mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 07:09:21 +07:00
94e6108803
Vital Product Data (VPD) may be exposed by PCI devices in several ways. It is generally unsafe to read this information through the existing interfaces to user-land because of stateful interfaces. This adds: - abstract operations for VPD access (struct pci_vpd_ops) - VPD state information in struct pci_dev (struct pci_vpd) - an implementation of the VPD access method specified in PCI 2.2 (in access.c) - a 'vpd' binary file in sysfs directories for PCI devices with VPD operations defined It adds a probe for PCI 2.2 VPD in pci_scan_device() and release of VPD state in pci_release_dev(). Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
340 lines
8.4 KiB
C
340 lines
8.4 KiB
C
#include <linux/delay.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/wait.h>
|
|
|
|
#include "pci.h"
|
|
|
|
/*
|
|
* This interrupt-safe spinlock protects all accesses to PCI
|
|
* configuration space.
|
|
*/
|
|
|
|
static DEFINE_SPINLOCK(pci_lock);
|
|
|
|
/*
|
|
* Wrappers for all PCI configuration access functions. They just check
|
|
* alignment, do locking and call the low-level functions pointed to
|
|
* by pci_dev->ops.
|
|
*/
|
|
|
|
#define PCI_byte_BAD 0
|
|
#define PCI_word_BAD (pos & 1)
|
|
#define PCI_dword_BAD (pos & 3)
|
|
|
|
#define PCI_OP_READ(size,type,len) \
|
|
int pci_bus_read_config_##size \
|
|
(struct pci_bus *bus, unsigned int devfn, int pos, type *value) \
|
|
{ \
|
|
int res; \
|
|
unsigned long flags; \
|
|
u32 data = 0; \
|
|
if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
|
|
spin_lock_irqsave(&pci_lock, flags); \
|
|
res = bus->ops->read(bus, devfn, pos, len, &data); \
|
|
*value = (type)data; \
|
|
spin_unlock_irqrestore(&pci_lock, flags); \
|
|
return res; \
|
|
}
|
|
|
|
#define PCI_OP_WRITE(size,type,len) \
|
|
int pci_bus_write_config_##size \
|
|
(struct pci_bus *bus, unsigned int devfn, int pos, type value) \
|
|
{ \
|
|
int res; \
|
|
unsigned long flags; \
|
|
if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
|
|
spin_lock_irqsave(&pci_lock, flags); \
|
|
res = bus->ops->write(bus, devfn, pos, len, value); \
|
|
spin_unlock_irqrestore(&pci_lock, flags); \
|
|
return res; \
|
|
}
|
|
|
|
PCI_OP_READ(byte, u8, 1)
|
|
PCI_OP_READ(word, u16, 2)
|
|
PCI_OP_READ(dword, u32, 4)
|
|
PCI_OP_WRITE(byte, u8, 1)
|
|
PCI_OP_WRITE(word, u16, 2)
|
|
PCI_OP_WRITE(dword, u32, 4)
|
|
|
|
EXPORT_SYMBOL(pci_bus_read_config_byte);
|
|
EXPORT_SYMBOL(pci_bus_read_config_word);
|
|
EXPORT_SYMBOL(pci_bus_read_config_dword);
|
|
EXPORT_SYMBOL(pci_bus_write_config_byte);
|
|
EXPORT_SYMBOL(pci_bus_write_config_word);
|
|
EXPORT_SYMBOL(pci_bus_write_config_dword);
|
|
|
|
/*
|
|
* The following routines are to prevent the user from accessing PCI config
|
|
* space when it's unsafe to do so. Some devices require this during BIST and
|
|
* we're required to prevent it during D-state transitions.
|
|
*
|
|
* We have a bit per device to indicate it's blocked and a global wait queue
|
|
* for callers to sleep on until devices are unblocked.
|
|
*/
|
|
static DECLARE_WAIT_QUEUE_HEAD(pci_ucfg_wait);
|
|
|
|
static noinline void pci_wait_ucfg(struct pci_dev *dev)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
__add_wait_queue(&pci_ucfg_wait, &wait);
|
|
do {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
spin_unlock_irq(&pci_lock);
|
|
schedule();
|
|
spin_lock_irq(&pci_lock);
|
|
} while (dev->block_ucfg_access);
|
|
__remove_wait_queue(&pci_ucfg_wait, &wait);
|
|
}
|
|
|
|
#define PCI_USER_READ_CONFIG(size,type) \
|
|
int pci_user_read_config_##size \
|
|
(struct pci_dev *dev, int pos, type *val) \
|
|
{ \
|
|
int ret = 0; \
|
|
u32 data = -1; \
|
|
if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
|
|
spin_lock_irq(&pci_lock); \
|
|
if (unlikely(dev->block_ucfg_access)) pci_wait_ucfg(dev); \
|
|
ret = dev->bus->ops->read(dev->bus, dev->devfn, \
|
|
pos, sizeof(type), &data); \
|
|
spin_unlock_irq(&pci_lock); \
|
|
*val = (type)data; \
|
|
return ret; \
|
|
}
|
|
|
|
#define PCI_USER_WRITE_CONFIG(size,type) \
|
|
int pci_user_write_config_##size \
|
|
(struct pci_dev *dev, int pos, type val) \
|
|
{ \
|
|
int ret = -EIO; \
|
|
if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER; \
|
|
spin_lock_irq(&pci_lock); \
|
|
if (unlikely(dev->block_ucfg_access)) pci_wait_ucfg(dev); \
|
|
ret = dev->bus->ops->write(dev->bus, dev->devfn, \
|
|
pos, sizeof(type), val); \
|
|
spin_unlock_irq(&pci_lock); \
|
|
return ret; \
|
|
}
|
|
|
|
PCI_USER_READ_CONFIG(byte, u8)
|
|
PCI_USER_READ_CONFIG(word, u16)
|
|
PCI_USER_READ_CONFIG(dword, u32)
|
|
PCI_USER_WRITE_CONFIG(byte, u8)
|
|
PCI_USER_WRITE_CONFIG(word, u16)
|
|
PCI_USER_WRITE_CONFIG(dword, u32)
|
|
|
|
/* VPD access through PCI 2.2+ VPD capability */
|
|
|
|
#define PCI_VPD_PCI22_SIZE (PCI_VPD_ADDR_MASK + 1)
|
|
|
|
struct pci_vpd_pci22 {
|
|
struct pci_vpd base;
|
|
spinlock_t lock; /* controls access to hardware and the flags */
|
|
u8 cap;
|
|
bool busy;
|
|
bool flag; /* value of F bit to wait for */
|
|
};
|
|
|
|
/* Wait for last operation to complete */
|
|
static int pci_vpd_pci22_wait(struct pci_dev *dev)
|
|
{
|
|
struct pci_vpd_pci22 *vpd =
|
|
container_of(dev->vpd, struct pci_vpd_pci22, base);
|
|
u16 flag, status;
|
|
int wait;
|
|
int ret;
|
|
|
|
if (!vpd->busy)
|
|
return 0;
|
|
|
|
flag = vpd->flag ? PCI_VPD_ADDR_F : 0;
|
|
wait = vpd->flag ? 10 : 1000; /* read: 100 us; write: 10 ms */
|
|
for (;;) {
|
|
ret = pci_user_read_config_word(dev,
|
|
vpd->cap + PCI_VPD_ADDR,
|
|
&status);
|
|
if (ret < 0)
|
|
return ret;
|
|
if ((status & PCI_VPD_ADDR_F) == flag) {
|
|
vpd->busy = false;
|
|
return 0;
|
|
}
|
|
if (wait-- == 0)
|
|
return -ETIMEDOUT;
|
|
udelay(10);
|
|
}
|
|
}
|
|
|
|
static int pci_vpd_pci22_read(struct pci_dev *dev, int pos, int size,
|
|
char *buf)
|
|
{
|
|
struct pci_vpd_pci22 *vpd =
|
|
container_of(dev->vpd, struct pci_vpd_pci22, base);
|
|
u32 val;
|
|
int ret;
|
|
int begin, end, i;
|
|
|
|
if (pos < 0 || pos > PCI_VPD_PCI22_SIZE ||
|
|
size > PCI_VPD_PCI22_SIZE - pos)
|
|
return -EINVAL;
|
|
if (size == 0)
|
|
return 0;
|
|
|
|
spin_lock_irq(&vpd->lock);
|
|
ret = pci_vpd_pci22_wait(dev);
|
|
if (ret < 0)
|
|
goto out;
|
|
ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
|
|
pos & ~3);
|
|
if (ret < 0)
|
|
goto out;
|
|
vpd->busy = true;
|
|
vpd->flag = 1;
|
|
ret = pci_vpd_pci22_wait(dev);
|
|
if (ret < 0)
|
|
goto out;
|
|
ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA,
|
|
&val);
|
|
out:
|
|
spin_unlock_irq(&vpd->lock);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Convert to bytes */
|
|
begin = pos & 3;
|
|
end = min(4, begin + size);
|
|
for (i = 0; i < end; ++i) {
|
|
if (i >= begin)
|
|
*buf++ = val;
|
|
val >>= 8;
|
|
}
|
|
return end - begin;
|
|
}
|
|
|
|
static int pci_vpd_pci22_write(struct pci_dev *dev, int pos, int size,
|
|
const char *buf)
|
|
{
|
|
struct pci_vpd_pci22 *vpd =
|
|
container_of(dev->vpd, struct pci_vpd_pci22, base);
|
|
u32 val;
|
|
int ret;
|
|
|
|
if (pos < 0 || pos > PCI_VPD_PCI22_SIZE || pos & 3 ||
|
|
size > PCI_VPD_PCI22_SIZE - pos || size < 4)
|
|
return -EINVAL;
|
|
|
|
val = (u8) *buf++;
|
|
val |= ((u8) *buf++) << 8;
|
|
val |= ((u8) *buf++) << 16;
|
|
val |= ((u32)(u8) *buf++) << 24;
|
|
|
|
spin_lock_irq(&vpd->lock);
|
|
ret = pci_vpd_pci22_wait(dev);
|
|
if (ret < 0)
|
|
goto out;
|
|
ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA,
|
|
val);
|
|
if (ret < 0)
|
|
goto out;
|
|
ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
|
|
pos | PCI_VPD_ADDR_F);
|
|
if (ret < 0)
|
|
goto out;
|
|
vpd->busy = true;
|
|
vpd->flag = 0;
|
|
ret = pci_vpd_pci22_wait(dev);
|
|
out:
|
|
spin_unlock_irq(&vpd->lock);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 4;
|
|
}
|
|
|
|
static int pci_vpd_pci22_get_size(struct pci_dev *dev)
|
|
{
|
|
return PCI_VPD_PCI22_SIZE;
|
|
}
|
|
|
|
static void pci_vpd_pci22_release(struct pci_dev *dev)
|
|
{
|
|
kfree(container_of(dev->vpd, struct pci_vpd_pci22, base));
|
|
}
|
|
|
|
static struct pci_vpd_ops pci_vpd_pci22_ops = {
|
|
.read = pci_vpd_pci22_read,
|
|
.write = pci_vpd_pci22_write,
|
|
.get_size = pci_vpd_pci22_get_size,
|
|
.release = pci_vpd_pci22_release,
|
|
};
|
|
|
|
int pci_vpd_pci22_init(struct pci_dev *dev)
|
|
{
|
|
struct pci_vpd_pci22 *vpd;
|
|
u8 cap;
|
|
|
|
cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
|
|
if (!cap)
|
|
return -ENODEV;
|
|
vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
|
|
if (!vpd)
|
|
return -ENOMEM;
|
|
|
|
vpd->base.ops = &pci_vpd_pci22_ops;
|
|
spin_lock_init(&vpd->lock);
|
|
vpd->cap = cap;
|
|
vpd->busy = false;
|
|
dev->vpd = &vpd->base;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pci_block_user_cfg_access - Block userspace PCI config reads/writes
|
|
* @dev: pci device struct
|
|
*
|
|
* When user access is blocked, any reads or writes to config space will
|
|
* sleep until access is unblocked again. We don't allow nesting of
|
|
* block/unblock calls.
|
|
*/
|
|
void pci_block_user_cfg_access(struct pci_dev *dev)
|
|
{
|
|
unsigned long flags;
|
|
int was_blocked;
|
|
|
|
spin_lock_irqsave(&pci_lock, flags);
|
|
was_blocked = dev->block_ucfg_access;
|
|
dev->block_ucfg_access = 1;
|
|
spin_unlock_irqrestore(&pci_lock, flags);
|
|
|
|
/* If we BUG() inside the pci_lock, we're guaranteed to hose
|
|
* the machine */
|
|
BUG_ON(was_blocked);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_block_user_cfg_access);
|
|
|
|
/**
|
|
* pci_unblock_user_cfg_access - Unblock userspace PCI config reads/writes
|
|
* @dev: pci device struct
|
|
*
|
|
* This function allows userspace PCI config accesses to resume.
|
|
*/
|
|
void pci_unblock_user_cfg_access(struct pci_dev *dev)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pci_lock, flags);
|
|
|
|
/* This indicates a problem in the caller, but we don't need
|
|
* to kill them, unlike a double-block above. */
|
|
WARN_ON(!dev->block_ucfg_access);
|
|
|
|
dev->block_ucfg_access = 0;
|
|
wake_up_all(&pci_ucfg_wait);
|
|
spin_unlock_irqrestore(&pci_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_unblock_user_cfg_access);
|