
|
"in seg %p (0x%llx dma)",
|
|
cur_trb,
|
|
(unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
|
|
cur_seg,
|
|
(unsigned long long)cur_seg->dma);
|
|
} else {
|
|
cur_trb->generic.field[0] = 0;
|
|
cur_trb->generic.field[1] = 0;
|
|
cur_trb->generic.field[2] = 0;
|
|
/* Preserve only the cycle bit of this TRB */
|
|
cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
|
|
/* Flip the cycle bit except on the first or last TRB */
|
|
if (flip_cycle && cur_trb != cur_td->first_trb &&
|
|
cur_trb != cur_td->last_trb)
|
|
cur_trb->generic.field[3] ^=
|
|
cpu_to_le32(TRB_CYCLE);
|
|
cur_trb->generic.field[3] |= cpu_to_le32(
|
|
TRB_TYPE(TRB_TR_NOOP));
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"TRB to noop at offset 0x%llx",
|
|
(unsigned long long)
|
|
xhci_trb_virt_to_dma(cur_seg, cur_trb));
|
|
}
|
|
if (cur_trb == cur_td->last_trb)
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
|
|
struct xhci_virt_ep *ep)
|
|
{
|
|
ep->ep_state &= ~EP_HALT_PENDING;
|
|
/* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
|
|
* timer is running on another CPU, we don't decrement stop_cmds_pending
|
|
* (since we didn't successfully stop the watchdog timer).
|
|
*/
|
|
if (del_timer(&ep->stop_cmd_timer))
|
|
ep->stop_cmds_pending--;
|
|
}
|
|
|
|
/* Must be called with xhci->lock held in interrupt context */
|
|
static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
|
|
struct xhci_td *cur_td, int status)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
struct urb *urb;
|
|
struct urb_priv *urb_priv;
|
|
|
|
urb = cur_td->urb;
|
|
urb_priv = urb->hcpriv;
|
|
urb_priv->td_cnt++;
|
|
hcd = bus_to_hcd(urb->dev->bus);
|
|
|
|
/* Only giveback urb when this is the last td in urb */
|
|
if (urb_priv->td_cnt == urb_priv->length) {
|
|
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
|
|
if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
|
|
if (xhci->quirks & XHCI_AMD_PLL_FIX)
|
|
usb_amd_quirk_pll_enable();
|
|
}
|
|
}
|
|
usb_hcd_unlink_urb_from_ep(hcd, urb);
|
|
|
|
spin_unlock(&xhci->lock);
|
|
usb_hcd_giveback_urb(hcd, urb, status);
|
|
xhci_urb_free_priv(xhci, urb_priv);
|
|
spin_lock(&xhci->lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When we get a command completion for a Stop Endpoint Command, we need to
|
|
* unlink any cancelled TDs from the ring. There are two ways to do that:
|
|
*
|
|
* 1. If the HW was in the middle of processing the TD that needs to be
|
|
* cancelled, then we must move the ring's dequeue pointer past the last TRB
|
|
* in the TD with a Set Dequeue Pointer Command.
|
|
* 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
|
|
* bit cleared) so that the HW will skip over them.
|
|
*/
|
|
static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
|
|
union xhci_trb *trb, struct xhci_event_cmd *event)
|
|
{
|
|
unsigned int ep_index;
|
|
struct xhci_ring *ep_ring;
|
|
struct xhci_virt_ep *ep;
|
|
struct list_head *entry;
|
|
struct xhci_td *cur_td = NULL;
|
|
struct xhci_td *last_unlinked_td;
|
|
|
|
struct xhci_dequeue_state deq_state;
|
|
|
|
if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
|
|
if (!xhci->devs[slot_id])
|
|
xhci_warn(xhci, "Stop endpoint command "
|
|
"completion for disabled slot %u\n",
|
|
slot_id);
|
|
return;
|
|
}
|
|
|
|
memset(&deq_state, 0, sizeof(deq_state));
|
|
ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
|
|
ep = &xhci->devs[slot_id]->eps[ep_index];
|
|
|
|
if (list_empty(&ep->cancelled_td_list)) {
|
|
xhci_stop_watchdog_timer_in_irq(xhci, ep);
|
|
ep->stopped_td = NULL;
|
|
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
|
|
return;
|
|
}
|
|
|
|
/* Fix up the ep ring first, so HW stops executing cancelled TDs.
|
|
* We have the xHCI lock, so nothing can modify this list until we drop
|
|
* it. We're also in the event handler, so we can't get re-interrupted
|
|
* if another Stop Endpoint command completes
|
|
*/
|
|
list_for_each(entry, &ep->cancelled_td_list) {
|
|
cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Removing canceled TD starting at 0x%llx (dma).",
|
|
(unsigned long long)xhci_trb_virt_to_dma(
|
|
cur_td->start_seg, cur_td->first_trb));
|
|
ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
|
|
if (!ep_ring) {
|
|
/* This shouldn't happen unless a driver is mucking
|
|
* with the stream ID after submission. This will
|
|
* leave the TD on the hardware ring, and the hardware
|
|
* will try to execute it, and may access a buffer
|
|
* that has already been freed. In the best case, the
|
|
* hardware will execute it, and the event handler will
|
|
* ignore the completion event for that TD, since it was
|
|
* removed from the td_list for that endpoint. In
|
|
* short, don't muck with the stream ID after
|
|
* submission.
|
|
*/
|
|
xhci_warn(xhci, "WARN Cancelled URB %p "
|
|
"has invalid stream ID %u.\n",
|
|
cur_td->urb,
|
|
cur_td->urb->stream_id);
|
|
goto remove_finished_td;
|
|
}
|
|
/*
|
|
* If we stopped on the TD we need to cancel, then we have to
|
|
* move the xHC endpoint ring dequeue pointer past this TD.
|
|
*/
|
|
if (cur_td == ep->stopped_td)
|
|
xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
|
|
cur_td->urb->stream_id,
|
|
cur_td, &deq_state);
|
|
else
|
|
td_to_noop(xhci, ep_ring, cur_td, false);
|
|
remove_finished_td:
|
|
/*
|
|
* The event handler won't see a completion for this TD anymore,
|
|
* so remove it from the endpoint ring's TD list. Keep it in
|
|
* the cancelled TD list for URB completion later.
|
|
*/
|
|
list_del_init(&cur_td->td_list);
|
|
}
|
|
last_unlinked_td = cur_td;
|
|
xhci_stop_watchdog_timer_in_irq(xhci, ep);
|
|
|
|
/* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
|
|
if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
|
|
xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
|
|
ep->stopped_td->urb->stream_id, &deq_state);
|
|
xhci_ring_cmd_db(xhci);
|
|
} else {
|
|
/* Otherwise ring the doorbell(s) to restart queued transfers */
|
|
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
|
|
}
|
|
|
|
ep->stopped_td = NULL;
|
|
|
|
/*
|
|
* Drop the lock and complete the URBs in the cancelled TD list.
|
|
* New TDs to be cancelled might be added to the end of the list before
|
|
* we can complete all the URBs for the TDs we already unlinked.
|
|
* So stop when we've completed the URB for the last TD we unlinked.
|
|
*/
|
|
do {
|
|
cur_td = list_entry(ep->cancelled_td_list.next,
|
|
struct xhci_td, cancelled_td_list);
|
|
list_del_init(&cur_td->cancelled_td_list);
|
|
|
|
/* Clean up the cancelled URB */
|
|
/* Doesn't matter what we pass for status, since the core will
|
|
* just overwrite it (because the URB has been unlinked).
|
|
*/
|
|
xhci_giveback_urb_in_irq(xhci, cur_td, 0);
|
|
|
|
/* Stop processing the cancelled list if the watchdog timer is
|
|
* running.
|
|
*/
|
|
if (xhci->xhc_state & XHCI_STATE_DYING)
|
|
return;
|
|
} while (cur_td != last_unlinked_td);
|
|
|
|
/* Return to the event handler with xhci->lock re-acquired */
|
|
}
|
|
|
|
static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
|
|
{
|
|
struct xhci_td *cur_td;
|
|
|
|
while (!list_empty(&ring->td_list)) {
|
|
cur_td = list_first_entry(&ring->td_list,
|
|
struct xhci_td, td_list);
|
|
list_del_init(&cur_td->td_list);
|
|
if (!list_empty(&cur_td->cancelled_td_list))
|
|
list_del_init(&cur_td->cancelled_td_list);
|
|
xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
|
|
}
|
|
}
|
|
|
|
static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
|
|
int slot_id, int ep_index)
|
|
{
|
|
struct xhci_td *cur_td;
|
|
struct xhci_virt_ep *ep;
|
|
struct xhci_ring *ring;
|
|
|
|
ep = &xhci->devs[slot_id]->eps[ep_index];
|
|
if ((ep->ep_state & EP_HAS_STREAMS) ||
|
|
(ep->ep_state & EP_GETTING_NO_STREAMS)) {
|
|
int stream_id;
|
|
|
|
for (stream_id = 0; stream_id < ep->stream_info->num_streams;
|
|
stream_id++) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Killing URBs for slot ID %u, ep index %u, stream %u",
|
|
slot_id, ep_index, stream_id + 1);
|
|
xhci_kill_ring_urbs(xhci,
|
|
ep->stream_info->stream_rings[stream_id]);
|
|
}
|
|
} else {
|
|
ring = ep->ring;
|
|
if (!ring)
|
|
return;
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Killing URBs for slot ID %u, ep index %u",
|
|
slot_id, ep_index);
|
|
xhci_kill_ring_urbs(xhci, ring);
|
|
}
|
|
while (!list_empty(&ep->cancelled_td_list)) {
|
|
cur_td = list_first_entry(&ep->cancelled_td_list,
|
|
struct xhci_td, cancelled_td_list);
|
|
list_del_init(&cur_td->cancelled_td_list);
|
|
xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
|
|
}
|
|
}
|
|
|
|
/* Watchdog timer function for when a stop endpoint command fails to complete.
|
|
* In this case, we assume the host controller is broken or dying or dead. The
|
|
* host may still be completing some other events, so we have to be careful to
|
|
* let the event ring handler and the URB dequeueing/enqueueing functions know
|
|
* through xhci->state.
|
|
*
|
|
* The timer may also fire if the host takes a very long time to respond to the
|
|
* command, and the stop endpoint command completion handler cannot delete the
|
|
* timer before the timer function is called. Another endpoint cancellation may
|
|
* sneak in before the timer function can grab the lock, and that may queue
|
|
* another stop endpoint command and add the timer back. So we cannot use a
|
|
* simple flag to say whether there is a pending stop endpoint command for a
|
|
* particular endpoint.
|
|
*
|
|
* Instead we use a combination of that flag and a counter for the number of
|
|
* pending stop endpoint commands. If the timer is the tail end of the last
|
|
* stop endpoint command, and the endpoint's command is still pending, we assume
|
|
* the host is dying.
|
|
*/
|
|
void xhci_stop_endpoint_command_watchdog(unsigned long arg)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_virt_ep *ep;
|
|
int ret, i, j;
|
|
unsigned long flags;
|
|
|
|
ep = (struct xhci_virt_ep *) arg;
|
|
xhci = ep->xhci;
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
|
|
ep->stop_cmds_pending--;
|
|
if (xhci->xhc_state & XHCI_STATE_DYING) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Stop EP timer ran, but another timer marked "
|
|
"xHCI as DYING, exiting.");
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return;
|
|
}
|
|
if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Stop EP timer ran, but no command pending, "
|
|
"exiting.");
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return;
|
|
}
|
|
|
|
xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
|
|
xhci_warn(xhci, "Assuming host is dying, halting host.\n");
|
|
/* Oops, HC is dead or dying or at least not responding to the stop
|
|
* endpoint command.
|
|
*/
|
|
xhci->xhc_state |= XHCI_STATE_DYING;
|
|
/* Disable interrupts from the host controller and start halting it */
|
|
xhci_quiesce(xhci);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
|
|
ret = xhci_halt(xhci);
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
if (ret < 0) {
|
|
/* This is bad; the host is not responding to commands and it's
|
|
* not allowing itself to be halted. At least interrupts are
|
|
* disabled. If we call usb_hc_died(), it will attempt to
|
|
* disconnect all device drivers under this host. Those
|
|
* disconnect() methods will wait for all URBs to be unlinked,
|
|
* so we must complete them.
|
|
*/
|
|
xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
|
|
xhci_warn(xhci, "Completing active URBs anyway.\n");
|
|
/* We could turn all TDs on the rings to no-ops. This won't
|
|
* help if the host has cached part of the ring, and is slow if
|
|
* we want to preserve the cycle bit. Skip it and hope the host
|
|
* doesn't touch the memory.
|
|
*/
|
|
}
|
|
for (i = 0; i < MAX_HC_SLOTS; i++) {
|
|
if (!xhci->devs[i])
|
|
continue;
|
|
for (j = 0; j < 31; j++)
|
|
xhci_kill_endpoint_urbs(xhci, i, j);
|
|
}
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Calling usb_hc_died()");
|
|
usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"xHCI host controller is dead.");
|
|
}
|
|
|
|
|
|
static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *dev,
|
|
struct xhci_ring *ep_ring,
|
|
unsigned int ep_index)
|
|
{
|
|
union xhci_trb *dequeue_temp;
|
|
int num_trbs_free_temp;
|
|
bool revert = false;
|
|
|
|
num_trbs_free_temp = ep_ring->num_trbs_free;
|
|
dequeue_temp = ep_ring->dequeue;
|
|
|
|
/* If we get two back-to-back stalls, and the first stalled transfer
|
|
* ends just before a link TRB, the dequeue pointer will be left on
|
|
* the link TRB by the code in the while loop. So we have to update
|
|
* the dequeue pointer one segment further, or we'll jump off
|
|
* the segment into la-la-land.
|
|
*/
|
|
if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
|
|
ep_ring->deq_seg = ep_ring->deq_seg->next;
|
|
ep_ring->dequeue = ep_ring->deq_seg->trbs;
|
|
}
|
|
|
|
while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
|
|
/* We have more usable TRBs */
|
|
ep_ring->num_trbs_free++;
|
|
ep_ring->dequeue++;
|
|
if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
|
|
ep_ring->dequeue)) {
|
|
if (ep_ring->dequeue ==
|
|
dev->eps[ep_index].queued_deq_ptr)
|
|
break;
|
|
ep_ring->deq_seg = ep_ring->deq_seg->next;
|
|
ep_ring->dequeue = ep_ring->deq_seg->trbs;
|
|
}
|
|
if (ep_ring->dequeue == dequeue_temp) {
|
|
revert = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (revert) {
|
|
xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
|
|
ep_ring->num_trbs_free = num_trbs_free_temp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When we get a completion for a Set Transfer Ring Dequeue Pointer command,
|
|
* we need to clear the set deq pending flag in the endpoint ring state, so that
|
|
* the TD queueing code can ring the doorbell again. We also need to ring the
|
|
* endpoint doorbell to restart the ring, but only if there aren't more
|
|
* cancellations pending.
|
|
*/
|
|
static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
|
|
union xhci_trb *trb, u32 cmd_comp_code)
|
|
{
|
|
unsigned int ep_index;
|
|
unsigned int stream_id;
|
|
struct xhci_ring *ep_ring;
|
|
struct xhci_virt_device *dev;
|
|
struct xhci_virt_ep *ep;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
|
|
ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
|
|
stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
|
|
dev = xhci->devs[slot_id];
|
|
ep = &dev->eps[ep_index];
|
|
|
|
ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
|
|
if (!ep_ring) {
|
|
xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
|
|
stream_id);
|
|
/* XXX: Harmless??? */
|
|
goto cleanup;
|
|
}
|
|
|
|
ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
|
|
slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
|
|
|
|
if (cmd_comp_code != COMP_SUCCESS) {
|
|
unsigned int ep_state;
|
|
unsigned int slot_state;
|
|
|
|
switch (cmd_comp_code) {
|
|
case COMP_TRB_ERR:
|
|
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
|
|
break;
|
|
case COMP_CTX_STATE:
|
|
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
|
|
ep_state = le32_to_cpu(ep_ctx->ep_info);
|
|
ep_state &= EP_STATE_MASK;
|
|
slot_state = le32_to_cpu(slot_ctx->dev_state);
|
|
slot_state = GET_SLOT_STATE(slot_state);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Slot state = %u, EP state = %u",
|
|
slot_state, ep_state);
|
|
break;
|
|
case COMP_EBADSLT:
|
|
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
|
|
slot_id);
|
|
break;
|
|
default:
|
|
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
|
|
cmd_comp_code);
|
|
break;
|
|
}
|
|
/* OK what do we do now? The endpoint state is hosed, and we
|
|
* should never get to this point if the synchronization between
|
|
* queueing, and endpoint state are correct. This might happen
|
|
* if the device gets disconnected after we've finished
|
|
* cancelling URBs, which might not be an error...
|
|
*/
|
|
} else {
|
|
u64 deq;
|
|
/* 4.6.10 deq ptr is written to the stream ctx for streams */
|
|
if (ep->ep_state & EP_HAS_STREAMS) {
|
|
struct xhci_stream_ctx *ctx =
|
|
&ep->stream_info->stream_ctx_array[stream_id];
|
|
deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
|
|
} else {
|
|
deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
|
|
}
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
|
|
if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
|
|
ep->queued_deq_ptr) == deq) {
|
|
/* Update the ring's dequeue segment and dequeue pointer
|
|
* to reflect the new position.
|
|
*/
|
|
update_ring_for_set_deq_completion(xhci, dev,
|
|
ep_ring, ep_index);
|
|
} else {
|
|
xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
|
|
xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
|
|
ep->queued_deq_seg, ep->queued_deq_ptr);
|
|
}
|
|
}
|
|
|
|
cleanup:
|
|
dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
|
|
dev->eps[ep_index].queued_deq_seg = NULL;
|
|
dev->eps[ep_index].queued_deq_ptr = NULL;
|
|
/* Restart any rings with pending URBs */
|
|
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
|
|
}
|
|
|
|
static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
|
|
union xhci_trb *trb, u32 cmd_comp_code)
|
|
{
|
|
unsigned int ep_index;
|
|
|
|
ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
|
|
/* This command will only fail if the endpoint wasn't halted,
|
|
* but we don't care.
|
|
*/
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
|
|
"Ignoring reset ep completion code of %u", cmd_comp_code);
|
|
|
|
/* HW with the reset endpoint quirk needs to have a configure endpoint
|
|
* command complete before the endpoint can be used. Queue that here
|
|
* because the HW can't handle two commands being queued in a row.
|
|
*/
|
|
if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
|
|
struct xhci_command *command;
|
|
command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
|
|
if (!command) {
|
|
xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
|
|
return;
|
|
}
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Queueing configure endpoint command");
|
|
xhci_queue_configure_endpoint(xhci, command,
|
|
xhci->devs[slot_id]->in_ctx->dma, slot_id,
|
|
false);
|
|
xhci_ring_cmd_db(xhci);
|
|
} else {
|
|
/* Clear our internal halted state */
|
|
xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
|
|
}
|
|
}
|
|
|
|
static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
|
|
u32 cmd_comp_code)
|
|
{
|
|
if (cmd_comp_code == COMP_SUCCESS)
|
|
xhci->slot_id = slot_id;
|
|
else
|
|
xhci->slot_id = 0;
|
|
}
|
|
|
|
static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
|
|
{
|
|
struct xhci_virt_device *virt_dev;
|
|
|
|
virt_dev = xhci->devs[slot_id];
|
|
if (!virt_dev)
|
|
return;
|
|
if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
|
|
/* Delete default control endpoint resources */
|
|
xhci_free_device_endpoint_resources(xhci, virt_dev, true);
|
|
xhci_free_virt_device(xhci, slot_id);
|
|
}
|
|
|
|
static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
|
|
struct xhci_event_cmd *event, u32 cmd_comp_code)
|
|
{
|
|
struct xhci_virt_device *virt_dev;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
unsigned int ep_index;
|
|
unsigned int ep_state;
|
|
u32 add_flags, drop_flags;
|
|
|
|
/*
|
|
* Configure endpoint commands can come from the USB core
|
|
* configuration or alt setting changes, or because the HW
|
|
* needed an extra configure endpoint command after a reset
|
|
* endpoint command or streams were being configured.
|
|
* If the command was for a halted endpoint, the xHCI driver
|
|
* is not waiting on the configure endpoint command.
|
|
*/
|
|
virt_dev = xhci->devs[slot_id];
|
|
ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
|
|
if (!ctrl_ctx) {
|
|
xhci_warn(xhci, "Could not get input context, bad type.\n");
|
|
return;
|
|
}
|
|
|
|
add_flags = le32_to_cpu(ctrl_ctx->add_flags);
|
|
drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
|
|
/* Input ctx add_flags are the endpoint index plus one */
|
|
ep_index = xhci_last_valid_endpoint(add_flags) - 1;
|
|
|
|
/* A usb_set_interface() call directly after clearing a halted
|
|
* condition may race on this quirky hardware. Not worth
|
|
* worrying about, since this is prototype hardware. Not sure
|
|
* if this will work for streams, but streams support was
|
|
* untested on this prototype.
|
|
*/
|
|
if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
|
|
ep_index != (unsigned int) -1 &&
|
|
add_flags - SLOT_FLAG == drop_flags) {
|
|
ep_state = virt_dev->eps[ep_index].ep_state;
|
|
if (!(ep_state & EP_HALTED))
|
|
return;
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"Completed config ep cmd - "
|
|
"last ep index = %d, state = %d",
|
|
ep_index, ep_state);
|
|
/* Clear internal halted state and restart ring(s) */
|
|
virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
|
|
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
|
|
struct xhci_event_cmd *event)
|
|
{
|
|
xhci_dbg(xhci, "Completed reset device command.\n");
|
|
if (!xhci->devs[slot_id])
|
|
xhci_warn(xhci, "Reset device command completion "
|
|
"for disabled slot %u\n", slot_id);
|
|
}
|
|
|
|
static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
|
|
struct xhci_event_cmd *event)
|
|
{
|
|
if (!(xhci->quirks & XHCI_NEC_HOST)) {
|
|
xhci->error_bitmask |= 1 << 6;
|
|
return;
|
|
}
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"NEC firmware version %2x.%02x",
|
|
NEC_FW_MAJOR(le32_to_cpu(event->status)),
|
|
NEC_FW_MINOR(le32_to_cpu(event->status)));
|
|
}
|
|
|
|
static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
|
|
{
|
|
list_del(&cmd->cmd_list);
|
|
|
|
if (cmd->completion) {
|
|
cmd->status = status;
|
|
complete(cmd->completion);
|
|
} else {
|
|
kfree(cmd);
|
|
}
|
|
}
|
|
|
|
void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
|
|
{
|
|
struct xhci_command *cur_cmd, *tmp_cmd;
|
|
list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
|
|
xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT);
|
|
}
|
|
|
|
/*
|
|
* Turn all commands on command ring with status set to "aborted" to no-op trbs.
|
|
* If there are other commands waiting then restart the ring and kick the timer.
|
|
* This must be called with command ring stopped and xhci->lock held.
|
|
*/
|
|
static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
|
|
struct xhci_command *cur_cmd)
|
|
{
|
|
struct xhci_command *i_cmd, *tmp_cmd;
|
|
u32 cycle_state;
|
|
|
|
/* Turn all aborted commands in list to no-ops, then restart */
|
|
list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list,
|
|
cmd_list) {
|
|
|
|
if (i_cmd->status != COMP_CMD_ABORT)
|
|
continue;
|
|
|
|
i_cmd->status = COMP_CMD_STOP;
|
|
|
|
xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
|
|
i_cmd->command_trb);
|
|
/* get cycle state from the original cmd trb */
|
|
cycle_state = le32_to_cpu(
|
|
i_cmd->command_trb->generic.field[3]) & TRB_CYCLE;
|
|
/* modify the command trb to no-op command */
|
|
i_cmd->command_trb->generic.field[0] = 0;
|
|
i_cmd->command_trb->generic.field[1] = 0;
|
|
i_cmd->command_trb->generic.field[2] = 0;
|
|
i_cmd->command_trb->generic.field[3] = cpu_to_le32(
|
|
TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
|
|
|
|
/*
|
|
* caller waiting for completion is called when command
|
|
* completion event is received for these no-op commands
|
|
*/
|
|
}
|
|
|
|
xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
|
|
|
|
/* ring command ring doorbell to restart the command ring */
|
|
if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
|
|
!(xhci->xhc_state & XHCI_STATE_DYING)) {
|
|
xhci->current_cmd = cur_cmd;
|
|
mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
|
|
xhci_ring_cmd_db(xhci);
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
void xhci_handle_command_timeout(unsigned long data)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
int ret;
|
|
unsigned long flags;
|
|
u64 hw_ring_state;
|
|
struct xhci_command *cur_cmd = NULL;
|
|
xhci = (struct xhci_hcd *) data;
|
|
|
|
/* mark this command to be cancelled */
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
if (xhci->current_cmd) {
|
|
cur_cmd = xhci->current_cmd;
|
|
cur_cmd->status = COMP_CMD_ABORT;
|
|
}
|
|
|
|
|
|
/* Make sure command ring is running before aborting it */
|
|
hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
|
|
if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
|
|
(hw_ring_state & CMD_RING_RUNNING)) {
|
|
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
xhci_dbg(xhci, "Command timeout\n");
|
|
ret = xhci_abort_cmd_ring(xhci);
|
|
if (unlikely(ret == -ESHUTDOWN)) {
|
|
xhci_err(xhci, "Abort command ring failed\n");
|
|
xhci_cleanup_command_queue(xhci);
|
|
usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
|
|
xhci_dbg(xhci, "xHCI host controller is dead.\n");
|
|
}
|
|
return;
|
|
}
|
|
/* command timeout on stopped ring, ring can't be aborted */
|
|
xhci_dbg(xhci, "Command timeout on stopped ring\n");
|
|
xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return;
|
|
}
|
|
|
|
static void handle_cmd_completion(struct xhci_hcd *xhci,
|
|
struct xhci_event_cmd *event)
|
|
{
|
|
int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
|
|
u64 cmd_dma;
|
|
dma_addr_t cmd_dequeue_dma;
|
|
u32 cmd_comp_code;
|
|
union xhci_trb *cmd_trb;
|
|
struct xhci_command *cmd;
|
|
u32 cmd_type;
|
|
|
|
cmd_dma = le64_to_cpu(event->cmd_trb);
|
|
cmd_trb = xhci->cmd_ring->dequeue;
|
|
cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
|
|
cmd_trb);
|
|
/* Is the command ring deq ptr out of sync with the deq seg ptr? */
|
|
if (cmd_dequeue_dma == 0) {
|
|
xhci->error_bitmask |= 1 << 4;
|
|
return;
|
|
}
|
|
/* Does the DMA address match our internal dequeue pointer address? */
|
|
if (cmd_dma != (u64) cmd_dequeue_dma) {
|
|
xhci->error_bitmask |= 1 << 5;
|
|
return;
|
|
}
|
|
|
|
cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list);
|
|
|
|
if (cmd->command_trb != xhci->cmd_ring->dequeue) {
|
|
xhci_err(xhci,
|
|
"Command completion event does not match command\n");
|
|
return;
|
|
}
|
|
|
|
del_timer(&xhci->cmd_timer);
|
|
|
|
trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
|
|
|
|
cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
|
|
|
|
/* If CMD ring stopped we own the trbs between enqueue and dequeue */
|
|
if (cmd_comp_code == COMP_CMD_STOP) {
|
|
xhci_handle_stopped_cmd_ring(xhci, cmd);
|
|
return;
|
|
}
|
|
/*
|
|
* Host aborted the command ring, check if the current command was
|
|
* supposed to be aborted, otherwise continue normally.
|
|
* The command ring is stopped now, but the xHC will issue a Command
|
|
* Ring Stopped event which will cause us to restart it.
|
|
*/
|
|
if (cmd_comp_code == COMP_CMD_ABORT) {
|
|
xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
|
|
if (cmd->status == COMP_CMD_ABORT)
|
|
goto event_handled;
|
|
}
|
|
|
|
cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
|
|
switch (cmd_type) {
|
|
case TRB_ENABLE_SLOT:
|
|
xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
|
|
break;
|
|
case TRB_DISABLE_SLOT:
|
|
xhci_handle_cmd_disable_slot(xhci, slot_id);
|
|
break;
|
|
case TRB_CONFIG_EP:
|
|
if (!cmd->completion)
|
|
xhci_handle_cmd_config_ep(xhci, slot_id, event,
|
|
cmd_comp_code);
|
|
break;
|
|
case TRB_EVAL_CONTEXT:
|
|
break;
|
|
case TRB_ADDR_DEV:
|
|
break;
|
|
case TRB_STOP_RING:
|
|
WARN_ON(slot_id != TRB_TO_SLOT_ID(
|
|
le32_to_cpu(cmd_trb->generic.field[3])));
|
|
xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
|
|
break;
|
|
case TRB_SET_DEQ:
|
|
WARN_ON(slot_id != TRB_TO_SLOT_ID(
|
|
le32_to_cpu(cmd_trb->generic.field[3])));
|
|
xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
|
|
break;
|
|
case TRB_CMD_NOOP:
|
|
/* Is this an aborted command turned to NO-OP? */
|
|
if (cmd->status == COMP_CMD_STOP)
|
|
cmd_comp_code = COMP_CMD_STOP;
|
|
break;
|
|
case TRB_RESET_EP:
|
|
WARN_ON(slot_id != TRB_TO_SLOT_ID(
|
|
le32_to_cpu(cmd_trb->generic.field[3])));
|
|
xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
|
|
break;
|
|
case TRB_RESET_DEV:
|
|
/* SLOT_ID field in reset device cmd completion event TRB is 0.
|
|
* Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
|
|
*/
|
|
slot_id = TRB_TO_SLOT_ID(
|
|
le32_to_cpu(cmd_trb->generic.field[3]));
|
|
xhci_handle_cmd_reset_dev(xhci, slot_id, event);
|
|
break;
|
|
case TRB_NEC_GET_FW:
|
|
xhci_handle_cmd_nec_get_fw(xhci, event);
|
|
break;
|
|
default:
|
|
/* Skip over unknown commands on the event ring */
|
|
xhci->error_bitmask |= 1 << 6;
|
|
break;
|
|
}
|
|
|
|
/* restart timer if this wasn't the last command */
|
|
if (cmd->cmd_list.next != &xhci->cmd_list) {
|
|
xhci->current_cmd = list_entry(cmd->cmd_list.next,
|
|
struct xhci_command, cmd_list);
|
|
mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
|
|
}
|
|
|
|
event_handled:
|
|
xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
|
|
|
|
inc_deq(xhci, xhci->cmd_ring);
|
|
}
|
|
|
|
static void handle_vendor_event(struct xhci_hcd *xhci,
|
|
union xhci_trb *event)
|
|
{
|
|
u32 trb_type;
|
|
|
|
trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
|
|
xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
|
|
if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
|
|
handle_cmd_completion(xhci, &event->event_cmd);
|
|
}
|
|
|
|
/* @port_id: the one-based port ID from the hardware (indexed from array of all
|
|
* port registers -- USB 3.0 and USB 2.0).
|
|
*
|
|
* Returns a zero-based port number, which is suitable for indexing into each of
|
|
* the split roothubs' port arrays and bus state arrays.
|
|
* Add one to it in order to call xhci_find_slot_id_by_port.
|
|
*/
|
|
static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
|
|
struct xhci_hcd *xhci, u32 port_id)
|
|
{
|
|
unsigned int i;
|
|
unsigned int num_similar_speed_ports = 0;
|
|
|
|
/* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
|
|
* and usb2_ports are 0-based indexes. Count the number of similar
|
|
* speed ports, up to 1 port before this port.
|
|
*/
|
|
for (i = 0; i < (port_id - 1); i++) {
|
|
u8 port_speed = xhci->port_array[i];
|
|
|
|
/*
|
|
* Skip ports that don't have known speeds, or have duplicate
|
|
* Extended Capabilities port speed entries.
|
|
*/
|
|
if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
|
|
continue;
|
|
|
|
/*
|
|
* USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
|
|
* 1.1 ports are under the USB 2.0 hub. If the port speed
|
|
* matches the device speed, it's a similar speed port.
|
|
*/
|
|
if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
|
|
num_similar_speed_ports++;
|
|
}
|
|
return num_similar_speed_ports;
|
|
}
|
|
|
|
static void handle_device_notification(struct xhci_hcd *xhci,
|
|
union xhci_trb *event)
|
|
{
|
|
u32 slot_id;
|
|
struct usb_device *udev;
|
|
|
|
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
|
|
if (!xhci->devs[slot_id]) {
|
|
xhci_warn(xhci, "Device Notification event for "
|
|
"unused slot %u\n", slot_id);
|
|
return;
|
|
}
|
|
|
|
xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
|
|
slot_id);
|
|
udev = xhci->devs[slot_id]->udev;
|
|
if (udev && udev->parent)
|
|
usb_wakeup_notification(udev->parent, udev->portnum);
|
|
}
|
|
|
|
static void handle_port_status(struct xhci_hcd *xhci,
|
|
union xhci_trb *event)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
u32 port_id;
|
|
u32 temp, temp1;
|
|
int max_ports;
|
|
int slot_id;
|
|
unsigned int faked_port_index;
|
|
u8 major_revision;
|
|
struct xhci_bus_state *bus_state;
|
|
__le32 __iomem **port_array;
|
|
bool bogus_port_status = false;
|
|
|
|
/* Port status change events always have a successful completion code */
|
|
if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
|
|
xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
|
|
xhci->error_bitmask |= 1 << 8;
|
|
}
|
|
port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
|
|
xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
|
|
|
|
max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
|
|
if ((port_id <= 0) || (port_id > max_ports)) {
|
|
xhci_warn(xhci, "Invalid port id %d\n", port_id);
|
|
inc_deq(xhci, xhci->event_ring);
|
|
return;
|
|
}
|
|
|
|
/* Figure out which usb_hcd this port is attached to:
|
|
* is it a USB 3.0 port or a USB 2.0/1.1 port?
|
|
*/
|
|
major_revision = xhci->port_array[port_id - 1];
|
|
|
|
/* Find the right roothub. */
|
|
hcd = xhci_to_hcd(xhci);
|
|
if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
|
|
hcd = xhci->shared_hcd;
|
|
|
|
if (major_revision == 0) {
|
|
xhci_warn(xhci, "Event for port %u not in "
|
|
"Extended Capabilities, ignoring.\n",
|
|
port_id);
|
|
bogus_port_status = true;
|
|
goto cleanup;
|
|
}
|
|
if (major_revision == DUPLICATE_ENTRY) {
|
|
xhci_warn(xhci, "Event for port %u duplicated in"
|
|
"Extended Capabilities, ignoring.\n",
|
|
port_id);
|
|
bogus_port_status = true;
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* Hardware port IDs reported by a Port Status Change Event include USB
|
|
* 3.0 and USB 2.0 ports. We want to check if the port has reported a
|
|
* resume event, but we first need to translate the hardware port ID
|
|
* into the index into the ports on the correct split roothub, and the
|
|
* correct bus_state structure.
|
|
*/
|
|
bus_state = &xhci->bus_state[hcd_index(hcd)];
|
|
if (hcd->speed == HCD_USB3)
|
|
port_array = xhci->usb3_ports;
|
|
else
|
|
port_array = xhci->usb2_ports;
|
|
/* Find the faked port hub number */
|
|
faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
|
|
port_id);
|
|
|
|
temp = readl(port_array[faked_port_index]);
|
|
if (hcd->state == HC_STATE_SUSPENDED) {
|
|
xhci_dbg(xhci, "resume root hub\n");
|
|
usb_hcd_resume_root_hub(hcd);
|
|
}
|
|
|
|
if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
|
|
xhci_dbg(xhci, "port resume event for port %d\n", port_id);
|
|
|
|
temp1 = readl(&xhci->op_regs->command);
|
|
if (!(temp1 & CMD_RUN)) {
|
|
xhci_warn(xhci, "xHC is not running.\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
if (DEV_SUPERSPEED(temp)) {
|
|
xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
|
|
/* Set a flag to say the port signaled remote wakeup,
|
|
* so we can tell the difference between the end of
|
|
* device and host initiated resume.
|
|
*/
|
|
bus_state->port_remote_wakeup |= 1 << faked_port_index;
|
|
xhci_test_and_clear_bit(xhci, port_array,
|
|
faked_port_index, PORT_PLC);
|
|
xhci_set_link_state(xhci, port_array, faked_port_index,
|
|
XDEV_U0);
|
|
/* Need to wait until the next link state change
|
|
* indicates the device is actually in U0.
|
|
*/
|
|
bogus_port_status = true;
|
|
goto cleanup;
|
|
} else {
|
|
xhci_dbg(xhci, "resume HS port %d\n", port_id);
|
|
bus_state->resume_done[faked_port_index] = jiffies +
|
|
msecs_to_jiffies(20);
|
|
set_bit(faked_port_index, &bus_state->resuming_ports);
|
|
mod_timer(&hcd->rh_timer,
|
|
bus_state->resume_done[faked_port_index]);
|
|
/* Do the rest in GetPortStatus */
|
|
}
|
|
}
|
|
|
|
if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
|
|
DEV_SUPERSPEED(temp)) {
|
|
xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
|
|
/* We've just brought the device into U0 through either the
|
|
* Resume state after a device remote wakeup, or through the
|
|
* U3Exit state after a host-initiated resume. If it's a device
|
|
* initiated remote wake, don't pass up the link state change,
|
|
* so the roothub behavior is consistent with external
|
|
* USB 3.0 hub behavior.
|
|
*/
|
|
slot_id = xhci_find_slot_id_by_port(hcd, xhci,
|
|
faked_port_index + 1);
|
|
if (slot_id && xhci->devs[slot_id])
|
|
xhci_ring_device(xhci, slot_id);
|
|
if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
|
|
bus_state->port_remote_wakeup &=
|
|
~(1 << faked_port_index);
|
|
xhci_test_and_clear_bit(xhci, port_array,
|
|
faked_port_index, PORT_PLC);
|
|
usb_wakeup_notification(hcd->self.root_hub,
|
|
faked_port_index + 1);
|
|
bogus_port_status = true;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
|
|
* RExit to a disconnect state). If so, let the the driver know it's
|
|
* out of the RExit state.
|
|
*/
|
|
if (!DEV_SUPERSPEED(temp) &&
|
|
test_and_clear_bit(faked_port_index,
|
|
&bus_state->rexit_ports)) {
|
|
complete(&bus_state->rexit_done[faked_port_index]);
|
|
bogus_port_status = true;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (hcd->speed != HCD_USB3)
|
|
xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
|
|
PORT_PLC);
|
|
|
|
cleanup:
|
|
/* Update event ring dequeue pointer before dropping the lock */
|
|
inc_deq(xhci, xhci->event_ring);
|
|
|
|
/* Don't make the USB core poll the roothub if we got a bad port status
|
|
* change event. Besides, at that point we can't tell which roothub
|
|
* (USB 2.0 or USB 3.0) to kick.
|
|
*/
|
|
if (bogus_port_status)
|
|
return;
|
|
|
|
/*
|
|
* xHCI port-status-change events occur when the "or" of all the
|
|
* status-change bits in the portsc register changes from 0 to 1.
|
|
* New status changes won't cause an event if any other change
|
|
* bits are still set. When an event occurs, switch over to
|
|
* polling to avoid losing status changes.
|
|
*/
|
|
xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
|
|
set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
|
|
spin_unlock(&xhci->lock);
|
|
/* Pass this up to the core */
|
|
usb_hcd_poll_rh_status(hcd);
|
|
spin_lock(&xhci->lock);
|
|
}
|
|
|
|
/*
|
|
* This TD is defined by the TRBs starting at start_trb in start_seg and ending
|
|
* at end_trb, which may be in another segment. If the suspect DMA address is a
|
|
* TRB in this TD, this function returns that TRB's segment. Otherwise it
|
|
* returns 0.
|
|
*/
|
|
struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
|
|
struct xhci_segment *start_seg,
|
|
union xhci_trb *start_trb,
|
|
union xhci_trb *end_trb,
|
|
dma_addr_t suspect_dma,
|
|
bool debug)
|
|
{
|
|
dma_addr_t start_dma;
|
|
dma_addr_t end_seg_dma;
|
|
dma_addr_t end_trb_dma;
|
|
struct xhci_segment *cur_seg;
|
|
|
|
start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
|
|
cur_seg = start_seg;
|
|
|
|
do {
|
|
if (start_dma == 0)
|
|
return NULL;
|
|
/* We may get an event for a Link TRB in the middle of a TD */
|
|
end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
|
|
&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
|
|
/* If the end TRB isn't in this segment, this is set to 0 */
|
|
end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
|
|
|
|
if (debug)
|
|
xhci_warn(xhci,
|
|
"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
|
|
(unsigned long long)suspect_dma,
|
|
(unsigned long long)start_dma,
|
|
(unsigned long long)end_trb_dma,
|
|
(unsigned long long)cur_seg->dma,
|
|
(unsigned long long)end_seg_dma);
|
|
|
|
if (end_trb_dma > 0) {
|
|
/* The end TRB is in this segment, so suspect should be here */
|
|
if (start_dma <= end_trb_dma) {
|
|
if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
|
|
return cur_seg;
|
|
} else {
|
|
/* Case for one segment with
|
|
* a TD wrapped around to the top
|
|
*/
|
|
if ((suspect_dma >= start_dma &&
|
|
suspect_dma <= end_seg_dma) ||
|
|
(suspect_dma >= cur_seg->dma &&
|
|
suspect_dma <= end_trb_dma))
|
|
return cur_seg;
|
|
}
|
|
return NULL;
|
|
} else {
|
|
/* Might still be somewhere in this segment */
|
|
if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
|
|
return cur_seg;
|
|
}
|
|
cur_seg = cur_seg->next;
|
|
start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
|
|
} while (cur_seg != start_seg);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
|
|
unsigned int slot_id, unsigned int ep_index,
|
|
unsigned int stream_id,
|
|
struct xhci_td *td, union xhci_trb *event_trb)
|
|
{
|
|
struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
|
|
struct xhci_command *command;
|
|
command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
|
|
if (!command)
|
|
return;
|
|
|
|
ep->ep_state |= EP_HALTED;
|
|
ep->stopped_stream = stream_id;
|
|
|
|
xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
|
|
xhci_cleanup_stalled_ring(xhci, ep_index, td);
|
|
|
|
ep->stopped_stream = 0;
|
|
|
|
xhci_ring_cmd_db(xhci);
|
|
}
|
|
|
|
/* Check if an error has halted the endpoint ring. The class driver will
|
|
* cleanup the halt for a non-default control endpoint if we indicate a stall.
|
|
* However, a babble and other errors also halt the endpoint ring, and the class
|
|
* driver won't clear the halt in that case, so we need to issue a Set Transfer
|
|
* Ring Dequeue Pointer command manually.
|
|
*/
|
|
static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
|
|
struct xhci_ep_ctx *ep_ctx,
|
|
unsigned int trb_comp_code)
|
|
{
|
|
/* TRB completion codes that may require a manual halt cleanup */
|
|
if (trb_comp_code == COMP_TX_ERR ||
|
|
trb_comp_code == COMP_BABBLE ||
|
|
trb_comp_code == COMP_SPLIT_ERR)
|
|
/* The 0.96 spec says a babbling control endpoint
|
|
* is not halted. The 0.96 spec says it is. Some HW
|
|
* claims to be 0.95 compliant, but it halts the control
|
|
* endpoint anyway. Check if a babble halted the
|
|
* endpoint.
|
|
*/
|
|
if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
|
|
cpu_to_le32(EP_STATE_HALTED))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
|
|
{
|
|
if (trb_comp_code >= 224 && trb_comp_code <= 255) {
|
|
/* Vendor defined "informational" completion code,
|
|
* treat as not-an-error.
|
|
*/
|
|
xhci_dbg(xhci, "Vendor defined info completion code %u\n",
|
|
trb_comp_code);
|
|
xhci_dbg(xhci, "Treating code as success.\n");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Finish the td processing, remove the td from td list;
|
|
* Return 1 if the urb can be given back.
|
|
*/
|
|
static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
|
|
union xhci_trb *event_trb, struct xhci_transfer_event *event,
|
|
struct xhci_virt_ep *ep, int *status, bool skip)
|
|
{
|
|
struct xhci_virt_device *xdev;
|
|
struct xhci_ring *ep_ring;
|
|
unsigned int slot_id;
|
|
int ep_index;
|
|
struct urb *urb = NULL;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
int ret = 0;
|
|
struct urb_priv *urb_priv;
|
|
u32 trb_comp_code;
|
|
|
|
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
|
|
xdev = xhci->devs[slot_id];
|
|
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
|
|
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
|
|
ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
|
|
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
|
|
|
|
if (skip)
|
|
goto td_cleanup;
|
|
|
|
if (trb_comp_code == COMP_STOP_INVAL || trb_comp_code == COMP_STOP) {
|
|
/* The Endpoint Stop Command completion will take care of any
|
|
* stopped TDs. A stopped TD may be restarted, so don't update
|
|
* the ring dequeue pointer or take this TD off any lists yet.
|
|
*/
|
|
ep->stopped_td = td;
|
|
return 0;
|
|
}
|
|
if (trb_comp_code == COMP_STALL ||
|
|
xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
|
|
trb_comp_code)) {
|
|
/* Issue a reset endpoint command to clear the host side
|
|
* halt, followed by a set dequeue command to move the
|
|
* dequeue pointer past the TD.
|
|
* The class driver clears the device side halt later.
|
|
*/
|
|
xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
|
|
ep_ring->stream_id, td, event_trb);
|
|
} else {
|
|
/* Update ring dequeue pointer */
|
|
while (ep_ring->dequeue != td->last_trb)
|
|
inc_deq(xhci, ep_ring);
|
|
inc_deq(xhci, ep_ring);
|
|
}
|
|
|
|
td_cleanup:
|
|
/* Clean up the endpoint's TD list */
|
|
urb = td->urb;
|
|
urb_priv = urb->hcpriv;
|
|
|
|
/* Do one last check of the actual transfer length.
|
|
* If the host controller said we transferred more data than the buffer
|
|
* length, urb->actual_length will be a very big number (since it's
|
|
* unsigned). Play it safe and say we didn't transfer anything.
|
|
*/
|
|
if (urb->actual_length > urb->transfer_buffer_length) {
|
|
xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n",
|
|
urb->transfer_buffer_length,
|
|
urb->actual_length);
|
|
urb->actual_length = 0;
|
|
if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
|
|
*status = -EREMOTEIO;
|
|
else
|
|
*status = 0;
|
|
}
|
|
list_del_init(&td->td_list);
|
|
/* Was this TD slated to be cancelled but completed anyway? */
|
|
if (!list_empty(&td->cancelled_td_list))
|
|
list_del_init(&td->cancelled_td_list);
|
|
|
|
urb_priv->td_cnt++;
|
|
/* Giveback the urb when all the tds are completed */
|
|
if (urb_priv->td_cnt == urb_priv->length) {
|
|
ret = 1;
|
|
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
|
|
if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
|
|
if (xhci->quirks & XHCI_AMD_PLL_FIX)
|
|
usb_amd_quirk_pll_enable();
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Process control tds, update urb status and actual_length.
|
|
*/
|
|
static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
|
|
union xhci_trb *event_trb, struct xhci_transfer_event *event,
|
|
struct xhci_virt_ep *ep, int *status)
|
|
{
|
|
struct xhci_virt_device *xdev;
|
|
struct xhci_ring *ep_ring;
|
|
unsigned int slot_id;
|
|
int ep_index;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
u32 trb_comp_code;
|
|
|
|
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
|
|
xdev = xhci->devs[slot_id];
|
|
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
|
|
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
|
|
ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
|
|
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
|
|
|
|
switch (trb_comp_code) {
|
|
case COMP_SUCCESS:
|
|
if (event_trb == ep_ring->dequeue) {
|
|
xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
|
|
"without IOC set??\n");
|
|
*status = -ESHUTDOWN;
|
|
} else if (event_trb != td->last_trb) {
|
|
xhci_warn(xhci, "WARN: Success on ctrl data TRB "
|
|
"without IOC set??\n");
|
|
*status = -ESHUTDOWN;
|
|
} else {
|
|
*status = 0;
|
|
}
|
|
break;
|
|
case COMP_SHORT_TX:
|
|
if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
|
|
*status = -EREMOTEIO;
|
|
else
|
|
*status = 0;
|
|
break;
|
|
case COMP_STOP_INVAL:
|
|
case COMP_STOP:
|
|
return finish_td(xhci, td, event_trb, event, ep, status, false);
|
|
default:
|
|
if (!xhci_requires_manual_halt_cleanup(xhci,
|
|
ep_ctx, trb_comp_code))
|
|
break;
|
|
xhci_dbg(xhci, "TRB error code %u, "
|
|
"halted endpoint index = %u\n",
|
|
trb_comp_code, ep_index);
|
|
/* else fall through */
|
|
case COMP_STALL:
|
|
/* Did we transfer part of the data (middle) phase? */
|
|
if (event_trb != ep_ring->dequeue &&
|
|
event_trb != td->last_trb)
|
|
td->urb->actual_length =
|
|
td->urb->transfer_buffer_length -
|
|
EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
|
|
else
|
|
td->urb->actual_length = 0;
|
|
|
|
return finish_td(xhci, td, event_trb, event, ep, status, false);
|
|
}
|
|
/*
|
|
* Did we transfer any data, despite the errors that might have
|
|
* happened? I.e. did we get past the setup stage?
|
|
*/
|
|
if (event_trb != ep_ring->dequeue) {
|
|
/* The event was for the status stage */
|
|
if (event_trb == td->last_trb) {
|
|
if (td->urb->actual_length != 0) {
|
|
/* Don't overwrite a previously set error code
|
|
*/
|
|
if ((*status == -EINPROGRESS || *status == 0) &&
|
|
(td->urb->transfer_flags
|
|
& URB_SHORT_NOT_OK))
|
|
/* Did we already see a short data
|
|
* stage? */
|
|
*status = -EREMOTEIO;
|
|
} else {
|
|
td->urb->actual_length =
|
|
td->urb->transfer_buffer_length;
|
|
}
|
|
} else {
|
|
/* Maybe the event was for the data stage? */
|
|
td->urb->actual_length =
|
|
td->urb->transfer_buffer_length -
|
|
EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
|
|
xhci_dbg(xhci, "Waiting for status "
|
|
"stage event\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return finish_td(xhci, td, event_trb, event, ep, status, false);
|
|
}
|
|
|
|
/*
|
|
* Process isochronous tds, update urb packet status and actual_length.
|
|
*/
|
|
static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
|
|
union xhci_trb *event_trb, struct xhci_transfer_event *event,
|
|
struct xhci_virt_ep *ep, int *status)
|
|
{
|
|
struct xhci_ring *ep_ring;
|
|
struct urb_priv *urb_priv;
|
|
int idx;
|
|
int len = 0;
|
|
union xhci_trb *cur_trb;
|
|
struct xhci_segment *cur_seg;
|
|
struct usb_iso_packet_descriptor *frame;
|
|
u32 trb_comp_code;
|
|
bool skip_td = false;
|
|
|
|
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
|
|
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
|
|
urb_priv = td->urb->hcpriv;
|
|
idx = urb_priv->td_cnt;
|
|
frame = &td->urb->iso_frame_desc[idx];
|
|
|
|
/* handle completion code */
|
|
switch (trb_comp_code) {
|
|
case COMP_SUCCESS:
|
|
if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
|
|
frame->status = 0;
|
|
break;
|
|
}
|
|
if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
|
|
trb_comp_code = COMP_SHORT_TX;
|
|
case COMP_SHORT_TX:
|
|
frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
|
|
-EREMOTEIO : 0;
|
|
break;
|
|
case COMP_BW_OVER:
|
|
frame->status = -ECOMM;
|
|
skip_td = true;
|
|
break;
|
|
case COMP_BUFF_OVER:
|
|
case COMP_BABBLE:
|
|
frame->status = -EOVERFLOW;
|
|
skip_td = true;
|
|
break;
|
|
case COMP_DEV_ERR:
|
|
case COMP_STALL:
|
|
case COMP_TX_ERR:
|
|
frame->status = -EPROTO;
|
|
skip_td = true;
|
|
break;
|
|
case COMP_STOP:
|
|
case COMP_STOP_INVAL:
|
|
break;
|
|
default:
|
|
frame->status = -1;
|
|
break;
|
|
}
|
|
|
|
if (trb_comp_code == COMP_SUCCESS || skip_td) {
|
|
frame->actual_length = frame->length;
|
|
td->urb->actual_length += frame->length;
|
|
} else {
|
|
for (cur_trb = ep_ring->dequeue,
|
|
cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
|
|
next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
|
|
if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
|
|
!TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
|
|
len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
|
|
}
|
|
len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
|
|
EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
|
|
|
|
if (trb_comp_code != COMP_STOP_INVAL) {
|
|
frame->actual_length = len;
|
|
td->urb->actual_length += len;
|
|
}
|
|
}
|
|
|
|
return finish_td(xhci, td, event_trb, event, ep, status, false);
|
|
}
|
|
|
|
static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
|
|
struct xhci_transfer_event *event,
|
|
struct xhci_virt_ep *ep, int *status)
|
|
{
|
|
struct xhci_ring *ep_ring;
|
|
struct urb_priv *urb_priv;
|
|
struct usb_iso_packet_descriptor *frame;
|
|
int idx;
|
|
|
|
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
|
|
urb_priv = td->urb->hcpriv;
|
|
idx = urb_priv->td_cnt;
|
|
frame = &td->urb->iso_frame_desc[idx];
|
|
|
|
/* The transfer is partly done. */
|
|
frame->status = -EXDEV;
|
|
|
|
/* calc actual length */
|
|
frame->actual_length = 0;
|
|
|
|
/* Update ring dequeue pointer */
|
|
while (ep_ring->dequeue != td->last_trb)
|
|
inc_deq(xhci, ep_ring);
|
|
inc_deq(xhci, ep_ring);
|
|
|
|
return finish_td(xhci, td, NULL, event, ep, status, true);
|
|
}
|
|
|
|
/*
|
|
* Process bulk and interrupt tds, update urb status and actual_length.
|
|
*/
|
|
static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
|
|
union xhci_trb *event_trb, struct xhci_transfer_event *event,
|
|
struct xhci_virt_ep *ep, int *status)
|
|
{
|
|
struct xhci_ring *ep_ring;
|
|
union xhci_trb *cur_trb;
|
|
struct xhci_segment *cur_seg;
|
|
u32 trb_comp_code;
|
|
|
|
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
|
|
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
|
|
|
|
switch (trb_comp_code) {
|
|
case COMP_SUCCESS:
|
|
/* Double check that the HW transferred everything. */
|
|
if (event_trb != td->last_trb ||
|
|
EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
|
|
xhci_warn(xhci, "WARN Successful completion "
|
|
"on short TX\n");
|
|
if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
|
|
*status = -EREMOTEIO;
|
|
else
|
|
*status = 0;
|
|
if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
|
|
trb_comp_code = COMP_SHORT_TX;
|
|
} else {
|
|
*status = 0;
|
|
}
|
|
break;
|
|
case COMP_SHORT_TX:
|
|
if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
|
|
*status = -EREMOTEIO;
|
|
else
|
|
*status = 0;
|
|
break;
|
|
default:
|
|
/* Others already handled above */
|
|
break;
|
|
}
|
|
if (trb_comp_code == COMP_SHORT_TX)
|
|
xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
|
|
"%d bytes untransferred\n",
|
|
td->urb->ep->desc.bEndpointAddress,
|
|
td->urb->transfer_buffer_length,
|
|
EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
|
|
/* Fast path - was this the last TRB in the TD for this URB? */
|
|
if (event_trb == td->last_trb) {
|
|
if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
|
|
td->urb->actual_length =
|
|
td->urb->transfer_buffer_length -
|
|
EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
|
|
if (td->urb->transfer_buffer_length <
|
|
td->urb->actual_length) {
|
|
xhci_warn(xhci, "HC gave bad length "
|
|
"of %d bytes left\n",
|
|
EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
|
|
td->urb->actual_length = 0;
|
|
if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
|
|
*status = -EREMOTEIO;
|
|
else
|
|
*status = 0;
|
|
}
|
|
/* Don't overwrite a previously set error code */
|
|
if (*status == -EINPROGRESS) {
|
|
if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
|
|
*status = -EREMOTEIO;
|
|
else
|
|
*status = 0;
|
|
}
|
|
} else {
|
|
td->urb->actual_length =
|
|
td->urb->transfer_buffer_length;
|
|
/* Ignore a short packet completion if the
|
|
* untransferred length was zero.
|
|
*/
|
|
if (*status == -EREMOTEIO)
|
|
*status = 0;
|
|
}
|
|
} else {
|
|
/* Slow path - walk the list, starting from the dequeue
|
|
* pointer, to get the actual length transferred.
|
|
*/
|
|
td->urb->actual_length = 0;
|
|
for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
|
|
cur_trb != event_trb;
|
|
next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
|
|
if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
|
|
!TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
|
|
td->urb->actual_length +=
|
|
TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
|
|
}
|
|
/* If the ring didn't stop on a Link or No-op TRB, add
|
|
* in the actual bytes transferred from the Normal TRB
|
|
*/
|
|
if (trb_comp_code != COMP_STOP_INVAL)
|
|
td->urb->actual_length +=
|
|
TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
|
|
EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
|
|
}
|
|
|
|
return finish_td(xhci, td, event_trb, event, ep, status, false);
|
|
}
|
|
|
|
/*
|
|
* If this function returns an error condition, it means it got a Transfer
|
|
* event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
|
|
* At this point, the host controller is probably hosed and should be reset.
|
|
*/
|
|
static int handle_tx_event(struct xhci_hcd *xhci,
|
|
struct xhci_transfer_event *event)
|
|
__releases(&xhci->lock)
|
|
__acquires(&xhci->lock)
|
|
{
|
|
struct xhci_virt_device *xdev;
|
|
struct xhci_virt_ep *ep;
|
|
struct xhci_ring *ep_ring;
|
|
unsigned int slot_id;
|
|
int ep_index;
|
|
struct xhci_td *td = NULL;
|
|
dma_addr_t event_dma;
|
|
struct xhci_segment *event_seg;
|
|
union xhci_trb *event_trb;
|
|
struct urb *urb = NULL;
|
|
int status = -EINPROGRESS;
|
|
struct urb_priv *urb_priv;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
struct list_head *tmp;
|
|
u32 trb_comp_code;
|
|
int ret = 0;
|
|
int td_num = 0;
|
|
|
|
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
|
|
xdev = xhci->devs[slot_id];
|
|
if (!xdev) {
|
|
xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
|
|
xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
|
|
(unsigned long long) xhci_trb_virt_to_dma(
|
|
xhci->event_ring->deq_seg,
|
|
xhci->event_ring->dequeue),
|
|
lower_32_bits(le64_to_cpu(event->buffer)),
|
|
upper_32_bits(le64_to_cpu(event->buffer)),
|
|
le32_to_cpu(event->transfer_len),
|
|
le32_to_cpu(event->flags));
|
|
xhci_dbg(xhci, "Event ring:\n");
|
|
xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Endpoint ID is 1 based, our index is zero based */
|
|
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
|
|
ep = &xdev->eps[ep_index];
|
|
ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
|
|
ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
|
|
if (!ep_ring ||
|
|
(le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
|
|
EP_STATE_DISABLED) {
|
|
xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
|
|
"or incorrect stream ring\n");
|
|
xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
|
|
(unsigned long long) xhci_trb_virt_to_dma(
|
|
xhci->event_ring->deq_seg,
|
|
xhci->event_ring->dequeue),
|
|
lower_32_bits(le64_to_cpu(event->buffer)),
|
|
upper_32_bits(le64_to_cpu(event->buffer)),
|
|
le32_to_cpu(event->transfer_len),
|
|
le32_to_cpu(event->flags));
|
|
xhci_dbg(xhci, "Event ring:\n");
|
|
xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Count current td numbers if ep->skip is set */
|
|
if (ep->skip) {
|
|
list_for_each(tmp, &ep_ring->td_list)
|
|
td_num++;
|
|
}
|
|
|
|
event_dma = le64_to_cpu(event->buffer);
|
|
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
|
|
/* Look for common error cases */
|
|
switch (trb_comp_code) {
|
|
/* Skip codes that require special handling depending on
|
|
* transfer type
|
|
*/
|
|
case COMP_SUCCESS:
|
|
if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
|
|
break;
|
|
if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
|
|
trb_comp_code = COMP_SHORT_TX;
|
|
else
|
|
xhci_warn_ratelimited(xhci,
|
|
"WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
|
|
case COMP_SHORT_TX:
|
|
break;
|
|
case COMP_STOP:
|
|
xhci_dbg(xhci, "Stopped on Transfer TRB\n");
|
|
break;
|
|
case COMP_STOP_INVAL:
|
|
xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
|
|
break;
|
|
case COMP_STALL:
|
|
xhci_dbg(xhci, "Stalled endpoint\n");
|
|
ep->ep_state |= EP_HALTED;
|
|
status = -EPIPE;
|
|
break;
|
|
case COMP_TRB_ERR:
|
|
xhci_warn(xhci, "WARN: TRB error on endpoint\n");
|
|
status = -EILSEQ;
|
|
break;
|
|
case COMP_SPLIT_ERR:
|
|
case COMP_TX_ERR:
|
|
xhci_dbg(xhci, "Transfer error on endpoint\n");
|
|
status = -EPROTO;
|
|
break;
|
|
case COMP_BABBLE:
|
|
xhci_dbg(xhci, "Babble error on endpoint\n");
|
|
status = -EOVERFLOW;
|
|
break;
|
|
case COMP_DB_ERR:
|
|
xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
|
|
status = -ENOSR;
|
|
break;
|
|
case COMP_BW_OVER:
|
|
xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
|
|
break;
|
|
case COMP_BUFF_OVER:
|
|
xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
|
|
break;
|
|
case COMP_UNDERRUN:
|
|
/*
|
|
* When the Isoch ring is empty, the xHC will generate
|
|
* a Ring Overrun Event for IN Isoch endpoint or Ring
|
|
* Underrun Event for OUT Isoch endpoint.
|
|
*/
|
|
xhci_dbg(xhci, "underrun event on endpoint\n");
|
|
if (!list_empty(&ep_ring->td_list))
|
|
xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
|
|
"still with TDs queued?\n",
|
|
TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
|
|
ep_index);
|
|
goto cleanup;
|
|
case COMP_OVERRUN:
|
|
xhci_dbg(xhci, "overrun event on endpoint\n");
|
|
if (!list_empty(&ep_ring->td_list))
|
|
xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
|
|
"still with TDs queued?\n",
|
|
TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
|
|
ep_index);
|
|
goto cleanup;
|
|
case COMP_DEV_ERR:
|
|
xhci_warn(xhci, "WARN: detect an incompatible device");
|
|
status = -EPROTO;
|
|
break;
|
|
case COMP_MISSED_INT:
|
|
/*
|
|
* When encounter missed service error, one or more isoc tds
|
|
* may be missed by xHC.
|
|
* Set skip flag of the ep_ring; Complete the missed tds as
|
|
* short transfer when process the ep_ring next time.
|
|
*/
|
|
ep->skip = true;
|
|
xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
|
|
goto cleanup;
|
|
default:
|
|
if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
|
|
status = 0;
|
|
break;
|
|
}
|
|
xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
|
|
"busted\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
do {
|
|
/* This TRB should be in the TD at the head of this ring's
|
|
* TD list.
|
|
*/
|
|
if (list_empty(&ep_ring->td_list)) {
|
|
/*
|
|
* A stopped endpoint may generate an extra completion
|
|
* event if the device was suspended. Don't print
|
|
* warnings.
|
|
*/
|
|
if (!(trb_comp_code == COMP_STOP ||
|
|
trb_comp_code == COMP_STOP_INVAL)) {
|
|
xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
|
|
TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
|
|
ep_index);
|
|
xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
|
|
(le32_to_cpu(event->flags) &
|
|
TRB_TYPE_BITMASK)>>10);
|
|
xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
|
|
}
|
|
if (ep->skip) {
|
|
ep->skip = false;
|
|
xhci_dbg(xhci, "td_list is empty while skip "
|
|
"flag set. Clear skip flag.\n");
|
|
}
|
|
ret = 0;
|
|
goto cleanup;
|
|
}
|
|
|
|
/* We've skipped all the TDs on the ep ring when ep->skip set */
|
|
if (ep->skip && td_num == 0) {
|
|
ep->skip = false;
|
|
xhci_dbg(xhci, "All tds on the ep_ring skipped. "
|
|
"Clear skip flag.\n");
|
|
ret = 0;
|
|
goto cleanup;
|
|
}
|
|
|
|
td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
|
|
if (ep->skip)
|
|
td_num--;
|
|
|
|
/* Is this a TRB in the currently executing TD? */
|
|
event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
|
|
td->last_trb, event_dma, false);
|
|
|
|
/*
|
|
* Skip the Force Stopped Event. The event_trb(event_dma) of FSE
|
|
* is not in the current TD pointed by ep_ring->dequeue because
|
|
* that the hardware dequeue pointer still at the previous TRB
|
|
* of the current TD. The previous TRB maybe a Link TD or the
|
|
* last TRB of the previous TD. The command completion handle
|
|
* will take care the rest.
|
|
*/
|
|
if (!event_seg && (trb_comp_code == COMP_STOP ||
|
|
trb_comp_code == COMP_STOP_INVAL)) {
|
|
ret = 0;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (!event_seg) {
|
|
if (!ep->skip ||
|
|
!usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
|
|
/* Some host controllers give a spurious
|
|
* successful event after a short transfer.
|
|
* Ignore it.
|
|
*/
|
|
if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
|
|
ep_ring->last_td_was_short) {
|
|
ep_ring->last_td_was_short = false;
|
|
ret = 0;
|
|
goto cleanup;
|
|
}
|
|
/* HC is busted, give up! */
|
|
xhci_err(xhci,
|
|
"ERROR Transfer event TRB DMA ptr not "
|
|
"part of current TD ep_index %d "
|
|
"comp_code %u\n", ep_index,
|
|
trb_comp_code);
|
|
trb_in_td(xhci, ep_ring->deq_seg,
|
|
ep_ring->dequeue, td->last_trb,
|
|
event_dma, true);
|
|
return -ESHUTDOWN;
|
|
}
|
|
|
|
ret = skip_isoc_td(xhci, td, event, ep, &status);
|
|
goto cleanup;
|
|
}
|
|
if (trb_comp_code == COMP_SHORT_TX)
|
|
ep_ring->last_td_was_short = true;
|
|
else
|
|
ep_ring->last_td_was_short = false;
|
|
|
|
if (ep->skip) {
|
|
xhci_dbg(xhci, "Found td. Clear skip flag.\n");
|
|
ep->skip = false;
|
|
}
|
|
|
|
event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
|
|
sizeof(*event_trb)];
|
|
/*
|
|
* No-op TRB should not trigger interrupts.
|
|
* If event_trb is a no-op TRB, it means the
|
|
* corresponding TD has been cancelled. Just ignore
|
|
* the TD.
|
|
*/
|
|
if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
|
|
xhci_dbg(xhci,
|
|
"event_trb is a no-op TRB. Skip it\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
/* Now update the urb's actual_length and give back to
|
|
* the core
|
|
*/
|
|
if (usb_endpoint_xfer_control(&td->urb->ep->desc))
|
|
ret = process_ctrl_td(xhci, td, event_trb, event, ep,
|
|
&status);
|
|
else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
|
|
ret = process_isoc_td(xhci, td, event_trb, event, ep,
|
|
&status);
|
|
else
|
|
ret = process_bulk_intr_td(xhci, td, event_trb, event,
|
|
ep, &status);
|
|
|
|
cleanup:
|
|
/*
|
|
* Do not update event ring dequeue pointer if ep->skip is set.
|
|
* Will roll back to continue process missed tds.
|
|
*/
|
|
if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
|
|
inc_deq(xhci, xhci->event_ring);
|
|
}
|
|
|
|
if (ret) {
|
|
urb = td->urb;
|
|
urb_priv = urb->hcpriv;
|
|
|
|
xhci_urb_free_priv(xhci, urb_priv);
|
|
|
|
usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
|
|
if ((urb->actual_length != urb->transfer_buffer_length &&
|
|
(urb->transfer_flags &
|
|
URB_SHORT_NOT_OK)) ||
|
|
(status != 0 &&
|
|
!usb_endpoint_xfer_isoc(&urb->ep->desc)))
|
|
xhci_dbg(xhci, "Giveback URB %p, len = %d, "
|
|
"expected = %d, status = %d\n",
|
|
urb, urb->actual_length,
|
|
urb->transfer_buffer_length,
|
|
status);
|
|
spin_unlock(&xhci->lock);
|
|
/* EHCI, UHCI, and OHCI always unconditionally set the
|
|
* urb->status of an isochronous endpoint to 0.
|
|
*/
|
|
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
|
|
status = 0;
|
|
usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
|
|
spin_lock(&xhci->lock);
|
|
}
|
|
|
|
/*
|
|
* If ep->skip is set, it means there are missed tds on the
|
|
* endpoint ring need to take care of.
|
|
* Process them as short transfer until reach the td pointed by
|
|
* the event.
|
|
*/
|
|
} while (ep->skip && trb_comp_code != COMP_MISSED_INT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function handles all OS-owned events on the event ring. It may drop
|
|
* xhci->lock between event processing (e.g. to pass up port status changes).
|
|
* Returns >0 for "possibly more events to process" (caller should call again),
|
|
* otherwise 0 if done. In future, <0 returns should indicate error code.
|
|
*/
|
|
static int xhci_handle_event(struct xhci_hcd *xhci)
|
|
{
|
|
union xhci_trb *event;
|
|
int update_ptrs = 1;
|
|
int ret;
|
|
|
|
if (!xhci->event_ring || !xhci->event_ring->dequeue) {
|
|
xhci->error_bitmask |= 1 << 1;
|
|
return 0;
|
|
}
|
|
|
|
event = xhci->event_ring->dequeue;
|
|
/* Does the HC or OS own the TRB? */
|
|
if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
|
|
xhci->event_ring->cycle_state) {
|
|
xhci->error_bitmask |= 1 << 2;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Barrier between reading the TRB_CYCLE (valid) flag above and any
|
|
* speculative reads of the event's flags/data below.
|
|
*/
|
|
rmb();
|
|
/* FIXME: Handle more event types. */
|
|
switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
|
|
case TRB_TYPE(TRB_COMPLETION):
|
|
handle_cmd_completion(xhci, &event->event_cmd);
|
|
break;
|
|
case TRB_TYPE(TRB_PORT_STATUS):
|
|
handle_port_status(xhci, event);
|
|
update_ptrs = 0;
|
|
break;
|
|
case TRB_TYPE(TRB_TRANSFER):
|
|
ret = handle_tx_event(xhci, &event->trans_event);
|
|
if (ret < 0)
|
|
xhci->error_bitmask |= 1 << 9;
|
|
else
|
|
update_ptrs = 0;
|
|
break;
|
|
case TRB_TYPE(TRB_DEV_NOTE):
|
|
handle_device_notification(xhci, event);
|
|
break;
|
|
default:
|
|
if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
|
|
TRB_TYPE(48))
|
|
handle_vendor_event(xhci, event);
|
|
else
|
|
xhci->error_bitmask |= 1 << 3;
|
|
}
|
|
/* Any of the above functions may drop and re-acquire the lock, so check
|
|
* to make sure a watchdog timer didn't mark the host as non-responsive.
|
|
*/
|
|
if (xhci->xhc_state & XHCI_STATE_DYING) {
|
|
xhci_dbg(xhci, "xHCI host dying, returning from "
|
|
"event handler.\n");
|
|
return 0;
|
|
}
|
|
|
|
if (update_ptrs)
|
|
/* Update SW event ring dequeue pointer */
|
|
inc_deq(xhci, xhci->event_ring);
|
|
|
|
/* Are there more items on the event ring? Caller will call us again to
|
|
* check.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* xHCI spec says we can get an interrupt, and if the HC has an error condition,
|
|
* we might get bad data out of the event ring. Section 4.10.2.7 has a list of
|
|
* indicators of an event TRB error, but we check the status *first* to be safe.
|
|
*/
|
|
irqreturn_t xhci_irq(struct usb_hcd *hcd)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
u32 status;
|
|
u64 temp_64;
|
|
union xhci_trb *event_ring_deq;
|
|
dma_addr_t deq;
|
|
|
|
spin_lock(&xhci->lock);
|
|
/* Check if the xHC generated the interrupt, or the irq is shared */
|
|
status = readl(&xhci->op_regs->status);
|
|
if (status == 0xffffffff)
|
|
goto hw_died;
|
|
|
|
if (!(status & STS_EINT)) {
|
|
spin_unlock(&xhci->lock);
|
|
return IRQ_NONE;
|
|
}
|
|
if (status & STS_FATAL) {
|
|
xhci_warn(xhci, "WARNING: Host System Error\n");
|
|
xhci_halt(xhci);
|
|
hw_died:
|
|
spin_unlock(&xhci->lock);
|
|
return -ESHUTDOWN;
|
|
}
|
|
|
|
/*
|
|
* Clear the op reg interrupt status first,
|
|
* so we can receive interrupts from other MSI-X interrupters.
|
|
* Write 1 to clear the interrupt status.
|
|
*/
|
|
status |= STS_EINT;
|
|
writel(status, &xhci->op_regs->status);
|
|
/* FIXME when MSI-X is supported and there are multiple vectors */
|
|
/* Clear the MSI-X event interrupt status */
|
|
|
|
if (hcd->irq) {
|
|
u32 irq_pending;
|
|
/* Acknowledge the PCI interrupt */
|
|
irq_pending = readl(&xhci->ir_set->irq_pending);
|
|
irq_pending |= IMAN_IP;
|
|
writel(irq_pending, &xhci->ir_set->irq_pending);
|
|
}
|
|
|
|
if (xhci->xhc_state & XHCI_STATE_DYING) {
|
|
xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
|
|
"Shouldn't IRQs be disabled?\n");
|
|
/* Clear the event handler busy flag (RW1C);
|
|
* the event ring should be empty.
|
|
*/
|
|
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
|
|
xhci_write_64(xhci, temp_64 | ERST_EHB,
|
|
&xhci->ir_set->erst_dequeue);
|
|
spin_unlock(&xhci->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
event_ring_deq = xhci->event_ring->dequeue;
|
|
/* FIXME this should be a delayed service routine
|
|
* that clears the EHB.
|
|
*/
|
|
while (xhci_handle_event(xhci) > 0) {}
|
|
|
|
temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
|
|
/* If necessary, update the HW's version of the event ring deq ptr. */
|
|
if (event_ring_deq != xhci->event_ring->dequeue) {
|
|
deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
|
|
xhci->event_ring->dequeue);
|
|
if (deq == 0)
|
|
xhci_warn(xhci, "WARN something wrong with SW event "
|
|
"ring dequeue ptr.\n");
|
|
/* Update HC event ring dequeue pointer */
|
|
temp_64 &= ERST_PTR_MASK;
|
|
temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
|
|
}
|
|
|
|
/* Clear the event handler busy flag (RW1C); event ring is empty. */
|
|
temp_64 |= ERST_EHB;
|
|
xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
|
|
|
|
spin_unlock(&xhci->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
irqreturn_t xhci_msi_irq(int irq, void *hcd)
|
|
{
|
|
return xhci_irq(hcd);
|
|
}
|
|
|
|
/**** Endpoint Ring Operations ****/
|
|
|
|
/*
|
|
* Generic function for queueing a TRB on a ring.
|
|
* The caller must have checked to make sure there's room on the ring.
|
|
*
|
|
* @more_trbs_coming: Will you enqueue more TRBs before calling
|
|
* prepare_transfer()?
|
|
*/
|
|
static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
|
|
bool more_trbs_coming,
|
|
u32 field1, u32 field2, u32 field3, u32 field4)
|
|
{
|
|
struct xhci_generic_trb *trb;
|
|
|
|
trb = &ring->enqueue->generic;
|
|
trb->field[0] = cpu_to_le32(field1);
|
|
trb->field[1] = cpu_to_le32(field2);
|
|
trb->field[2] = cpu_to_le32(field3);
|
|
trb->field[3] = cpu_to_le32(field4);
|
|
inc_enq(xhci, ring, more_trbs_coming);
|
|
}
|
|
|
|
/*
|
|
* Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
|
|
* FIXME allocate segments if the ring is full.
|
|
*/
|
|
static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
|
|
u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
|
|
{
|
|
unsigned int num_trbs_needed;
|
|
|
|
/* Make sure the endpoint has been added to xHC schedule */
|
|
switch (ep_state) {
|
|
case EP_STATE_DISABLED:
|
|
/*
|
|
* USB core changed config/interfaces without notifying us,
|
|
* or hardware is reporting the wrong state.
|
|
*/
|
|
xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
|
|
return -ENOENT;
|
|
case EP_STATE_ERROR:
|
|
xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
|
|
/* FIXME event handling code for error needs to clear it */
|
|
/* XXX not sure if this should be -ENOENT or not */
|
|
return -EINVAL;
|
|
case EP_STATE_HALTED:
|
|
xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
|
|
case EP_STATE_STOPPED:
|
|
case EP_STATE_RUNNING:
|
|
break;
|
|
default:
|
|
xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
|
|
/*
|
|
* FIXME issue Configure Endpoint command to try to get the HC
|
|
* back into a known state.
|
|
*/
|
|
return -EINVAL;
|
|
}
|
|
|
|
while (1) {
|
|
if (room_on_ring(xhci, ep_ring, num_trbs))
|
|
break;
|
|
|
|
if (ep_ring == xhci->cmd_ring) {
|
|
xhci_err(xhci, "Do not support expand command ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
|
|
"ERROR no room on ep ring, try ring expansion");
|
|
num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
|
|
if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
|
|
mem_flags)) {
|
|
xhci_err(xhci, "Ring expansion failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
if (enqueue_is_link_trb(ep_ring)) {
|
|
struct xhci_ring *ring = ep_ring;
|
|
union xhci_trb *next;
|
|
|
|
next = ring->enqueue;
|
|
|
|
while (last_trb(xhci, ring, ring->enq_seg, next)) {
|
|
/* If we're not dealing with 0.95 hardware or isoc rings
|
|
* on AMD 0.96 host, clear the chain bit.
|
|
*/
|
|
if (!xhci_link_trb_quirk(xhci) &&
|
|
!(ring->type == TYPE_ISOC &&
|
|
(xhci->quirks & XHCI_AMD_0x96_HOST)))
|
|
next->link.control &= cpu_to_le32(~TRB_CHAIN);
|
|
else
|
|
next->link.control |= cpu_to_le32(TRB_CHAIN);
|
|
|
|
wmb();
|
|
next->link.control ^= cpu_to_le32(TRB_CYCLE);
|
|
|
|
/* Toggle the cycle bit after the last ring segment. */
|
|
if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
|
|
ring->cycle_state = (ring->cycle_state ? 0 : 1);
|
|
}
|
|
ring->enq_seg = ring->enq_seg->next;
|
|
ring->enqueue = ring->enq_seg->trbs;
|
|
next = ring->enqueue;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int prepare_transfer(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *xdev,
|
|
unsigned int ep_index,
|
|
unsigned int stream_id,
|
|
unsigned int num_trbs,
|
|
struct urb *urb,
|
|
unsigned int td_index,
|
|
gfp_t mem_flags)
|
|
{
|
|
int ret;
|
|
struct urb_priv *urb_priv;
|
|
struct xhci_td *td;
|
|
struct xhci_ring *ep_ring;
|
|
struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
|
|
|
|
ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
|
|
if (!ep_ring) {
|
|
xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
|
|
stream_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = prepare_ring(xhci, ep_ring,
|
|
le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
|
|
num_trbs, mem_flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
urb_priv = urb->hcpriv;
|
|
td = urb_priv->td[td_index];
|
|
|
|
INIT_LIST_HEAD(&td->td_list);
|
|
INIT_LIST_HEAD(&td->cancelled_td_list);
|
|
|
|
if (td_index == 0) {
|
|
ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
|
|
td->urb = urb;
|
|
/* Add this TD to the tail of the endpoint ring's TD list */
|
|
list_add_tail(&td->td_list, &ep_ring->td_list);
|
|
td->start_seg = ep_ring->enq_seg;
|
|
td->first_trb = ep_ring->enqueue;
|
|
|
|
urb_priv->td[td_index] = td;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
|
|
{
|
|
int num_sgs, num_trbs, running_total, temp, i;
|
|
struct scatterlist *sg;
|
|
|
|
sg = NULL;
|
|
num_sgs = urb->num_mapped_sgs;
|
|
temp = urb->transfer_buffer_length;
|
|
|
|
num_trbs = 0;
|
|
for_each_sg(urb->sg, sg, num_sgs, i) {
|
|
unsigned int len = sg_dma_len(sg);
|
|
|
|
/* Scatter gather list entries may cross 64KB boundaries */
|
|
running_total = TRB_MAX_BUFF_SIZE -
|
|
(sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
|
|
running_total &= TRB_MAX_BUFF_SIZE - 1;
|
|
if (running_total != 0)
|
|
num_trbs++;
|
|
|
|
/* How many more 64KB chunks to transfer, how many more TRBs? */
|
|
while (running_total < sg_dma_len(sg) && running_total < temp) {
|
|
num_trbs++;
|
|
running_total += TRB_MAX_BUFF_SIZE;
|
|
}
|
|
len = min_t(int, len, temp);
|
|
temp -= len;
|
|
if (temp == 0)
|
|
break;
|
|
}
|
|
return num_trbs;
|
|
}
|
|
|
|
static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
|
|
{
|
|
if (num_trbs != 0)
|
|
dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
|
|
"TRBs, %d left\n", __func__,
|
|
urb->ep->desc.bEndpointAddress, num_trbs);
|
|
if (running_total != urb->transfer_buffer_length)
|
|
dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
|
|
"queued %#x (%d), asked for %#x (%d)\n",
|
|
__func__,
|
|
urb->ep->desc.bEndpointAddress,
|
|
running_total, running_total,
|
|
urb->transfer_buffer_length,
|
|
urb->transfer_buffer_length);
|
|
}
|
|
|
|
static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
|
|
unsigned int ep_index, unsigned int stream_id, int start_cycle,
|
|
struct xhci_generic_trb *start_trb)
|
|
{
|
|
/*
|
|
* Pass all the TRBs to the hardware at once and make sure this write
|
|
* isn't reordered.
|
|
*/
|
|
wmb();
|
|
if (start_cycle)
|
|
start_trb->field[3] |= cpu_to_le32(start_cycle);
|
|
else
|
|
start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
|
|
xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
|
|
}
|
|
|
|
/*
|
|
* xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
|
|
* endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
|
|
* (comprised of sg list entries) can take several service intervals to
|
|
* transmit.
|
|
*/
|
|
int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
|
|
struct urb *urb, int slot_id, unsigned int ep_index)
|
|
{
|
|
struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
|
|
xhci->devs[slot_id]->out_ctx, ep_index);
|
|
int xhci_interval;
|
|
int ep_interval;
|
|
|
|
xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
|
|
ep_interval = urb->interval;
|
|
/* Convert to microframes */
|
|
if (urb->dev->speed == USB_SPEED_LOW ||
|
|
urb->dev->speed == USB_SPEED_FULL)
|
|
ep_interval *= 8;
|
|
/* FIXME change this to a warning and a suggestion to use the new API
|
|
* to set the polling interval (once the API is added).
|
|
*/
|
|
if (xhci_interval != ep_interval) {
|
|
dev_dbg_ratelimited(&urb->dev->dev,
|
|
"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
|
|
ep_interval, ep_interval == 1 ? "" : "s",
|
|
xhci_interval, xhci_interval == 1 ? "" : "s");
|
|
urb->interval = xhci_interval;
|
|
/* Convert back to frames for LS/FS devices */
|
|
if (urb->dev->speed == USB_SPEED_LOW ||
|
|
urb->dev->speed == USB_SPEED_FULL)
|
|
urb->interval /= 8;
|
|
}
|
|
return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
|
|
}
|
|
|
|
/*
|
|
* The TD size is the number of bytes remaining in the TD (including this TRB),
|
|
* right shifted by 10.
|
|
* It must fit in bits 21:17, so it can't be bigger than 31.
|
|
*/
|
|
static u32 xhci_td_remainder(unsigned int remainder)
|
|
{
|
|
u32 max = (1 << (21 - 17 + 1)) - 1;
|
|
|
|
if ((remainder >> 10) >= max)
|
|
return max << 17;
|
|
else
|
|
return (remainder >> 10) << 17;
|
|
}
|
|
|
|
/*
|
|
* For xHCI 1.0 host controllers, TD size is the number of max packet sized
|
|
* packets remaining in the TD (*not* including this TRB).
|
|
*
|
|
* Total TD packet count = total_packet_count =
|
|
* DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
|
|
*
|
|
* Packets transferred up to and including this TRB = packets_transferred =
|
|
* rounddown(total bytes transferred including this TRB / wMaxPacketSize)
|
|
*
|
|
* TD size = total_packet_count - packets_transferred
|
|
*
|
|
* It must fit in bits 21:17, so it can't be bigger than 31.
|
|
* The last TRB in a TD must have the TD size set to zero.
|
|
*/
|
|
static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
|
|
unsigned int total_packet_count, struct urb *urb,
|
|
unsigned int num_trbs_left)
|
|
{
|
|
int packets_transferred;
|
|
|
|
/* One TRB with a zero-length data packet. */
|
|
if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
|
|
return 0;
|
|
|
|
/* All the TRB queueing functions don't count the current TRB in
|
|
* running_total.
|
|
*/
|
|
packets_transferred = (running_total + trb_buff_len) /
|
|
GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
|
|
|
|
if ((total_packet_count - packets_transferred) > 31)
|
|
return 31 << 17;
|
|
return (total_packet_count - packets_transferred) << 17;
|
|
}
|
|
|
|
static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
|
|
struct urb *urb, int slot_id, unsigned int ep_index)
|
|
{
|
|
struct xhci_ring *ep_ring;
|
|
unsigned int num_trbs;
|
|
struct urb_priv *urb_priv;
|
|
struct xhci_td *td;
|
|
struct scatterlist *sg;
|
|
int num_sgs;
|
|
int trb_buff_len, this_sg_len, running_total;
|
|
unsigned int total_packet_count;
|
|
bool first_trb;
|
|
u64 addr;
|
|
bool more_trbs_coming;
|
|
|
|
struct xhci_generic_trb *start_trb;
|
|
int start_cycle;
|
|
|
|
ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
|
|
if (!ep_ring)
|
|
return -EINVAL;
|
|
|
|
num_trbs = count_sg_trbs_needed(xhci, urb);
|
|
num_sgs = urb->num_mapped_sgs;
|
|
total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
|
|
usb_endpoint_maxp(&urb->ep->desc));
|
|
|
|
trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
|
|
ep_index, urb->stream_id,
|
|
num_trbs, urb, 0, mem_flags);
|
|
if (trb_buff_len < 0)
|
|
return trb_buff_len;
|
|
|
|
urb_priv = urb->hcpriv;
|
|
td = urb_priv->td[0];
|
|
|
|
/*
|
|
* Don't give the first TRB to the hardware (by toggling the cycle bit)
|
|
* until we've finished creating all the other TRBs. The ring's cycle
|
|
* state may change as we enqueue the other TRBs, so save it too.
|
|
*/
|
|
start_trb = &ep_ring->enqueue->generic;
|
|
start_cycle = ep_ring->cycle_state;
|
|
|
|
running_total = 0;
|
|
/*
|
|
* How much data is in the first TRB?
|
|
*
|
|
* There are three forces at work for TRB buffer pointers and lengths:
|
|
* 1. We don't want to walk off the end of this sg-list entry buffer.
|
|
* 2. The transfer length that the driver requested may be smaller than
|
|
* the amount of memory allocated for this scatter-gather list.
|
|
* 3. TRBs buffers can't cross 64KB boundaries.
|
|
*/
|
|
sg = urb->sg;
|
|
addr = (u64) sg_dma_address(sg);
|
|
this_sg_len = sg_dma_len(sg);
|
|
trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
|
|
trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
|
|
if (trb_buff_len > urb->transfer_buffer_length)
|
|
trb_buff_len = urb->transfer_buffer_length;
|
|
|
|
first_trb = true;
|
|
/* Queue the first TRB, even if it's zero-length */
|
|
do {
|
|
u32 field = 0;
|
|
u32 length_field = 0;
|
|
u32 remainder = 0;
|
|
|
|
/* Don't change the cycle bit of the first TRB until later */
|
|
if (first_trb) {
|
|
first_trb = false;
|
|
if (start_cycle == 0)
|
|
field |= 0x1;
|
|
} else
|
|
field |= ep_ring->cycle_state;
|
|
|
|
/* Chain all the TRBs together; clear the chain bit in the last
|
|
* TRB to indicate it's the last TRB in the chain.
|
|
*/
|
|
if (num_trbs > 1) {
|
|
field |= TRB_CHAIN;
|
|
} else {
|
|
/* FIXME - add check for ZERO_PACKET flag before this */
|
|
td->last_trb = ep_ring->enqueue;
|
|
field |= TRB_IOC;
|
|
}
|
|
|
|
/* Only set interrupt on short packet for IN endpoints */
|
|
if (usb_urb_dir_in(urb))
|
|
field |= TRB_ISP;
|
|
|
|
if (TRB_MAX_BUFF_SIZE -
|
|
(addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
|
|
xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
|
|
xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
|
|
(unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
|
|
(unsigned int) addr + trb_buff_len);
|
|
}
|
|
|
|
/* Set the TRB length, TD size, and interrupter fields. */
|
|
if (xhci->hci_version < 0x100) {
|
|
remainder = xhci_td_remainder(
|
|
urb->transfer_buffer_length -
|
|
running_total);
|
|
} else {
|
|
remainder = xhci_v1_0_td_remainder(running_total,
|
|
trb_buff_len, total_packet_count, urb,
|
|
num_trbs - 1);
|
|
}
|
|
length_field = TRB_LEN(trb_buff_len) |
|
|
remainder |
|
|
TRB_INTR_TARGET(0);
|
|
|
|
if (num_trbs > 1)
|
|
more_trbs_coming = true;
|
|
else
|
|
more_trbs_coming = false;
|
|
queue_trb(xhci, ep_ring, more_trbs_coming,
|
|
lower_32_bits(addr),
|
|
upper_32_bits(addr),
|
|
length_field,
|
|
field | TRB_TYPE(TRB_NORMAL));
|
|
--num_trbs;
|
|
running_total += trb_buff_len;
|
|
|
|
/* Calculate length for next transfer --
|
|
* Are we done queueing all the TRBs for this sg entry?
|
|
*/
|
|
this_sg_len -= trb_buff_len;
|
|
if (this_sg_len == 0) {
|
|
--num_sgs;
|
|
if (num_sgs == 0)
|
|
break;
|
|
sg = sg_next(sg);
|
|
addr = (u64) sg_dma_address(sg);
|
|
this_sg_len = sg_dma_len(sg);
|
|
} else {
|
|
addr += trb_buff_len;
|
|
}
|
|
|
|
trb_buff_len = TRB_MAX_BUFF_SIZE -
|
|
(addr & (TRB_MAX_BUFF_SIZE - 1));
|
|
trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
|
|
if (running_total + trb_buff_len > urb->transfer_buffer_length)
|
|
trb_buff_len =
|
|
urb->transfer_buffer_length - running_total;
|
|
} while (running_total < urb->transfer_buffer_length);
|
|
|
|
check_trb_math(urb, num_trbs, running_total);
|
|
giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
|
|
start_cycle, start_trb);
|
|
return 0;
|
|
}
|
|
|
|
/* This is very similar to what ehci-q.c qtd_fill() does */
|
|
int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
|
|
struct urb *urb, int slot_id, unsigned int ep_index)
|
|
{
|
|
struct xhci_ring *ep_ring;
|
|
struct urb_priv *urb_priv;
|
|
struct xhci_td *td;
|
|
int num_trbs;
|
|
struct xhci_generic_trb *start_trb;
|
|
bool first_trb;
|
|
bool more_trbs_coming;
|
|
int start_cycle;
|
|
u32 field, length_field;
|
|
|
|
int running_total, trb_buff_len, ret;
|
|
unsigned int total_packet_count;
|
|
u64 addr;
|
|
|
|
if (urb->num_sgs)
|
|
return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
|
|
|
|
ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
|
|
if (!ep_ring)
|
|
return -EINVAL;
|
|
|
|
num_trbs = 0;
|
|
/* How much data is (potentially) left before the 64KB boundary? */
|
|
running_total = TRB_MAX_BUFF_SIZE -
|
|
(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
|
|
running_total &= TRB_MAX_BUFF_SIZE - 1;
|
|
|
|
/* If there's some data on this 64KB chunk, or we have to send a
|
|
* zero-length transfer, we need at least one TRB
|
|
*/
|
|
if (running_total != 0 || urb->transfer_buffer_length == 0)
|
|
num_trbs++;
|
|
/* How many more 64KB chunks to transfer, how many more TRBs? */
|
|
while (running_total < urb->transfer_buffer_length) {
|
|
num_trbs++;
|
|
running_total += TRB_MAX_BUFF_SIZE;
|
|
}
|
|
/* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
|
|
|
|
ret = prepare_transfer(xhci, xhci->devs[slot_id],
|
|
ep_index, urb->stream_id,
|
|
num_trbs, urb, 0, mem_flags);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
urb_priv = urb->hcpriv;
|
|
td = urb_priv->td[0];
|
|
|
|
/*
|
|
* Don't give the first TRB to the hardware (by toggling the cycle bit)
|
|
* until we've finished creating all the other TRBs. The ring's cycle
|
|
* state may change as we enqueue the other TRBs, so save it too.
|
|
*/
|
|
start_trb = &ep_ring->enqueue->generic;
|
|
start_cycle = ep_ring->cycle_state;
|
|
|
|
running_total = 0;
|
|
total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
|
|
usb_endpoint_maxp(&urb->ep->desc));
|
|
/* How much data is in the first TRB? */
|
|
addr = (u64) urb->transfer_dma;
|
|
trb_buff_len = TRB_MAX_BUFF_SIZE -
|
|
(urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
|
|
if (trb_buff_len > urb->transfer_buffer_length)
|
|
trb_buff_len = urb->transfer_buffer_length;
|
|
|
|
first_trb = true;
|
|
|
|
/* Queue the first TRB, even if it's zero-length */
|
|
do {
|
|
u32 remainder = 0;
|
|
field = 0;
|
|
|
|
/* Don't change the cycle bit of the first TRB until later */
|
|
if (first_trb) {
|
|
first_trb = false;
|
|
if (start_cycle == 0)
|
|
field |= 0x1;
|
|
} else
|
|
field |= ep_ring->cycle_state;
|
|
|
|
/* Chain all the TRBs together; clear the chain bit in the last
|
|
* TRB to indicate it's the last TRB in the chain.
|
|
*/
|
|
if (num_trbs > 1) {
|
|
field |= TRB_CHAIN;
|
|
} else {
|
|
/* FIXME - add check for ZERO_PACKET flag before this */
|
|
td->last_trb = ep_ring->enqueue;
|
|
field |= TRB_IOC;
|
|
}
|
|
|
|
/* Only set interrupt on short packet for IN endpoints */
|
|
if (usb_urb_dir_in(urb))
|
|
field |= TRB_ISP;
|
|
|
|
/* Set the TRB length, TD size, and interrupter fields. */
|
|
if (xhci->hci_version < 0x100) {
|
|
remainder = xhci_td_remainder(
|
|
urb->transfer_buffer_length -
|
|
running_total);
|
|
} else {
|
|
remainder = xhci_v1_0_td_remainder(running_total,
|
|
trb_buff_len, total_packet_count, urb,
|
|
num_trbs - 1);
|
|
}
|
|
length_field = TRB_LEN(trb_buff_len) |
|
|
remainder |
|
|
TRB_INTR_TARGET(0);
|
|
|
|
if (num_trbs > 1)
|
|
more_trbs_coming = true;
|
|
else
|
|
more_trbs_coming = false;
|
|
queue_trb(xhci, ep_ring, more_trbs_coming,
|
|
lower_32_bits(addr),
|
|
upper_32_bits(addr),
|
|
length_field,
|
|
field | TRB_TYPE(TRB_NORMAL));
|
|
--num_trbs;
|
|
running_total += trb_buff_len;
|
|
|
|
/* Calculate length for next transfer */
|
|
addr += trb_buff_len;
|
|
trb_buff_len = urb->transfer_buffer_length - running_total;
|
|
if (trb_buff_len > TRB_MAX_BUFF_SIZE)
|
|
trb_buff_len = TRB_MAX_BUFF_SIZE;
|
|
} while (running_total < urb->transfer_buffer_length);
|
|
|
|
check_trb_math(urb, num_trbs, running_total);
|
|
giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
|
|
start_cycle, start_trb);
|
|
return 0;
|
|
}
|
|
|
|
/* Caller must have locked xhci->lock */
|
|
int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
|
|
struct urb *urb, int slot_id, unsigned int ep_index)
|
|
{
|
|
struct xhci_ring *ep_ring;
|
|
int num_trbs;
|
|
int ret;
|
|
struct usb_ctrlrequest *setup;
|
|
struct xhci_generic_trb *start_trb;
|
|
int start_cycle;
|
|
u32 field, length_field;
|
|
struct urb_priv *urb_priv;
|
|
struct xhci_td *td;
|
|
|
|
ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
|
|
if (!ep_ring)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Need to copy setup packet into setup TRB, so we can't use the setup
|
|
* DMA address.
|
|
*/
|
|
if (!urb->setup_packet)
|
|
return -EINVAL;
|
|
|
|
/* 1 TRB for setup, 1 for status */
|
|
num_trbs = 2;
|
|
/*
|
|
* Don't need to check if we need additional event data and normal TRBs,
|
|
* since data in control transfers will never get bigger than 16MB
|
|
* XXX: can we get a buffer that crosses 64KB boundaries?
|
|
*/
|
|
if (urb->transfer_buffer_length > 0)
|
|
num_trbs++;
|
|
ret = prepare_transfer(xhci, xhci->devs[slot_id],
|
|
ep_index, urb->stream_id,
|
|
num_trbs, urb, 0, mem_flags);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
urb_priv = urb->hcpriv;
|
|
td = urb_priv->td[0];
|
|
|
|
/*
|
|
* Don't give the first TRB to the hardware (by toggling the cycle bit)
|
|
* until we've finished creating all the other TRBs. The ring's cycle
|
|
* state may change as we enqueue the other TRBs, so save it too.
|
|
*/
|
|
start_trb = &ep_ring->enqueue->generic;
|
|
start_cycle = ep_ring->cycle_state;
|
|
|
|
/* Queue setup TRB - see section 6.4.1.2.1 */
|
|
/* FIXME better way to translate setup_packet into two u32 fields? */
|
|
setup = (struct usb_ctrlrequest *) urb->setup_packet;
|
|
field = 0;
|
|
field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
|
|
if (start_cycle == 0)
|
|
field |= 0x1;
|
|
|
|
/* xHCI 1.0 6.4.1.2.1: Transfer Type field */
|
|
if (xhci->hci_version == 0x100) {
|
|
if (urb->transfer_buffer_length > 0) {
|
|
if (setup->bRequestType & USB_DIR_IN)
|
|
field |= TRB_TX_TYPE(TRB_DATA_IN);
|
|
else
|
|
field |= TRB_TX_TYPE(TRB_DATA_OUT);
|
|
}
|
|
}
|
|
|
|
queue_trb(xhci, ep_ring, true,
|
|
setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
|
|
le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
|
|
TRB_LEN(8) | TRB_INTR_TARGET(0),
|
|
/* Immediate data in pointer */
|
|
field);
|
|
|
|
/* If there's data, queue data TRBs */
|
|
/* Only set interrupt on short packet for IN endpoints */
|
|
if (usb_urb_dir_in(urb))
|
|
field = TRB_ISP | TRB_TYPE(TRB_DATA);
|
|
else
|
|
field = TRB_TYPE(TRB_DATA);
|
|
|
|
length_field = TRB_LEN(urb->transfer_buffer_length) |
|
|
xhci_td_remainder(urb->transfer_buffer_length) |
|
|
TRB_INTR_TARGET(0);
|
|
if (urb->transfer_buffer_length > 0) {
|
|
if (setup->bRequestType & USB_DIR_IN)
|
|
field |= TRB_DIR_IN;
|
|
queue_trb(xhci, ep_ring, true,
|
|
lower_32_bits(urb->transfer_dma),
|
|
upper_32_bits(urb->transfer_dma),
|
|
length_field,
|
|
field | ep_ring->cycle_state);
|
|
}
|
|
|
|
/* Save the DMA address of the last TRB in the TD */
|
|
td->last_trb = ep_ring->enqueue;
|
|
|
|
/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
|
|
/* If the device sent data, the status stage is an OUT transfer */
|
|
if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
|
|
field = 0;
|
|
else
|
|
field = TRB_DIR_IN;
|
|
queue_trb(xhci, ep_ring, false,
|
|
0,
|
|
0,
|
|
TRB_INTR_TARGET(0),
|
|
/* Event on completion */
|
|
field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
|
|
|
|
giveback_first_trb(xhci, slot_id, ep_index, 0,
|
|
start_cycle, start_trb);
|
|
return 0;
|
|
}
|
|
|
|
static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
|
|
struct urb *urb, int i)
|
|
{
|
|
int num_trbs = 0;
|
|
u64 addr, td_len;
|
|
|
|
addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
|
|
td_len = urb->iso_frame_desc[i].length;
|
|
|
|
num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
|
|
TRB_MAX_BUFF_SIZE);
|
|
if (num_trbs == 0)
|
|
num_trbs++;
|
|
|
|
return num_trbs;
|
|
}
|
|
|
|
/*
|
|
* The transfer burst count field of the isochronous TRB defines the number of
|
|
* bursts that are required to move all packets in this TD. Only SuperSpeed
|
|
* devices can burst up to bMaxBurst number of packets per service interval.
|
|
* This field is zero based, meaning a value of zero in the field means one
|
|
* burst. Basically, for everything but SuperSpeed devices, this field will be
|
|
* zero. Only xHCI 1.0 host controllers support this field.
|
|
*/
|
|
static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
|
|
struct usb_device *udev,
|
|
struct urb *urb, unsigned int total_packet_count)
|
|
{
|
|
unsigned int max_burst;
|
|
|
|
if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
|
|
return 0;
|
|
|
|
max_burst = urb->ep->ss_ep_comp.bMaxBurst;
|
|
return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
|
|
}
|
|
|
|
/*
|
|
* Returns the number of packets in the last "burst" of packets. This field is
|
|
* valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
|
|
* the last burst packet count is equal to the total number of packets in the
|
|
* TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
|
|
* must contain (bMaxBurst + 1) number of packets, but the last burst can
|
|
* contain 1 to (bMaxBurst + 1) packets.
|
|
*/
|
|
static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
|
|
struct usb_device *udev,
|
|
struct urb *urb, unsigned int total_packet_count)
|
|
{
|
|
unsigned int max_burst;
|
|
unsigned int residue;
|
|
|
|
if (xhci->hci_version < 0x100)
|
|
return 0;
|
|
|
|
switch (udev->speed) {
|
|
case USB_SPEED_SUPER:
|
|
/* bMaxBurst is zero based: 0 means 1 packet per burst */
|
|
max_burst = urb->ep->ss_ep_comp.bMaxBurst;
|
|
residue = total_packet_count % (max_burst + 1);
|
|
/* If residue is zero, the last burst contains (max_burst + 1)
|
|
* number of packets, but the TLBPC field is zero-based.
|
|
*/
|
|
if (residue == 0)
|
|
return max_burst;
|
|
return residue - 1;
|
|
default:
|
|
if (total_packet_count == 0)
|
|
return 0;
|
|
return total_packet_count - 1;
|
|
}
|
|
}
|
|
|
|
/* This is for isoc transfer */
|
|
static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
|
|
struct urb *urb, int slot_id, unsigned int ep_index)
|
|
{
|
|
struct xhci_ring *ep_ring;
|
|
struct urb_priv *urb_priv;
|
|
struct xhci_td *td;
|
|
int num_tds, trbs_per_td;
|
|
struct xhci_generic_trb *start_trb;
|
|
bool first_trb;
|
|
int start_cycle;
|
|
u32 field, length_field;
|
|
int running_total, trb_buff_len, td_len, td_remain_len, ret;
|
|
u64 start_addr, addr;
|
|
int i, j;
|
|
bool more_trbs_coming;
|
|
|
|
ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
|
|
|
|
num_tds = urb->number_of_packets;
|
|
if (num_tds < 1) {
|
|
xhci_dbg(xhci, "Isoc URB with zero packets?\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
start_addr = (u64) urb->transfer_dma;
|
|
start_trb = &ep_ring->enqueue->generic;
|
|
start_cycle = ep_ring->cycle_state;
|
|
|
|
urb_priv = urb->hcpriv;
|
|
/* Queue the first TRB, even if it's zero-length */
|
|
for (i = 0; i < num_tds; i++) {
|
|
unsigned int total_packet_count;
|
|
unsigned int burst_count;
|
|
unsigned int residue;
|
|
|
|
first_trb = true;
|
|
running_total = 0;
|
|
addr = start_addr + urb->iso_frame_desc[i].offset;
|
|
td_len = urb->iso_frame_desc[i].length;
|
|
td_remain_len = td_len;
|
|
total_packet_count = DIV_ROUND_UP(td_len,
|
|
GET_MAX_PACKET(
|
|
usb_endpoint_maxp(&urb->ep->desc)));
|
|
/* A zero-length transfer still involves at least one packet. */
|
|
if (total_packet_count == 0)
|
|
total_packet_count++;
|
|
burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
|
|
total_packet_count);
|
|
residue = xhci_get_last_burst_packet_count(xhci,
|
|
urb->dev, urb, total_packet_count);
|
|
|
|
trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
|
|
|
|
ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
|
|
urb->stream_id, trbs_per_td, urb, i, mem_flags);
|
|
if (ret < 0) {
|
|
if (i == 0)
|
|
return ret;
|
|
goto cleanup;
|
|
}
|
|
|
|
td = urb_priv->td[i];
|
|
for (j = 0; j < trbs_per_td; j++) {
|
|
u32 remainder = 0;
|
|
field = 0;
|
|
|
|
if (first_trb) {
|
|
field = TRB_TBC(burst_count) |
|
|
TRB_TLBPC(residue);
|
|
/* Queue the isoc TRB */
|
|
field |= TRB_TYPE(TRB_ISOC);
|
|
/* Assume URB_ISO_ASAP is set */
|
|
field |= TRB_SIA;
|
|
if (i == 0) {
|
|
if (start_cycle == 0)
|
|
field |= 0x1;
|
|
} else
|
|
field |= ep_ring->cycle_state;
|
|
first_trb = false;
|
|
} else {
|
|
/* Queue other normal TRBs */
|
|
field |= TRB_TYPE(TRB_NORMAL);
|
|
field |= ep_ring->cycle_state;
|
|
}
|
|
|
|
/* Only set interrupt on short packet for IN EPs */
|
|
if (usb_urb_dir_in(urb))
|
|
field |= TRB_ISP;
|
|
|
|
/* Chain all the TRBs together; clear the chain bit in
|
|
* the last TRB to indicate it's the last TRB in the
|
|
* chain.
|
|
*/
|
|
if (j < trbs_per_td - 1) {
|
|
field |= TRB_CHAIN;
|
|
more_trbs_coming = true;
|
|
} else {
|
|
td->last_trb = ep_ring->enqueue;
|
|
field |= TRB_IOC;
|
|
if (xhci->hci_version == 0x100 &&
|
|
!(xhci->quirks &
|
|
XHCI_AVOID_BEI)) {
|
|
/* Set BEI bit except for the last td */
|
|
if (i < num_tds - 1)
|
|
field |= TRB_BEI;
|
|
}
|
|
more_trbs_coming = false;
|
|
}
|
|
|
|
/* Calculate TRB length */
|
|
trb_buff_len = TRB_MAX_BUFF_SIZE -
|
|
(addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
|
|
if (trb_buff_len > td_remain_len)
|
|
trb_buff_len = td_remain_len;
|
|
|
|
/* Set the TRB length, TD size, & interrupter fields. */
|
|
if (xhci->hci_version < 0x100) {
|
|
remainder = xhci_td_remainder(
|
|
td_len - running_total);
|
|
} else {
|
|
remainder = xhci_v1_0_td_remainder(
|
|
running_total, trb_buff_len,
|
|
total_packet_count, urb,
|
|
(trbs_per_td - j - 1));
|
|
}
|
|
length_field = TRB_LEN(trb_buff_len) |
|
|
remainder |
|
|
TRB_INTR_TARGET(0);
|
|
|
|
queue_trb(xhci, ep_ring, more_trbs_coming,
|
|
lower_32_bits(addr),
|
|
upper_32_bits(addr),
|
|
length_field,
|
|
field);
|
|
running_total += trb_buff_len;
|
|
|
|
addr += trb_buff_len;
|
|
td_remain_len -= trb_buff_len;
|
|
}
|
|
|
|
/* Check TD length */
|
|
if (running_total != td_len) {
|
|
xhci_err(xhci, "ISOC TD length unmatch\n");
|
|
ret = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
|
|
if (xhci->quirks & XHCI_AMD_PLL_FIX)
|
|
usb_amd_quirk_pll_disable();
|
|
}
|
|
xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
|
|
|
|
giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
|
|
start_cycle, start_trb);
|
|
return 0;
|
|
cleanup:
|
|
/* Clean up a partially enqueued isoc transfer. */
|
|
|
|
for (i--; i >= 0; i--)
|
|
list_del_init(&urb_priv->td[i]->td_list);
|
|
|
|
/* Use the first TD as a temporary variable to turn the TDs we've queued
|
|
* into No-ops with a software-owned cycle bit. That way the hardware
|
|
* won't accidentally start executing bogus TDs when we partially
|
|
* overwrite them. td->first_trb and td->start_seg are already set.
|
|
*/
|
|
urb_priv->td[0]->last_trb = ep_ring->enqueue;
|
|
/* Every TRB except the first & last will have its cycle bit flipped. */
|
|
td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
|
|
|
|
/* Reset the ring enqueue back to the first TRB and its cycle bit. */
|
|
ep_ring->enqueue = urb_priv->td[0]->first_trb;
|
|
ep_ring->enq_seg = urb_priv->td[0]->start_seg;
|
|
ep_ring->cycle_state = start_cycle;
|
|
ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
|
|
usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check transfer ring to guarantee there is enough room for the urb.
|
|
* Update ISO URB start_frame and interval.
|
|
* Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
|
|
* update the urb->start_frame by now.
|
|
* Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
|
|
*/
|
|
int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
|
|
struct urb *urb, int slot_id, unsigned int ep_index)
|
|
{
|
|
struct xhci_virt_device *xdev;
|
|
struct xhci_ring *ep_ring;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
int start_frame;
|
|
int xhci_interval;
|
|
int ep_interval;
|
|
int num_tds, num_trbs, i;
|
|
int ret;
|
|
|
|
xdev = xhci->devs[slot_id];
|
|
ep_ring = xdev->eps[ep_index].ring;
|
|
ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
|
|
|
|
num_trbs = 0;
|
|
num_tds = urb->number_of_packets;
|
|
for (i = 0; i < num_tds; i++)
|
|
num_trbs += count_isoc_trbs_needed(xhci, urb, i);
|
|
|
|
/* Check the ring to guarantee there is enough room for the whole urb.
|
|
* Do not insert any td of the urb to the ring if the check failed.
|
|
*/
|
|
ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
|
|
num_trbs, mem_flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
start_frame = readl(&xhci->run_regs->microframe_index);
|
|
start_frame &= 0x3fff;
|
|
|
|
urb->start_frame = start_frame;
|
|
if (urb->dev->speed == USB_SPEED_LOW ||
|
|
urb->dev->speed == USB_SPEED_FULL)
|
|
urb->start_frame >>= 3;
|
|
|
|
xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
|
|
ep_interval = urb->interval;
|
|
/* Convert to microframes */
|
|
if (urb->dev->speed == USB_SPEED_LOW ||
|
|
urb->dev->speed == USB_SPEED_FULL)
|
|
ep_interval *= 8;
|
|
/* FIXME change this to a warning and a suggestion to use the new API
|
|
* to set the polling interval (once the API is added).
|
|
*/
|
|
if (xhci_interval != ep_interval) {
|
|
dev_dbg_ratelimited(&urb->dev->dev,
|
|
"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
|
|
ep_interval, ep_interval == 1 ? "" : "s",
|
|
xhci_interval, xhci_interval == 1 ? "" : "s");
|
|
urb->interval = xhci_interval;
|
|
/* Convert back to frames for LS/FS devices */
|
|
if (urb->dev->speed == USB_SPEED_LOW ||
|
|
urb->dev->speed == USB_SPEED_FULL)
|
|
urb->interval /= 8;
|
|
}
|
|
ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
|
|
|
|
return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
|
|
}
|
|
|
|
/**** Command Ring Operations ****/
|
|
|
|
/* Generic function for queueing a command TRB on the command ring.
|
|
* Check to make sure there's room on the command ring for one command TRB.
|
|
* Also check that there's room reserved for commands that must not fail.
|
|
* If this is a command that must not fail, meaning command_must_succeed = TRUE,
|
|
* then only check for the number of reserved spots.
|
|
* Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
|
|
* because the command event handler may want to resubmit a failed command.
|
|
*/
|
|
static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
u32 field1, u32 field2,
|
|
u32 field3, u32 field4, bool command_must_succeed)
|
|
{
|
|
int reserved_trbs = xhci->cmd_ring_reserved_trbs;
|
|
int ret;
|
|
if (xhci->xhc_state & XHCI_STATE_DYING)
|
|
return -ESHUTDOWN;
|
|
|
|
if (!command_must_succeed)
|
|
reserved_trbs++;
|
|
|
|
ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
|
|
reserved_trbs, GFP_ATOMIC);
|
|
if (ret < 0) {
|
|
xhci_err(xhci, "ERR: No room for command on command ring\n");
|
|
if (command_must_succeed)
|
|
xhci_err(xhci, "ERR: Reserved TRB counting for "
|
|
"unfailable commands failed.\n");
|
|
return ret;
|
|
}
|
|
|
|
cmd->command_trb = xhci->cmd_ring->enqueue;
|
|
list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
|
|
|
|
/* if there are no other commands queued we start the timeout timer */
|
|
if (xhci->cmd_list.next == &cmd->cmd_list &&
|
|
!timer_pending(&xhci->cmd_timer)) {
|
|
xhci->current_cmd = cmd;
|
|
mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
|
|
}
|
|
|
|
queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
|
|
field4 | xhci->cmd_ring->cycle_state);
|
|
return 0;
|
|
}
|
|
|
|
/* Queue a slot enable or disable request on the command ring */
|
|
int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
u32 trb_type, u32 slot_id)
|
|
{
|
|
return queue_command(xhci, cmd, 0, 0, 0,
|
|
TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
|
|
}
|
|
|
|
/* Queue an address device command TRB */
|
|
int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
|
|
{
|
|
return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
|
|
upper_32_bits(in_ctx_ptr), 0,
|
|
TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
|
|
| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
|
|
}
|
|
|
|
int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
u32 field1, u32 field2, u32 field3, u32 field4)
|
|
{
|
|
return queue_command(xhci, cmd, field1, field2, field3, field4, false);
|
|
}
|
|
|
|
/* Queue a reset device command TRB */
|
|
int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
u32 slot_id)
|
|
{
|
|
return queue_command(xhci, cmd, 0, 0, 0,
|
|
TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
|
|
false);
|
|
}
|
|
|
|
/* Queue a configure endpoint command TRB */
|
|
int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
|
|
struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
|
|
u32 slot_id, bool command_must_succeed)
|
|
{
|
|
return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
|
|
upper_32_bits(in_ctx_ptr), 0,
|
|
TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
|
|
command_must_succeed);
|
|
}
|
|
|
|
/* Queue an evaluate context command TRB */
|
|
int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
|
|
{
|
|
return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
|
|
upper_32_bits(in_ctx_ptr), 0,
|
|
TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
|
|
command_must_succeed);
|
|
}
|
|
|
|
/*
|
|
* Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
|
|
* activity on an endpoint that is about to be suspended.
|
|
*/
|
|
int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
int slot_id, unsigned int ep_index, int suspend)
|
|
{
|
|
u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
|
|
u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
|
|
u32 type = TRB_TYPE(TRB_STOP_RING);
|
|
u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
|
|
|
|
return queue_command(xhci, cmd, 0, 0, 0,
|
|
trb_slot_id | trb_ep_index | type | trb_suspend, false);
|
|
}
|
|
|
|
/* Set Transfer Ring Dequeue Pointer command */
|
|
void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
|
|
unsigned int slot_id, unsigned int ep_index,
|
|
unsigned int stream_id,
|
|
struct xhci_dequeue_state *deq_state)
|
|
{
|
|
dma_addr_t addr;
|
|
u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
|
|
u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
|
|
u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
|
|
u32 trb_sct = 0;
|
|
u32 type = TRB_TYPE(TRB_SET_DEQ);
|
|
struct xhci_virt_ep *ep;
|
|
struct xhci_command *cmd;
|
|
int ret;
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
|
|
deq_state->new_deq_seg,
|
|
(unsigned long long)deq_state->new_deq_seg->dma,
|
|
deq_state->new_deq_ptr,
|
|
(unsigned long long)xhci_trb_virt_to_dma(
|
|
deq_state->new_deq_seg, deq_state->new_deq_ptr),
|
|
deq_state->new_cycle_state);
|
|
|
|
addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
|
|
deq_state->new_deq_ptr);
|
|
if (addr == 0) {
|
|
xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
|
|
xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
|
|
deq_state->new_deq_seg, deq_state->new_deq_ptr);
|
|
return;
|
|
}
|
|
ep = &xhci->devs[slot_id]->eps[ep_index];
|
|
if ((ep->ep_state & SET_DEQ_PENDING)) {
|
|
xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
|
|
xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
|
|
return;
|
|
}
|
|
|
|
/* This function gets called from contexts where it cannot sleep */
|
|
cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
|
|
if (!cmd) {
|
|
xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
|
|
return;
|
|
}
|
|
|
|
ep->queued_deq_seg = deq_state->new_deq_seg;
|
|
ep->queued_deq_ptr = deq_state->new_deq_ptr;
|
|
if (stream_id)
|
|
trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
|
|
ret = queue_command(xhci, cmd,
|
|
lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
|
|
upper_32_bits(addr), trb_stream_id,
|
|
trb_slot_id | trb_ep_index | type, false);
|
|
if (ret < 0) {
|
|
xhci_free_command(xhci, cmd);
|
|
return;
|
|
}
|
|
|
|
/* Stop the TD queueing code from ringing the doorbell until
|
|
* this command completes. The HC won't set the dequeue pointer
|
|
* if the ring is running, and ringing the doorbell starts the
|
|
* ring running.
|
|
*/
|
|
ep->ep_state |= SET_DEQ_PENDING;
|
|
}
|
|
|
|
int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
int slot_id, unsigned int ep_index)
|
|
{
|
|
u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
|
|
u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
|
|
u32 type = TRB_TYPE(TRB_RESET_EP);
|
|
|
|
return queue_command(xhci, cmd, 0, 0, 0,
|
|
trb_slot_id | trb_ep_index | type, false);
|
|
}
|