mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 18:59:39 +07:00
c84d949057
In UDP RX handler, we currently clear skb->dev before skb is added to receive queue, because device pointer is no longer available once we exit from RCU section. Since this first cache line is always hot, lets reuse this space to store skb->truesize and thus avoid a cache line miss at udp_recvmsg()/udp_skb_destructor time while receive queue spinlock is held. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
3891 lines
111 KiB
C
3891 lines
111 KiB
C
/*
|
|
* Definitions for the 'struct sk_buff' memory handlers.
|
|
*
|
|
* Authors:
|
|
* Alan Cox, <gw4pts@gw4pts.ampr.org>
|
|
* Florian La Roche, <rzsfl@rz.uni-sb.de>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#ifndef _LINUX_SKBUFF_H
|
|
#define _LINUX_SKBUFF_H
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/kmemcheck.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/time.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/socket.h>
|
|
|
|
#include <linux/atomic.h>
|
|
#include <asm/types.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/net.h>
|
|
#include <linux/textsearch.h>
|
|
#include <net/checksum.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/netdev_features.h>
|
|
#include <linux/sched.h>
|
|
#include <net/flow_dissector.h>
|
|
#include <linux/splice.h>
|
|
#include <linux/in6.h>
|
|
#include <linux/if_packet.h>
|
|
#include <net/flow.h>
|
|
|
|
/* The interface for checksum offload between the stack and networking drivers
|
|
* is as follows...
|
|
*
|
|
* A. IP checksum related features
|
|
*
|
|
* Drivers advertise checksum offload capabilities in the features of a device.
|
|
* From the stack's point of view these are capabilities offered by the driver,
|
|
* a driver typically only advertises features that it is capable of offloading
|
|
* to its device.
|
|
*
|
|
* The checksum related features are:
|
|
*
|
|
* NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
|
|
* IP (one's complement) checksum for any combination
|
|
* of protocols or protocol layering. The checksum is
|
|
* computed and set in a packet per the CHECKSUM_PARTIAL
|
|
* interface (see below).
|
|
*
|
|
* NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
|
|
* TCP or UDP packets over IPv4. These are specifically
|
|
* unencapsulated packets of the form IPv4|TCP or
|
|
* IPv4|UDP where the Protocol field in the IPv4 header
|
|
* is TCP or UDP. The IPv4 header may contain IP options
|
|
* This feature cannot be set in features for a device
|
|
* with NETIF_F_HW_CSUM also set. This feature is being
|
|
* DEPRECATED (see below).
|
|
*
|
|
* NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
|
|
* TCP or UDP packets over IPv6. These are specifically
|
|
* unencapsulated packets of the form IPv6|TCP or
|
|
* IPv4|UDP where the Next Header field in the IPv6
|
|
* header is either TCP or UDP. IPv6 extension headers
|
|
* are not supported with this feature. This feature
|
|
* cannot be set in features for a device with
|
|
* NETIF_F_HW_CSUM also set. This feature is being
|
|
* DEPRECATED (see below).
|
|
*
|
|
* NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
|
|
* This flag is used only used to disable the RX checksum
|
|
* feature for a device. The stack will accept receive
|
|
* checksum indication in packets received on a device
|
|
* regardless of whether NETIF_F_RXCSUM is set.
|
|
*
|
|
* B. Checksumming of received packets by device. Indication of checksum
|
|
* verification is in set skb->ip_summed. Possible values are:
|
|
*
|
|
* CHECKSUM_NONE:
|
|
*
|
|
* Device did not checksum this packet e.g. due to lack of capabilities.
|
|
* The packet contains full (though not verified) checksum in packet but
|
|
* not in skb->csum. Thus, skb->csum is undefined in this case.
|
|
*
|
|
* CHECKSUM_UNNECESSARY:
|
|
*
|
|
* The hardware you're dealing with doesn't calculate the full checksum
|
|
* (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
|
|
* for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
|
|
* if their checksums are okay. skb->csum is still undefined in this case
|
|
* though. A driver or device must never modify the checksum field in the
|
|
* packet even if checksum is verified.
|
|
*
|
|
* CHECKSUM_UNNECESSARY is applicable to following protocols:
|
|
* TCP: IPv6 and IPv4.
|
|
* UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
|
|
* zero UDP checksum for either IPv4 or IPv6, the networking stack
|
|
* may perform further validation in this case.
|
|
* GRE: only if the checksum is present in the header.
|
|
* SCTP: indicates the CRC in SCTP header has been validated.
|
|
*
|
|
* skb->csum_level indicates the number of consecutive checksums found in
|
|
* the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
|
|
* For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
|
|
* and a device is able to verify the checksums for UDP (possibly zero),
|
|
* GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
|
|
* two. If the device were only able to verify the UDP checksum and not
|
|
* GRE, either because it doesn't support GRE checksum of because GRE
|
|
* checksum is bad, skb->csum_level would be set to zero (TCP checksum is
|
|
* not considered in this case).
|
|
*
|
|
* CHECKSUM_COMPLETE:
|
|
*
|
|
* This is the most generic way. The device supplied checksum of the _whole_
|
|
* packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
|
|
* hardware doesn't need to parse L3/L4 headers to implement this.
|
|
*
|
|
* Note: Even if device supports only some protocols, but is able to produce
|
|
* skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
|
|
*
|
|
* CHECKSUM_PARTIAL:
|
|
*
|
|
* A checksum is set up to be offloaded to a device as described in the
|
|
* output description for CHECKSUM_PARTIAL. This may occur on a packet
|
|
* received directly from another Linux OS, e.g., a virtualized Linux kernel
|
|
* on the same host, or it may be set in the input path in GRO or remote
|
|
* checksum offload. For the purposes of checksum verification, the checksum
|
|
* referred to by skb->csum_start + skb->csum_offset and any preceding
|
|
* checksums in the packet are considered verified. Any checksums in the
|
|
* packet that are after the checksum being offloaded are not considered to
|
|
* be verified.
|
|
*
|
|
* C. Checksumming on transmit for non-GSO. The stack requests checksum offload
|
|
* in the skb->ip_summed for a packet. Values are:
|
|
*
|
|
* CHECKSUM_PARTIAL:
|
|
*
|
|
* The driver is required to checksum the packet as seen by hard_start_xmit()
|
|
* from skb->csum_start up to the end, and to record/write the checksum at
|
|
* offset skb->csum_start + skb->csum_offset. A driver may verify that the
|
|
* csum_start and csum_offset values are valid values given the length and
|
|
* offset of the packet, however they should not attempt to validate that the
|
|
* checksum refers to a legitimate transport layer checksum-- it is the
|
|
* purview of the stack to validate that csum_start and csum_offset are set
|
|
* correctly.
|
|
*
|
|
* When the stack requests checksum offload for a packet, the driver MUST
|
|
* ensure that the checksum is set correctly. A driver can either offload the
|
|
* checksum calculation to the device, or call skb_checksum_help (in the case
|
|
* that the device does not support offload for a particular checksum).
|
|
*
|
|
* NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
|
|
* NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
|
|
* checksum offload capability. If a device has limited checksum capabilities
|
|
* (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
|
|
* described above) a helper function can be called to resolve
|
|
* CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
|
|
* function takes a spec argument that describes the protocol layer that is
|
|
* supported for checksum offload and can be called for each packet. If a
|
|
* packet does not match the specification for offload, skb_checksum_help
|
|
* is called to resolve the checksum.
|
|
*
|
|
* CHECKSUM_NONE:
|
|
*
|
|
* The skb was already checksummed by the protocol, or a checksum is not
|
|
* required.
|
|
*
|
|
* CHECKSUM_UNNECESSARY:
|
|
*
|
|
* This has the same meaning on as CHECKSUM_NONE for checksum offload on
|
|
* output.
|
|
*
|
|
* CHECKSUM_COMPLETE:
|
|
* Not used in checksum output. If a driver observes a packet with this value
|
|
* set in skbuff, if should treat as CHECKSUM_NONE being set.
|
|
*
|
|
* D. Non-IP checksum (CRC) offloads
|
|
*
|
|
* NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
|
|
* offloading the SCTP CRC in a packet. To perform this offload the stack
|
|
* will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
|
|
* accordingly. Note the there is no indication in the skbuff that the
|
|
* CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
|
|
* both IP checksum offload and SCTP CRC offload must verify which offload
|
|
* is configured for a packet presumably by inspecting packet headers.
|
|
*
|
|
* NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
|
|
* offloading the FCOE CRC in a packet. To perform this offload the stack
|
|
* will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
|
|
* accordingly. Note the there is no indication in the skbuff that the
|
|
* CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
|
|
* both IP checksum offload and FCOE CRC offload must verify which offload
|
|
* is configured for a packet presumably by inspecting packet headers.
|
|
*
|
|
* E. Checksumming on output with GSO.
|
|
*
|
|
* In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
|
|
* is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
|
|
* gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
|
|
* part of the GSO operation is implied. If a checksum is being offloaded
|
|
* with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
|
|
* are set to refer to the outermost checksum being offload (two offloaded
|
|
* checksums are possible with UDP encapsulation).
|
|
*/
|
|
|
|
/* Don't change this without changing skb_csum_unnecessary! */
|
|
#define CHECKSUM_NONE 0
|
|
#define CHECKSUM_UNNECESSARY 1
|
|
#define CHECKSUM_COMPLETE 2
|
|
#define CHECKSUM_PARTIAL 3
|
|
|
|
/* Maximum value in skb->csum_level */
|
|
#define SKB_MAX_CSUM_LEVEL 3
|
|
|
|
#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
|
|
#define SKB_WITH_OVERHEAD(X) \
|
|
((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
|
|
#define SKB_MAX_ORDER(X, ORDER) \
|
|
SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
|
|
#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
|
|
#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
|
|
|
|
/* return minimum truesize of one skb containing X bytes of data */
|
|
#define SKB_TRUESIZE(X) ((X) + \
|
|
SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
|
|
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
|
|
|
|
struct net_device;
|
|
struct scatterlist;
|
|
struct pipe_inode_info;
|
|
struct iov_iter;
|
|
struct napi_struct;
|
|
|
|
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
|
|
struct nf_conntrack {
|
|
atomic_t use;
|
|
};
|
|
#endif
|
|
|
|
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
|
|
struct nf_bridge_info {
|
|
atomic_t use;
|
|
enum {
|
|
BRNF_PROTO_UNCHANGED,
|
|
BRNF_PROTO_8021Q,
|
|
BRNF_PROTO_PPPOE
|
|
} orig_proto:8;
|
|
u8 pkt_otherhost:1;
|
|
u8 in_prerouting:1;
|
|
u8 bridged_dnat:1;
|
|
__u16 frag_max_size;
|
|
struct net_device *physindev;
|
|
|
|
/* always valid & non-NULL from FORWARD on, for physdev match */
|
|
struct net_device *physoutdev;
|
|
union {
|
|
/* prerouting: detect dnat in orig/reply direction */
|
|
__be32 ipv4_daddr;
|
|
struct in6_addr ipv6_daddr;
|
|
|
|
/* after prerouting + nat detected: store original source
|
|
* mac since neigh resolution overwrites it, only used while
|
|
* skb is out in neigh layer.
|
|
*/
|
|
char neigh_header[8];
|
|
};
|
|
};
|
|
#endif
|
|
|
|
struct sk_buff_head {
|
|
/* These two members must be first. */
|
|
struct sk_buff *next;
|
|
struct sk_buff *prev;
|
|
|
|
__u32 qlen;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
struct sk_buff;
|
|
|
|
/* To allow 64K frame to be packed as single skb without frag_list we
|
|
* require 64K/PAGE_SIZE pages plus 1 additional page to allow for
|
|
* buffers which do not start on a page boundary.
|
|
*
|
|
* Since GRO uses frags we allocate at least 16 regardless of page
|
|
* size.
|
|
*/
|
|
#if (65536/PAGE_SIZE + 1) < 16
|
|
#define MAX_SKB_FRAGS 16UL
|
|
#else
|
|
#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
|
|
#endif
|
|
extern int sysctl_max_skb_frags;
|
|
|
|
/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
|
|
* segment using its current segmentation instead.
|
|
*/
|
|
#define GSO_BY_FRAGS 0xFFFF
|
|
|
|
typedef struct skb_frag_struct skb_frag_t;
|
|
|
|
struct skb_frag_struct {
|
|
struct {
|
|
struct page *p;
|
|
} page;
|
|
#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
|
|
__u32 page_offset;
|
|
__u32 size;
|
|
#else
|
|
__u16 page_offset;
|
|
__u16 size;
|
|
#endif
|
|
};
|
|
|
|
static inline unsigned int skb_frag_size(const skb_frag_t *frag)
|
|
{
|
|
return frag->size;
|
|
}
|
|
|
|
static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
|
|
{
|
|
frag->size = size;
|
|
}
|
|
|
|
static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
|
|
{
|
|
frag->size += delta;
|
|
}
|
|
|
|
static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
|
|
{
|
|
frag->size -= delta;
|
|
}
|
|
|
|
#define HAVE_HW_TIME_STAMP
|
|
|
|
/**
|
|
* struct skb_shared_hwtstamps - hardware time stamps
|
|
* @hwtstamp: hardware time stamp transformed into duration
|
|
* since arbitrary point in time
|
|
*
|
|
* Software time stamps generated by ktime_get_real() are stored in
|
|
* skb->tstamp.
|
|
*
|
|
* hwtstamps can only be compared against other hwtstamps from
|
|
* the same device.
|
|
*
|
|
* This structure is attached to packets as part of the
|
|
* &skb_shared_info. Use skb_hwtstamps() to get a pointer.
|
|
*/
|
|
struct skb_shared_hwtstamps {
|
|
ktime_t hwtstamp;
|
|
};
|
|
|
|
/* Definitions for tx_flags in struct skb_shared_info */
|
|
enum {
|
|
/* generate hardware time stamp */
|
|
SKBTX_HW_TSTAMP = 1 << 0,
|
|
|
|
/* generate software time stamp when queueing packet to NIC */
|
|
SKBTX_SW_TSTAMP = 1 << 1,
|
|
|
|
/* device driver is going to provide hardware time stamp */
|
|
SKBTX_IN_PROGRESS = 1 << 2,
|
|
|
|
/* device driver supports TX zero-copy buffers */
|
|
SKBTX_DEV_ZEROCOPY = 1 << 3,
|
|
|
|
/* generate wifi status information (where possible) */
|
|
SKBTX_WIFI_STATUS = 1 << 4,
|
|
|
|
/* This indicates at least one fragment might be overwritten
|
|
* (as in vmsplice(), sendfile() ...)
|
|
* If we need to compute a TX checksum, we'll need to copy
|
|
* all frags to avoid possible bad checksum
|
|
*/
|
|
SKBTX_SHARED_FRAG = 1 << 5,
|
|
|
|
/* generate software time stamp when entering packet scheduling */
|
|
SKBTX_SCHED_TSTAMP = 1 << 6,
|
|
};
|
|
|
|
#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
|
|
SKBTX_SCHED_TSTAMP)
|
|
#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
|
|
|
|
/*
|
|
* The callback notifies userspace to release buffers when skb DMA is done in
|
|
* lower device, the skb last reference should be 0 when calling this.
|
|
* The zerocopy_success argument is true if zero copy transmit occurred,
|
|
* false on data copy or out of memory error caused by data copy attempt.
|
|
* The ctx field is used to track device context.
|
|
* The desc field is used to track userspace buffer index.
|
|
*/
|
|
struct ubuf_info {
|
|
void (*callback)(struct ubuf_info *, bool zerocopy_success);
|
|
void *ctx;
|
|
unsigned long desc;
|
|
};
|
|
|
|
/* This data is invariant across clones and lives at
|
|
* the end of the header data, ie. at skb->end.
|
|
*/
|
|
struct skb_shared_info {
|
|
unsigned char nr_frags;
|
|
__u8 tx_flags;
|
|
unsigned short gso_size;
|
|
/* Warning: this field is not always filled in (UFO)! */
|
|
unsigned short gso_segs;
|
|
unsigned short gso_type;
|
|
struct sk_buff *frag_list;
|
|
struct skb_shared_hwtstamps hwtstamps;
|
|
u32 tskey;
|
|
__be32 ip6_frag_id;
|
|
|
|
/*
|
|
* Warning : all fields before dataref are cleared in __alloc_skb()
|
|
*/
|
|
atomic_t dataref;
|
|
|
|
/* Intermediate layers must ensure that destructor_arg
|
|
* remains valid until skb destructor */
|
|
void * destructor_arg;
|
|
|
|
/* must be last field, see pskb_expand_head() */
|
|
skb_frag_t frags[MAX_SKB_FRAGS];
|
|
};
|
|
|
|
/* We divide dataref into two halves. The higher 16 bits hold references
|
|
* to the payload part of skb->data. The lower 16 bits hold references to
|
|
* the entire skb->data. A clone of a headerless skb holds the length of
|
|
* the header in skb->hdr_len.
|
|
*
|
|
* All users must obey the rule that the skb->data reference count must be
|
|
* greater than or equal to the payload reference count.
|
|
*
|
|
* Holding a reference to the payload part means that the user does not
|
|
* care about modifications to the header part of skb->data.
|
|
*/
|
|
#define SKB_DATAREF_SHIFT 16
|
|
#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
|
|
|
|
|
|
enum {
|
|
SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
|
|
SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
|
|
SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
|
|
};
|
|
|
|
enum {
|
|
SKB_GSO_TCPV4 = 1 << 0,
|
|
SKB_GSO_UDP = 1 << 1,
|
|
|
|
/* This indicates the skb is from an untrusted source. */
|
|
SKB_GSO_DODGY = 1 << 2,
|
|
|
|
/* This indicates the tcp segment has CWR set. */
|
|
SKB_GSO_TCP_ECN = 1 << 3,
|
|
|
|
SKB_GSO_TCP_FIXEDID = 1 << 4,
|
|
|
|
SKB_GSO_TCPV6 = 1 << 5,
|
|
|
|
SKB_GSO_FCOE = 1 << 6,
|
|
|
|
SKB_GSO_GRE = 1 << 7,
|
|
|
|
SKB_GSO_GRE_CSUM = 1 << 8,
|
|
|
|
SKB_GSO_IPXIP4 = 1 << 9,
|
|
|
|
SKB_GSO_IPXIP6 = 1 << 10,
|
|
|
|
SKB_GSO_UDP_TUNNEL = 1 << 11,
|
|
|
|
SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
|
|
|
|
SKB_GSO_PARTIAL = 1 << 13,
|
|
|
|
SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
|
|
|
|
SKB_GSO_SCTP = 1 << 15,
|
|
};
|
|
|
|
#if BITS_PER_LONG > 32
|
|
#define NET_SKBUFF_DATA_USES_OFFSET 1
|
|
#endif
|
|
|
|
#ifdef NET_SKBUFF_DATA_USES_OFFSET
|
|
typedef unsigned int sk_buff_data_t;
|
|
#else
|
|
typedef unsigned char *sk_buff_data_t;
|
|
#endif
|
|
|
|
/**
|
|
* struct skb_mstamp - multi resolution time stamps
|
|
* @stamp_us: timestamp in us resolution
|
|
* @stamp_jiffies: timestamp in jiffies
|
|
*/
|
|
struct skb_mstamp {
|
|
union {
|
|
u64 v64;
|
|
struct {
|
|
u32 stamp_us;
|
|
u32 stamp_jiffies;
|
|
};
|
|
};
|
|
};
|
|
|
|
/**
|
|
* skb_mstamp_get - get current timestamp
|
|
* @cl: place to store timestamps
|
|
*/
|
|
static inline void skb_mstamp_get(struct skb_mstamp *cl)
|
|
{
|
|
u64 val = local_clock();
|
|
|
|
do_div(val, NSEC_PER_USEC);
|
|
cl->stamp_us = (u32)val;
|
|
cl->stamp_jiffies = (u32)jiffies;
|
|
}
|
|
|
|
/**
|
|
* skb_mstamp_delta - compute the difference in usec between two skb_mstamp
|
|
* @t1: pointer to newest sample
|
|
* @t0: pointer to oldest sample
|
|
*/
|
|
static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
|
|
const struct skb_mstamp *t0)
|
|
{
|
|
s32 delta_us = t1->stamp_us - t0->stamp_us;
|
|
u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
|
|
|
|
/* If delta_us is negative, this might be because interval is too big,
|
|
* or local_clock() drift is too big : fallback using jiffies.
|
|
*/
|
|
if (delta_us <= 0 ||
|
|
delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
|
|
|
|
delta_us = jiffies_to_usecs(delta_jiffies);
|
|
|
|
return delta_us;
|
|
}
|
|
|
|
static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
|
|
const struct skb_mstamp *t0)
|
|
{
|
|
s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
|
|
|
|
if (!diff)
|
|
diff = t1->stamp_us - t0->stamp_us;
|
|
return diff > 0;
|
|
}
|
|
|
|
/**
|
|
* struct sk_buff - socket buffer
|
|
* @next: Next buffer in list
|
|
* @prev: Previous buffer in list
|
|
* @tstamp: Time we arrived/left
|
|
* @rbnode: RB tree node, alternative to next/prev for netem/tcp
|
|
* @sk: Socket we are owned by
|
|
* @dev: Device we arrived on/are leaving by
|
|
* @cb: Control buffer. Free for use by every layer. Put private vars here
|
|
* @_skb_refdst: destination entry (with norefcount bit)
|
|
* @sp: the security path, used for xfrm
|
|
* @len: Length of actual data
|
|
* @data_len: Data length
|
|
* @mac_len: Length of link layer header
|
|
* @hdr_len: writable header length of cloned skb
|
|
* @csum: Checksum (must include start/offset pair)
|
|
* @csum_start: Offset from skb->head where checksumming should start
|
|
* @csum_offset: Offset from csum_start where checksum should be stored
|
|
* @priority: Packet queueing priority
|
|
* @ignore_df: allow local fragmentation
|
|
* @cloned: Head may be cloned (check refcnt to be sure)
|
|
* @ip_summed: Driver fed us an IP checksum
|
|
* @nohdr: Payload reference only, must not modify header
|
|
* @nfctinfo: Relationship of this skb to the connection
|
|
* @pkt_type: Packet class
|
|
* @fclone: skbuff clone status
|
|
* @ipvs_property: skbuff is owned by ipvs
|
|
* @peeked: this packet has been seen already, so stats have been
|
|
* done for it, don't do them again
|
|
* @nf_trace: netfilter packet trace flag
|
|
* @protocol: Packet protocol from driver
|
|
* @destructor: Destruct function
|
|
* @nfct: Associated connection, if any
|
|
* @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
|
|
* @skb_iif: ifindex of device we arrived on
|
|
* @tc_index: Traffic control index
|
|
* @tc_verd: traffic control verdict
|
|
* @hash: the packet hash
|
|
* @queue_mapping: Queue mapping for multiqueue devices
|
|
* @xmit_more: More SKBs are pending for this queue
|
|
* @ndisc_nodetype: router type (from link layer)
|
|
* @ooo_okay: allow the mapping of a socket to a queue to be changed
|
|
* @l4_hash: indicate hash is a canonical 4-tuple hash over transport
|
|
* ports.
|
|
* @sw_hash: indicates hash was computed in software stack
|
|
* @wifi_acked_valid: wifi_acked was set
|
|
* @wifi_acked: whether frame was acked on wifi or not
|
|
* @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
|
|
* @napi_id: id of the NAPI struct this skb came from
|
|
* @secmark: security marking
|
|
* @mark: Generic packet mark
|
|
* @vlan_proto: vlan encapsulation protocol
|
|
* @vlan_tci: vlan tag control information
|
|
* @inner_protocol: Protocol (encapsulation)
|
|
* @inner_transport_header: Inner transport layer header (encapsulation)
|
|
* @inner_network_header: Network layer header (encapsulation)
|
|
* @inner_mac_header: Link layer header (encapsulation)
|
|
* @transport_header: Transport layer header
|
|
* @network_header: Network layer header
|
|
* @mac_header: Link layer header
|
|
* @tail: Tail pointer
|
|
* @end: End pointer
|
|
* @head: Head of buffer
|
|
* @data: Data head pointer
|
|
* @truesize: Buffer size
|
|
* @users: User count - see {datagram,tcp}.c
|
|
*/
|
|
|
|
struct sk_buff {
|
|
union {
|
|
struct {
|
|
/* These two members must be first. */
|
|
struct sk_buff *next;
|
|
struct sk_buff *prev;
|
|
|
|
union {
|
|
ktime_t tstamp;
|
|
struct skb_mstamp skb_mstamp;
|
|
};
|
|
};
|
|
struct rb_node rbnode; /* used in netem & tcp stack */
|
|
};
|
|
struct sock *sk;
|
|
|
|
union {
|
|
struct net_device *dev;
|
|
/* Some protocols might use this space to store information,
|
|
* while device pointer would be NULL.
|
|
* UDP receive path is one user.
|
|
*/
|
|
unsigned long dev_scratch;
|
|
};
|
|
/*
|
|
* This is the control buffer. It is free to use for every
|
|
* layer. Please put your private variables there. If you
|
|
* want to keep them across layers you have to do a skb_clone()
|
|
* first. This is owned by whoever has the skb queued ATM.
|
|
*/
|
|
char cb[48] __aligned(8);
|
|
|
|
unsigned long _skb_refdst;
|
|
void (*destructor)(struct sk_buff *skb);
|
|
#ifdef CONFIG_XFRM
|
|
struct sec_path *sp;
|
|
#endif
|
|
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
|
|
struct nf_conntrack *nfct;
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
|
|
struct nf_bridge_info *nf_bridge;
|
|
#endif
|
|
unsigned int len,
|
|
data_len;
|
|
__u16 mac_len,
|
|
hdr_len;
|
|
|
|
/* Following fields are _not_ copied in __copy_skb_header()
|
|
* Note that queue_mapping is here mostly to fill a hole.
|
|
*/
|
|
kmemcheck_bitfield_begin(flags1);
|
|
__u16 queue_mapping;
|
|
|
|
/* if you move cloned around you also must adapt those constants */
|
|
#ifdef __BIG_ENDIAN_BITFIELD
|
|
#define CLONED_MASK (1 << 7)
|
|
#else
|
|
#define CLONED_MASK 1
|
|
#endif
|
|
#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
|
|
|
|
__u8 __cloned_offset[0];
|
|
__u8 cloned:1,
|
|
nohdr:1,
|
|
fclone:2,
|
|
peeked:1,
|
|
head_frag:1,
|
|
xmit_more:1,
|
|
__unused:1; /* one bit hole */
|
|
kmemcheck_bitfield_end(flags1);
|
|
|
|
/* fields enclosed in headers_start/headers_end are copied
|
|
* using a single memcpy() in __copy_skb_header()
|
|
*/
|
|
/* private: */
|
|
__u32 headers_start[0];
|
|
/* public: */
|
|
|
|
/* if you move pkt_type around you also must adapt those constants */
|
|
#ifdef __BIG_ENDIAN_BITFIELD
|
|
#define PKT_TYPE_MAX (7 << 5)
|
|
#else
|
|
#define PKT_TYPE_MAX 7
|
|
#endif
|
|
#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
|
|
|
|
__u8 __pkt_type_offset[0];
|
|
__u8 pkt_type:3;
|
|
__u8 pfmemalloc:1;
|
|
__u8 ignore_df:1;
|
|
__u8 nfctinfo:3;
|
|
|
|
__u8 nf_trace:1;
|
|
__u8 ip_summed:2;
|
|
__u8 ooo_okay:1;
|
|
__u8 l4_hash:1;
|
|
__u8 sw_hash:1;
|
|
__u8 wifi_acked_valid:1;
|
|
__u8 wifi_acked:1;
|
|
|
|
__u8 no_fcs:1;
|
|
/* Indicates the inner headers are valid in the skbuff. */
|
|
__u8 encapsulation:1;
|
|
__u8 encap_hdr_csum:1;
|
|
__u8 csum_valid:1;
|
|
__u8 csum_complete_sw:1;
|
|
__u8 csum_level:2;
|
|
__u8 csum_bad:1;
|
|
|
|
#ifdef CONFIG_IPV6_NDISC_NODETYPE
|
|
__u8 ndisc_nodetype:2;
|
|
#endif
|
|
__u8 ipvs_property:1;
|
|
__u8 inner_protocol_type:1;
|
|
__u8 remcsum_offload:1;
|
|
#ifdef CONFIG_NET_SWITCHDEV
|
|
__u8 offload_fwd_mark:1;
|
|
#endif
|
|
/* 2, 4 or 5 bit hole */
|
|
|
|
#ifdef CONFIG_NET_SCHED
|
|
__u16 tc_index; /* traffic control index */
|
|
#ifdef CONFIG_NET_CLS_ACT
|
|
__u16 tc_verd; /* traffic control verdict */
|
|
#endif
|
|
#endif
|
|
|
|
union {
|
|
__wsum csum;
|
|
struct {
|
|
__u16 csum_start;
|
|
__u16 csum_offset;
|
|
};
|
|
};
|
|
__u32 priority;
|
|
int skb_iif;
|
|
__u32 hash;
|
|
__be16 vlan_proto;
|
|
__u16 vlan_tci;
|
|
#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
|
|
union {
|
|
unsigned int napi_id;
|
|
unsigned int sender_cpu;
|
|
};
|
|
#endif
|
|
#ifdef CONFIG_NETWORK_SECMARK
|
|
__u32 secmark;
|
|
#endif
|
|
|
|
union {
|
|
__u32 mark;
|
|
__u32 reserved_tailroom;
|
|
};
|
|
|
|
union {
|
|
__be16 inner_protocol;
|
|
__u8 inner_ipproto;
|
|
};
|
|
|
|
__u16 inner_transport_header;
|
|
__u16 inner_network_header;
|
|
__u16 inner_mac_header;
|
|
|
|
__be16 protocol;
|
|
__u16 transport_header;
|
|
__u16 network_header;
|
|
__u16 mac_header;
|
|
|
|
/* private: */
|
|
__u32 headers_end[0];
|
|
/* public: */
|
|
|
|
/* These elements must be at the end, see alloc_skb() for details. */
|
|
sk_buff_data_t tail;
|
|
sk_buff_data_t end;
|
|
unsigned char *head,
|
|
*data;
|
|
unsigned int truesize;
|
|
atomic_t users;
|
|
};
|
|
|
|
#ifdef __KERNEL__
|
|
/*
|
|
* Handling routines are only of interest to the kernel
|
|
*/
|
|
#include <linux/slab.h>
|
|
|
|
|
|
#define SKB_ALLOC_FCLONE 0x01
|
|
#define SKB_ALLOC_RX 0x02
|
|
#define SKB_ALLOC_NAPI 0x04
|
|
|
|
/* Returns true if the skb was allocated from PFMEMALLOC reserves */
|
|
static inline bool skb_pfmemalloc(const struct sk_buff *skb)
|
|
{
|
|
return unlikely(skb->pfmemalloc);
|
|
}
|
|
|
|
/*
|
|
* skb might have a dst pointer attached, refcounted or not.
|
|
* _skb_refdst low order bit is set if refcount was _not_ taken
|
|
*/
|
|
#define SKB_DST_NOREF 1UL
|
|
#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
|
|
|
|
/**
|
|
* skb_dst - returns skb dst_entry
|
|
* @skb: buffer
|
|
*
|
|
* Returns skb dst_entry, regardless of reference taken or not.
|
|
*/
|
|
static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
|
|
{
|
|
/* If refdst was not refcounted, check we still are in a
|
|
* rcu_read_lock section
|
|
*/
|
|
WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
|
|
!rcu_read_lock_held() &&
|
|
!rcu_read_lock_bh_held());
|
|
return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
|
|
}
|
|
|
|
/**
|
|
* skb_dst_set - sets skb dst
|
|
* @skb: buffer
|
|
* @dst: dst entry
|
|
*
|
|
* Sets skb dst, assuming a reference was taken on dst and should
|
|
* be released by skb_dst_drop()
|
|
*/
|
|
static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
|
|
{
|
|
skb->_skb_refdst = (unsigned long)dst;
|
|
}
|
|
|
|
/**
|
|
* skb_dst_set_noref - sets skb dst, hopefully, without taking reference
|
|
* @skb: buffer
|
|
* @dst: dst entry
|
|
*
|
|
* Sets skb dst, assuming a reference was not taken on dst.
|
|
* If dst entry is cached, we do not take reference and dst_release
|
|
* will be avoided by refdst_drop. If dst entry is not cached, we take
|
|
* reference, so that last dst_release can destroy the dst immediately.
|
|
*/
|
|
static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
|
|
{
|
|
WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
|
|
skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
|
|
}
|
|
|
|
/**
|
|
* skb_dst_is_noref - Test if skb dst isn't refcounted
|
|
* @skb: buffer
|
|
*/
|
|
static inline bool skb_dst_is_noref(const struct sk_buff *skb)
|
|
{
|
|
return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
|
|
}
|
|
|
|
static inline struct rtable *skb_rtable(const struct sk_buff *skb)
|
|
{
|
|
return (struct rtable *)skb_dst(skb);
|
|
}
|
|
|
|
/* For mangling skb->pkt_type from user space side from applications
|
|
* such as nft, tc, etc, we only allow a conservative subset of
|
|
* possible pkt_types to be set.
|
|
*/
|
|
static inline bool skb_pkt_type_ok(u32 ptype)
|
|
{
|
|
return ptype <= PACKET_OTHERHOST;
|
|
}
|
|
|
|
void kfree_skb(struct sk_buff *skb);
|
|
void kfree_skb_list(struct sk_buff *segs);
|
|
void skb_tx_error(struct sk_buff *skb);
|
|
void consume_skb(struct sk_buff *skb);
|
|
void __kfree_skb(struct sk_buff *skb);
|
|
extern struct kmem_cache *skbuff_head_cache;
|
|
|
|
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
|
|
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
|
|
bool *fragstolen, int *delta_truesize);
|
|
|
|
struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
|
|
int node);
|
|
struct sk_buff *__build_skb(void *data, unsigned int frag_size);
|
|
struct sk_buff *build_skb(void *data, unsigned int frag_size);
|
|
static inline struct sk_buff *alloc_skb(unsigned int size,
|
|
gfp_t priority)
|
|
{
|
|
return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
|
|
}
|
|
|
|
struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
|
|
unsigned long data_len,
|
|
int max_page_order,
|
|
int *errcode,
|
|
gfp_t gfp_mask);
|
|
|
|
/* Layout of fast clones : [skb1][skb2][fclone_ref] */
|
|
struct sk_buff_fclones {
|
|
struct sk_buff skb1;
|
|
|
|
struct sk_buff skb2;
|
|
|
|
atomic_t fclone_ref;
|
|
};
|
|
|
|
/**
|
|
* skb_fclone_busy - check if fclone is busy
|
|
* @sk: socket
|
|
* @skb: buffer
|
|
*
|
|
* Returns true if skb is a fast clone, and its clone is not freed.
|
|
* Some drivers call skb_orphan() in their ndo_start_xmit(),
|
|
* so we also check that this didnt happen.
|
|
*/
|
|
static inline bool skb_fclone_busy(const struct sock *sk,
|
|
const struct sk_buff *skb)
|
|
{
|
|
const struct sk_buff_fclones *fclones;
|
|
|
|
fclones = container_of(skb, struct sk_buff_fclones, skb1);
|
|
|
|
return skb->fclone == SKB_FCLONE_ORIG &&
|
|
atomic_read(&fclones->fclone_ref) > 1 &&
|
|
fclones->skb2.sk == sk;
|
|
}
|
|
|
|
static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
|
|
gfp_t priority)
|
|
{
|
|
return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
|
|
}
|
|
|
|
struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
|
|
static inline struct sk_buff *alloc_skb_head(gfp_t priority)
|
|
{
|
|
return __alloc_skb_head(priority, -1);
|
|
}
|
|
|
|
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
|
|
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
|
|
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
|
|
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
|
|
struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
|
|
gfp_t gfp_mask, bool fclone);
|
|
static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
|
|
gfp_t gfp_mask)
|
|
{
|
|
return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
|
|
}
|
|
|
|
int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
|
|
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
|
|
unsigned int headroom);
|
|
struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
|
|
int newtailroom, gfp_t priority);
|
|
int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
|
|
int offset, int len);
|
|
int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
|
|
int len);
|
|
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
|
|
int skb_pad(struct sk_buff *skb, int pad);
|
|
#define dev_kfree_skb(a) consume_skb(a)
|
|
|
|
int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
|
|
int getfrag(void *from, char *to, int offset,
|
|
int len, int odd, struct sk_buff *skb),
|
|
void *from, int length);
|
|
|
|
int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
|
|
int offset, size_t size);
|
|
|
|
struct skb_seq_state {
|
|
__u32 lower_offset;
|
|
__u32 upper_offset;
|
|
__u32 frag_idx;
|
|
__u32 stepped_offset;
|
|
struct sk_buff *root_skb;
|
|
struct sk_buff *cur_skb;
|
|
__u8 *frag_data;
|
|
};
|
|
|
|
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
|
|
unsigned int to, struct skb_seq_state *st);
|
|
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
|
|
struct skb_seq_state *st);
|
|
void skb_abort_seq_read(struct skb_seq_state *st);
|
|
|
|
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
|
|
unsigned int to, struct ts_config *config);
|
|
|
|
/*
|
|
* Packet hash types specify the type of hash in skb_set_hash.
|
|
*
|
|
* Hash types refer to the protocol layer addresses which are used to
|
|
* construct a packet's hash. The hashes are used to differentiate or identify
|
|
* flows of the protocol layer for the hash type. Hash types are either
|
|
* layer-2 (L2), layer-3 (L3), or layer-4 (L4).
|
|
*
|
|
* Properties of hashes:
|
|
*
|
|
* 1) Two packets in different flows have different hash values
|
|
* 2) Two packets in the same flow should have the same hash value
|
|
*
|
|
* A hash at a higher layer is considered to be more specific. A driver should
|
|
* set the most specific hash possible.
|
|
*
|
|
* A driver cannot indicate a more specific hash than the layer at which a hash
|
|
* was computed. For instance an L3 hash cannot be set as an L4 hash.
|
|
*
|
|
* A driver may indicate a hash level which is less specific than the
|
|
* actual layer the hash was computed on. For instance, a hash computed
|
|
* at L4 may be considered an L3 hash. This should only be done if the
|
|
* driver can't unambiguously determine that the HW computed the hash at
|
|
* the higher layer. Note that the "should" in the second property above
|
|
* permits this.
|
|
*/
|
|
enum pkt_hash_types {
|
|
PKT_HASH_TYPE_NONE, /* Undefined type */
|
|
PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
|
|
PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
|
|
PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
|
|
};
|
|
|
|
static inline void skb_clear_hash(struct sk_buff *skb)
|
|
{
|
|
skb->hash = 0;
|
|
skb->sw_hash = 0;
|
|
skb->l4_hash = 0;
|
|
}
|
|
|
|
static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
|
|
{
|
|
if (!skb->l4_hash)
|
|
skb_clear_hash(skb);
|
|
}
|
|
|
|
static inline void
|
|
__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
|
|
{
|
|
skb->l4_hash = is_l4;
|
|
skb->sw_hash = is_sw;
|
|
skb->hash = hash;
|
|
}
|
|
|
|
static inline void
|
|
skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
|
|
{
|
|
/* Used by drivers to set hash from HW */
|
|
__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
|
|
}
|
|
|
|
static inline void
|
|
__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
|
|
{
|
|
__skb_set_hash(skb, hash, true, is_l4);
|
|
}
|
|
|
|
void __skb_get_hash(struct sk_buff *skb);
|
|
u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
|
|
u32 skb_get_poff(const struct sk_buff *skb);
|
|
u32 __skb_get_poff(const struct sk_buff *skb, void *data,
|
|
const struct flow_keys *keys, int hlen);
|
|
__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
|
|
void *data, int hlen_proto);
|
|
|
|
static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
|
|
int thoff, u8 ip_proto)
|
|
{
|
|
return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
|
|
}
|
|
|
|
void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
|
|
const struct flow_dissector_key *key,
|
|
unsigned int key_count);
|
|
|
|
bool __skb_flow_dissect(const struct sk_buff *skb,
|
|
struct flow_dissector *flow_dissector,
|
|
void *target_container,
|
|
void *data, __be16 proto, int nhoff, int hlen,
|
|
unsigned int flags);
|
|
|
|
static inline bool skb_flow_dissect(const struct sk_buff *skb,
|
|
struct flow_dissector *flow_dissector,
|
|
void *target_container, unsigned int flags)
|
|
{
|
|
return __skb_flow_dissect(skb, flow_dissector, target_container,
|
|
NULL, 0, 0, 0, flags);
|
|
}
|
|
|
|
static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
|
|
struct flow_keys *flow,
|
|
unsigned int flags)
|
|
{
|
|
memset(flow, 0, sizeof(*flow));
|
|
return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
|
|
NULL, 0, 0, 0, flags);
|
|
}
|
|
|
|
static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
|
|
void *data, __be16 proto,
|
|
int nhoff, int hlen,
|
|
unsigned int flags)
|
|
{
|
|
memset(flow, 0, sizeof(*flow));
|
|
return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
|
|
data, proto, nhoff, hlen, flags);
|
|
}
|
|
|
|
static inline __u32 skb_get_hash(struct sk_buff *skb)
|
|
{
|
|
if (!skb->l4_hash && !skb->sw_hash)
|
|
__skb_get_hash(skb);
|
|
|
|
return skb->hash;
|
|
}
|
|
|
|
__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
|
|
|
|
static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
|
|
{
|
|
if (!skb->l4_hash && !skb->sw_hash) {
|
|
struct flow_keys keys;
|
|
__u32 hash = __get_hash_from_flowi6(fl6, &keys);
|
|
|
|
__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
|
|
}
|
|
|
|
return skb->hash;
|
|
}
|
|
|
|
__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
|
|
|
|
static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
|
|
{
|
|
if (!skb->l4_hash && !skb->sw_hash) {
|
|
struct flow_keys keys;
|
|
__u32 hash = __get_hash_from_flowi4(fl4, &keys);
|
|
|
|
__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
|
|
}
|
|
|
|
return skb->hash;
|
|
}
|
|
|
|
__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
|
|
|
|
static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
|
|
{
|
|
return skb->hash;
|
|
}
|
|
|
|
static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
|
|
{
|
|
to->hash = from->hash;
|
|
to->sw_hash = from->sw_hash;
|
|
to->l4_hash = from->l4_hash;
|
|
};
|
|
|
|
#ifdef NET_SKBUFF_DATA_USES_OFFSET
|
|
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
|
|
{
|
|
return skb->head + skb->end;
|
|
}
|
|
|
|
static inline unsigned int skb_end_offset(const struct sk_buff *skb)
|
|
{
|
|
return skb->end;
|
|
}
|
|
#else
|
|
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
|
|
{
|
|
return skb->end;
|
|
}
|
|
|
|
static inline unsigned int skb_end_offset(const struct sk_buff *skb)
|
|
{
|
|
return skb->end - skb->head;
|
|
}
|
|
#endif
|
|
|
|
/* Internal */
|
|
#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
|
|
|
|
static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
|
|
{
|
|
return &skb_shinfo(skb)->hwtstamps;
|
|
}
|
|
|
|
/**
|
|
* skb_queue_empty - check if a queue is empty
|
|
* @list: queue head
|
|
*
|
|
* Returns true if the queue is empty, false otherwise.
|
|
*/
|
|
static inline int skb_queue_empty(const struct sk_buff_head *list)
|
|
{
|
|
return list->next == (const struct sk_buff *) list;
|
|
}
|
|
|
|
/**
|
|
* skb_queue_is_last - check if skb is the last entry in the queue
|
|
* @list: queue head
|
|
* @skb: buffer
|
|
*
|
|
* Returns true if @skb is the last buffer on the list.
|
|
*/
|
|
static inline bool skb_queue_is_last(const struct sk_buff_head *list,
|
|
const struct sk_buff *skb)
|
|
{
|
|
return skb->next == (const struct sk_buff *) list;
|
|
}
|
|
|
|
/**
|
|
* skb_queue_is_first - check if skb is the first entry in the queue
|
|
* @list: queue head
|
|
* @skb: buffer
|
|
*
|
|
* Returns true if @skb is the first buffer on the list.
|
|
*/
|
|
static inline bool skb_queue_is_first(const struct sk_buff_head *list,
|
|
const struct sk_buff *skb)
|
|
{
|
|
return skb->prev == (const struct sk_buff *) list;
|
|
}
|
|
|
|
/**
|
|
* skb_queue_next - return the next packet in the queue
|
|
* @list: queue head
|
|
* @skb: current buffer
|
|
*
|
|
* Return the next packet in @list after @skb. It is only valid to
|
|
* call this if skb_queue_is_last() evaluates to false.
|
|
*/
|
|
static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
|
|
const struct sk_buff *skb)
|
|
{
|
|
/* This BUG_ON may seem severe, but if we just return then we
|
|
* are going to dereference garbage.
|
|
*/
|
|
BUG_ON(skb_queue_is_last(list, skb));
|
|
return skb->next;
|
|
}
|
|
|
|
/**
|
|
* skb_queue_prev - return the prev packet in the queue
|
|
* @list: queue head
|
|
* @skb: current buffer
|
|
*
|
|
* Return the prev packet in @list before @skb. It is only valid to
|
|
* call this if skb_queue_is_first() evaluates to false.
|
|
*/
|
|
static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
|
|
const struct sk_buff *skb)
|
|
{
|
|
/* This BUG_ON may seem severe, but if we just return then we
|
|
* are going to dereference garbage.
|
|
*/
|
|
BUG_ON(skb_queue_is_first(list, skb));
|
|
return skb->prev;
|
|
}
|
|
|
|
/**
|
|
* skb_get - reference buffer
|
|
* @skb: buffer to reference
|
|
*
|
|
* Makes another reference to a socket buffer and returns a pointer
|
|
* to the buffer.
|
|
*/
|
|
static inline struct sk_buff *skb_get(struct sk_buff *skb)
|
|
{
|
|
atomic_inc(&skb->users);
|
|
return skb;
|
|
}
|
|
|
|
/*
|
|
* If users == 1, we are the only owner and are can avoid redundant
|
|
* atomic change.
|
|
*/
|
|
|
|
/**
|
|
* skb_cloned - is the buffer a clone
|
|
* @skb: buffer to check
|
|
*
|
|
* Returns true if the buffer was generated with skb_clone() and is
|
|
* one of multiple shared copies of the buffer. Cloned buffers are
|
|
* shared data so must not be written to under normal circumstances.
|
|
*/
|
|
static inline int skb_cloned(const struct sk_buff *skb)
|
|
{
|
|
return skb->cloned &&
|
|
(atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
|
|
}
|
|
|
|
static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
|
|
{
|
|
might_sleep_if(gfpflags_allow_blocking(pri));
|
|
|
|
if (skb_cloned(skb))
|
|
return pskb_expand_head(skb, 0, 0, pri);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* skb_header_cloned - is the header a clone
|
|
* @skb: buffer to check
|
|
*
|
|
* Returns true if modifying the header part of the buffer requires
|
|
* the data to be copied.
|
|
*/
|
|
static inline int skb_header_cloned(const struct sk_buff *skb)
|
|
{
|
|
int dataref;
|
|
|
|
if (!skb->cloned)
|
|
return 0;
|
|
|
|
dataref = atomic_read(&skb_shinfo(skb)->dataref);
|
|
dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
|
|
return dataref != 1;
|
|
}
|
|
|
|
static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
|
|
{
|
|
might_sleep_if(gfpflags_allow_blocking(pri));
|
|
|
|
if (skb_header_cloned(skb))
|
|
return pskb_expand_head(skb, 0, 0, pri);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* skb_header_release - release reference to header
|
|
* @skb: buffer to operate on
|
|
*
|
|
* Drop a reference to the header part of the buffer. This is done
|
|
* by acquiring a payload reference. You must not read from the header
|
|
* part of skb->data after this.
|
|
* Note : Check if you can use __skb_header_release() instead.
|
|
*/
|
|
static inline void skb_header_release(struct sk_buff *skb)
|
|
{
|
|
BUG_ON(skb->nohdr);
|
|
skb->nohdr = 1;
|
|
atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
|
|
}
|
|
|
|
/**
|
|
* __skb_header_release - release reference to header
|
|
* @skb: buffer to operate on
|
|
*
|
|
* Variant of skb_header_release() assuming skb is private to caller.
|
|
* We can avoid one atomic operation.
|
|
*/
|
|
static inline void __skb_header_release(struct sk_buff *skb)
|
|
{
|
|
skb->nohdr = 1;
|
|
atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
|
|
}
|
|
|
|
|
|
/**
|
|
* skb_shared - is the buffer shared
|
|
* @skb: buffer to check
|
|
*
|
|
* Returns true if more than one person has a reference to this
|
|
* buffer.
|
|
*/
|
|
static inline int skb_shared(const struct sk_buff *skb)
|
|
{
|
|
return atomic_read(&skb->users) != 1;
|
|
}
|
|
|
|
/**
|
|
* skb_share_check - check if buffer is shared and if so clone it
|
|
* @skb: buffer to check
|
|
* @pri: priority for memory allocation
|
|
*
|
|
* If the buffer is shared the buffer is cloned and the old copy
|
|
* drops a reference. A new clone with a single reference is returned.
|
|
* If the buffer is not shared the original buffer is returned. When
|
|
* being called from interrupt status or with spinlocks held pri must
|
|
* be GFP_ATOMIC.
|
|
*
|
|
* NULL is returned on a memory allocation failure.
|
|
*/
|
|
static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
|
|
{
|
|
might_sleep_if(gfpflags_allow_blocking(pri));
|
|
if (skb_shared(skb)) {
|
|
struct sk_buff *nskb = skb_clone(skb, pri);
|
|
|
|
if (likely(nskb))
|
|
consume_skb(skb);
|
|
else
|
|
kfree_skb(skb);
|
|
skb = nskb;
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
/*
|
|
* Copy shared buffers into a new sk_buff. We effectively do COW on
|
|
* packets to handle cases where we have a local reader and forward
|
|
* and a couple of other messy ones. The normal one is tcpdumping
|
|
* a packet thats being forwarded.
|
|
*/
|
|
|
|
/**
|
|
* skb_unshare - make a copy of a shared buffer
|
|
* @skb: buffer to check
|
|
* @pri: priority for memory allocation
|
|
*
|
|
* If the socket buffer is a clone then this function creates a new
|
|
* copy of the data, drops a reference count on the old copy and returns
|
|
* the new copy with the reference count at 1. If the buffer is not a clone
|
|
* the original buffer is returned. When called with a spinlock held or
|
|
* from interrupt state @pri must be %GFP_ATOMIC
|
|
*
|
|
* %NULL is returned on a memory allocation failure.
|
|
*/
|
|
static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
|
|
gfp_t pri)
|
|
{
|
|
might_sleep_if(gfpflags_allow_blocking(pri));
|
|
if (skb_cloned(skb)) {
|
|
struct sk_buff *nskb = skb_copy(skb, pri);
|
|
|
|
/* Free our shared copy */
|
|
if (likely(nskb))
|
|
consume_skb(skb);
|
|
else
|
|
kfree_skb(skb);
|
|
skb = nskb;
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
/**
|
|
* skb_peek - peek at the head of an &sk_buff_head
|
|
* @list_: list to peek at
|
|
*
|
|
* Peek an &sk_buff. Unlike most other operations you _MUST_
|
|
* be careful with this one. A peek leaves the buffer on the
|
|
* list and someone else may run off with it. You must hold
|
|
* the appropriate locks or have a private queue to do this.
|
|
*
|
|
* Returns %NULL for an empty list or a pointer to the head element.
|
|
* The reference count is not incremented and the reference is therefore
|
|
* volatile. Use with caution.
|
|
*/
|
|
static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
|
|
{
|
|
struct sk_buff *skb = list_->next;
|
|
|
|
if (skb == (struct sk_buff *)list_)
|
|
skb = NULL;
|
|
return skb;
|
|
}
|
|
|
|
/**
|
|
* skb_peek_next - peek skb following the given one from a queue
|
|
* @skb: skb to start from
|
|
* @list_: list to peek at
|
|
*
|
|
* Returns %NULL when the end of the list is met or a pointer to the
|
|
* next element. The reference count is not incremented and the
|
|
* reference is therefore volatile. Use with caution.
|
|
*/
|
|
static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
|
|
const struct sk_buff_head *list_)
|
|
{
|
|
struct sk_buff *next = skb->next;
|
|
|
|
if (next == (struct sk_buff *)list_)
|
|
next = NULL;
|
|
return next;
|
|
}
|
|
|
|
/**
|
|
* skb_peek_tail - peek at the tail of an &sk_buff_head
|
|
* @list_: list to peek at
|
|
*
|
|
* Peek an &sk_buff. Unlike most other operations you _MUST_
|
|
* be careful with this one. A peek leaves the buffer on the
|
|
* list and someone else may run off with it. You must hold
|
|
* the appropriate locks or have a private queue to do this.
|
|
*
|
|
* Returns %NULL for an empty list or a pointer to the tail element.
|
|
* The reference count is not incremented and the reference is therefore
|
|
* volatile. Use with caution.
|
|
*/
|
|
static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
|
|
{
|
|
struct sk_buff *skb = list_->prev;
|
|
|
|
if (skb == (struct sk_buff *)list_)
|
|
skb = NULL;
|
|
return skb;
|
|
|
|
}
|
|
|
|
/**
|
|
* skb_queue_len - get queue length
|
|
* @list_: list to measure
|
|
*
|
|
* Return the length of an &sk_buff queue.
|
|
*/
|
|
static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
|
|
{
|
|
return list_->qlen;
|
|
}
|
|
|
|
/**
|
|
* __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
|
|
* @list: queue to initialize
|
|
*
|
|
* This initializes only the list and queue length aspects of
|
|
* an sk_buff_head object. This allows to initialize the list
|
|
* aspects of an sk_buff_head without reinitializing things like
|
|
* the spinlock. It can also be used for on-stack sk_buff_head
|
|
* objects where the spinlock is known to not be used.
|
|
*/
|
|
static inline void __skb_queue_head_init(struct sk_buff_head *list)
|
|
{
|
|
list->prev = list->next = (struct sk_buff *)list;
|
|
list->qlen = 0;
|
|
}
|
|
|
|
/*
|
|
* This function creates a split out lock class for each invocation;
|
|
* this is needed for now since a whole lot of users of the skb-queue
|
|
* infrastructure in drivers have different locking usage (in hardirq)
|
|
* than the networking core (in softirq only). In the long run either the
|
|
* network layer or drivers should need annotation to consolidate the
|
|
* main types of usage into 3 classes.
|
|
*/
|
|
static inline void skb_queue_head_init(struct sk_buff_head *list)
|
|
{
|
|
spin_lock_init(&list->lock);
|
|
__skb_queue_head_init(list);
|
|
}
|
|
|
|
static inline void skb_queue_head_init_class(struct sk_buff_head *list,
|
|
struct lock_class_key *class)
|
|
{
|
|
skb_queue_head_init(list);
|
|
lockdep_set_class(&list->lock, class);
|
|
}
|
|
|
|
/*
|
|
* Insert an sk_buff on a list.
|
|
*
|
|
* The "__skb_xxxx()" functions are the non-atomic ones that
|
|
* can only be called with interrupts disabled.
|
|
*/
|
|
void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
|
|
struct sk_buff_head *list);
|
|
static inline void __skb_insert(struct sk_buff *newsk,
|
|
struct sk_buff *prev, struct sk_buff *next,
|
|
struct sk_buff_head *list)
|
|
{
|
|
newsk->next = next;
|
|
newsk->prev = prev;
|
|
next->prev = prev->next = newsk;
|
|
list->qlen++;
|
|
}
|
|
|
|
static inline void __skb_queue_splice(const struct sk_buff_head *list,
|
|
struct sk_buff *prev,
|
|
struct sk_buff *next)
|
|
{
|
|
struct sk_buff *first = list->next;
|
|
struct sk_buff *last = list->prev;
|
|
|
|
first->prev = prev;
|
|
prev->next = first;
|
|
|
|
last->next = next;
|
|
next->prev = last;
|
|
}
|
|
|
|
/**
|
|
* skb_queue_splice - join two skb lists, this is designed for stacks
|
|
* @list: the new list to add
|
|
* @head: the place to add it in the first list
|
|
*/
|
|
static inline void skb_queue_splice(const struct sk_buff_head *list,
|
|
struct sk_buff_head *head)
|
|
{
|
|
if (!skb_queue_empty(list)) {
|
|
__skb_queue_splice(list, (struct sk_buff *) head, head->next);
|
|
head->qlen += list->qlen;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* skb_queue_splice_init - join two skb lists and reinitialise the emptied list
|
|
* @list: the new list to add
|
|
* @head: the place to add it in the first list
|
|
*
|
|
* The list at @list is reinitialised
|
|
*/
|
|
static inline void skb_queue_splice_init(struct sk_buff_head *list,
|
|
struct sk_buff_head *head)
|
|
{
|
|
if (!skb_queue_empty(list)) {
|
|
__skb_queue_splice(list, (struct sk_buff *) head, head->next);
|
|
head->qlen += list->qlen;
|
|
__skb_queue_head_init(list);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* skb_queue_splice_tail - join two skb lists, each list being a queue
|
|
* @list: the new list to add
|
|
* @head: the place to add it in the first list
|
|
*/
|
|
static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
|
|
struct sk_buff_head *head)
|
|
{
|
|
if (!skb_queue_empty(list)) {
|
|
__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
|
|
head->qlen += list->qlen;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
|
|
* @list: the new list to add
|
|
* @head: the place to add it in the first list
|
|
*
|
|
* Each of the lists is a queue.
|
|
* The list at @list is reinitialised
|
|
*/
|
|
static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
|
|
struct sk_buff_head *head)
|
|
{
|
|
if (!skb_queue_empty(list)) {
|
|
__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
|
|
head->qlen += list->qlen;
|
|
__skb_queue_head_init(list);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __skb_queue_after - queue a buffer at the list head
|
|
* @list: list to use
|
|
* @prev: place after this buffer
|
|
* @newsk: buffer to queue
|
|
*
|
|
* Queue a buffer int the middle of a list. This function takes no locks
|
|
* and you must therefore hold required locks before calling it.
|
|
*
|
|
* A buffer cannot be placed on two lists at the same time.
|
|
*/
|
|
static inline void __skb_queue_after(struct sk_buff_head *list,
|
|
struct sk_buff *prev,
|
|
struct sk_buff *newsk)
|
|
{
|
|
__skb_insert(newsk, prev, prev->next, list);
|
|
}
|
|
|
|
void skb_append(struct sk_buff *old, struct sk_buff *newsk,
|
|
struct sk_buff_head *list);
|
|
|
|
static inline void __skb_queue_before(struct sk_buff_head *list,
|
|
struct sk_buff *next,
|
|
struct sk_buff *newsk)
|
|
{
|
|
__skb_insert(newsk, next->prev, next, list);
|
|
}
|
|
|
|
/**
|
|
* __skb_queue_head - queue a buffer at the list head
|
|
* @list: list to use
|
|
* @newsk: buffer to queue
|
|
*
|
|
* Queue a buffer at the start of a list. This function takes no locks
|
|
* and you must therefore hold required locks before calling it.
|
|
*
|
|
* A buffer cannot be placed on two lists at the same time.
|
|
*/
|
|
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
|
|
static inline void __skb_queue_head(struct sk_buff_head *list,
|
|
struct sk_buff *newsk)
|
|
{
|
|
__skb_queue_after(list, (struct sk_buff *)list, newsk);
|
|
}
|
|
|
|
/**
|
|
* __skb_queue_tail - queue a buffer at the list tail
|
|
* @list: list to use
|
|
* @newsk: buffer to queue
|
|
*
|
|
* Queue a buffer at the end of a list. This function takes no locks
|
|
* and you must therefore hold required locks before calling it.
|
|
*
|
|
* A buffer cannot be placed on two lists at the same time.
|
|
*/
|
|
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
|
|
static inline void __skb_queue_tail(struct sk_buff_head *list,
|
|
struct sk_buff *newsk)
|
|
{
|
|
__skb_queue_before(list, (struct sk_buff *)list, newsk);
|
|
}
|
|
|
|
/*
|
|
* remove sk_buff from list. _Must_ be called atomically, and with
|
|
* the list known..
|
|
*/
|
|
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
|
|
static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
|
|
{
|
|
struct sk_buff *next, *prev;
|
|
|
|
list->qlen--;
|
|
next = skb->next;
|
|
prev = skb->prev;
|
|
skb->next = skb->prev = NULL;
|
|
next->prev = prev;
|
|
prev->next = next;
|
|
}
|
|
|
|
/**
|
|
* __skb_dequeue - remove from the head of the queue
|
|
* @list: list to dequeue from
|
|
*
|
|
* Remove the head of the list. This function does not take any locks
|
|
* so must be used with appropriate locks held only. The head item is
|
|
* returned or %NULL if the list is empty.
|
|
*/
|
|
struct sk_buff *skb_dequeue(struct sk_buff_head *list);
|
|
static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
|
|
{
|
|
struct sk_buff *skb = skb_peek(list);
|
|
if (skb)
|
|
__skb_unlink(skb, list);
|
|
return skb;
|
|
}
|
|
|
|
/**
|
|
* __skb_dequeue_tail - remove from the tail of the queue
|
|
* @list: list to dequeue from
|
|
*
|
|
* Remove the tail of the list. This function does not take any locks
|
|
* so must be used with appropriate locks held only. The tail item is
|
|
* returned or %NULL if the list is empty.
|
|
*/
|
|
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
|
|
static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
|
|
{
|
|
struct sk_buff *skb = skb_peek_tail(list);
|
|
if (skb)
|
|
__skb_unlink(skb, list);
|
|
return skb;
|
|
}
|
|
|
|
|
|
static inline bool skb_is_nonlinear(const struct sk_buff *skb)
|
|
{
|
|
return skb->data_len;
|
|
}
|
|
|
|
static inline unsigned int skb_headlen(const struct sk_buff *skb)
|
|
{
|
|
return skb->len - skb->data_len;
|
|
}
|
|
|
|
static inline unsigned int skb_pagelen(const struct sk_buff *skb)
|
|
{
|
|
unsigned int i, len = 0;
|
|
|
|
for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
|
|
len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
|
|
return len + skb_headlen(skb);
|
|
}
|
|
|
|
/**
|
|
* __skb_fill_page_desc - initialise a paged fragment in an skb
|
|
* @skb: buffer containing fragment to be initialised
|
|
* @i: paged fragment index to initialise
|
|
* @page: the page to use for this fragment
|
|
* @off: the offset to the data with @page
|
|
* @size: the length of the data
|
|
*
|
|
* Initialises the @i'th fragment of @skb to point to &size bytes at
|
|
* offset @off within @page.
|
|
*
|
|
* Does not take any additional reference on the fragment.
|
|
*/
|
|
static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
|
|
struct page *page, int off, int size)
|
|
{
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
/*
|
|
* Propagate page pfmemalloc to the skb if we can. The problem is
|
|
* that not all callers have unique ownership of the page but rely
|
|
* on page_is_pfmemalloc doing the right thing(tm).
|
|
*/
|
|
frag->page.p = page;
|
|
frag->page_offset = off;
|
|
skb_frag_size_set(frag, size);
|
|
|
|
page = compound_head(page);
|
|
if (page_is_pfmemalloc(page))
|
|
skb->pfmemalloc = true;
|
|
}
|
|
|
|
/**
|
|
* skb_fill_page_desc - initialise a paged fragment in an skb
|
|
* @skb: buffer containing fragment to be initialised
|
|
* @i: paged fragment index to initialise
|
|
* @page: the page to use for this fragment
|
|
* @off: the offset to the data with @page
|
|
* @size: the length of the data
|
|
*
|
|
* As per __skb_fill_page_desc() -- initialises the @i'th fragment of
|
|
* @skb to point to @size bytes at offset @off within @page. In
|
|
* addition updates @skb such that @i is the last fragment.
|
|
*
|
|
* Does not take any additional reference on the fragment.
|
|
*/
|
|
static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
|
|
struct page *page, int off, int size)
|
|
{
|
|
__skb_fill_page_desc(skb, i, page, off, size);
|
|
skb_shinfo(skb)->nr_frags = i + 1;
|
|
}
|
|
|
|
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
|
|
int size, unsigned int truesize);
|
|
|
|
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
|
|
unsigned int truesize);
|
|
|
|
#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
|
|
#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
|
|
#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
|
|
|
|
#ifdef NET_SKBUFF_DATA_USES_OFFSET
|
|
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
|
|
{
|
|
return skb->head + skb->tail;
|
|
}
|
|
|
|
static inline void skb_reset_tail_pointer(struct sk_buff *skb)
|
|
{
|
|
skb->tail = skb->data - skb->head;
|
|
}
|
|
|
|
static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
|
|
{
|
|
skb_reset_tail_pointer(skb);
|
|
skb->tail += offset;
|
|
}
|
|
|
|
#else /* NET_SKBUFF_DATA_USES_OFFSET */
|
|
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
|
|
{
|
|
return skb->tail;
|
|
}
|
|
|
|
static inline void skb_reset_tail_pointer(struct sk_buff *skb)
|
|
{
|
|
skb->tail = skb->data;
|
|
}
|
|
|
|
static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
|
|
{
|
|
skb->tail = skb->data + offset;
|
|
}
|
|
|
|
#endif /* NET_SKBUFF_DATA_USES_OFFSET */
|
|
|
|
/*
|
|
* Add data to an sk_buff
|
|
*/
|
|
unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
|
|
unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
|
|
static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
unsigned char *tmp = skb_tail_pointer(skb);
|
|
SKB_LINEAR_ASSERT(skb);
|
|
skb->tail += len;
|
|
skb->len += len;
|
|
return tmp;
|
|
}
|
|
|
|
unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
|
|
static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
skb->data -= len;
|
|
skb->len += len;
|
|
return skb->data;
|
|
}
|
|
|
|
unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
|
|
static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
skb->len -= len;
|
|
BUG_ON(skb->len < skb->data_len);
|
|
return skb->data += len;
|
|
}
|
|
|
|
static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
|
|
}
|
|
|
|
unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
|
|
|
|
static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (len > skb_headlen(skb) &&
|
|
!__pskb_pull_tail(skb, len - skb_headlen(skb)))
|
|
return NULL;
|
|
skb->len -= len;
|
|
return skb->data += len;
|
|
}
|
|
|
|
static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
|
|
}
|
|
|
|
static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (likely(len <= skb_headlen(skb)))
|
|
return 1;
|
|
if (unlikely(len > skb->len))
|
|
return 0;
|
|
return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
|
|
}
|
|
|
|
void skb_condense(struct sk_buff *skb);
|
|
|
|
/**
|
|
* skb_headroom - bytes at buffer head
|
|
* @skb: buffer to check
|
|
*
|
|
* Return the number of bytes of free space at the head of an &sk_buff.
|
|
*/
|
|
static inline unsigned int skb_headroom(const struct sk_buff *skb)
|
|
{
|
|
return skb->data - skb->head;
|
|
}
|
|
|
|
/**
|
|
* skb_tailroom - bytes at buffer end
|
|
* @skb: buffer to check
|
|
*
|
|
* Return the number of bytes of free space at the tail of an sk_buff
|
|
*/
|
|
static inline int skb_tailroom(const struct sk_buff *skb)
|
|
{
|
|
return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
|
|
}
|
|
|
|
/**
|
|
* skb_availroom - bytes at buffer end
|
|
* @skb: buffer to check
|
|
*
|
|
* Return the number of bytes of free space at the tail of an sk_buff
|
|
* allocated by sk_stream_alloc()
|
|
*/
|
|
static inline int skb_availroom(const struct sk_buff *skb)
|
|
{
|
|
if (skb_is_nonlinear(skb))
|
|
return 0;
|
|
|
|
return skb->end - skb->tail - skb->reserved_tailroom;
|
|
}
|
|
|
|
/**
|
|
* skb_reserve - adjust headroom
|
|
* @skb: buffer to alter
|
|
* @len: bytes to move
|
|
*
|
|
* Increase the headroom of an empty &sk_buff by reducing the tail
|
|
* room. This is only allowed for an empty buffer.
|
|
*/
|
|
static inline void skb_reserve(struct sk_buff *skb, int len)
|
|
{
|
|
skb->data += len;
|
|
skb->tail += len;
|
|
}
|
|
|
|
/**
|
|
* skb_tailroom_reserve - adjust reserved_tailroom
|
|
* @skb: buffer to alter
|
|
* @mtu: maximum amount of headlen permitted
|
|
* @needed_tailroom: minimum amount of reserved_tailroom
|
|
*
|
|
* Set reserved_tailroom so that headlen can be as large as possible but
|
|
* not larger than mtu and tailroom cannot be smaller than
|
|
* needed_tailroom.
|
|
* The required headroom should already have been reserved before using
|
|
* this function.
|
|
*/
|
|
static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
|
|
unsigned int needed_tailroom)
|
|
{
|
|
SKB_LINEAR_ASSERT(skb);
|
|
if (mtu < skb_tailroom(skb) - needed_tailroom)
|
|
/* use at most mtu */
|
|
skb->reserved_tailroom = skb_tailroom(skb) - mtu;
|
|
else
|
|
/* use up to all available space */
|
|
skb->reserved_tailroom = needed_tailroom;
|
|
}
|
|
|
|
#define ENCAP_TYPE_ETHER 0
|
|
#define ENCAP_TYPE_IPPROTO 1
|
|
|
|
static inline void skb_set_inner_protocol(struct sk_buff *skb,
|
|
__be16 protocol)
|
|
{
|
|
skb->inner_protocol = protocol;
|
|
skb->inner_protocol_type = ENCAP_TYPE_ETHER;
|
|
}
|
|
|
|
static inline void skb_set_inner_ipproto(struct sk_buff *skb,
|
|
__u8 ipproto)
|
|
{
|
|
skb->inner_ipproto = ipproto;
|
|
skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
|
|
}
|
|
|
|
static inline void skb_reset_inner_headers(struct sk_buff *skb)
|
|
{
|
|
skb->inner_mac_header = skb->mac_header;
|
|
skb->inner_network_header = skb->network_header;
|
|
skb->inner_transport_header = skb->transport_header;
|
|
}
|
|
|
|
static inline void skb_reset_mac_len(struct sk_buff *skb)
|
|
{
|
|
skb->mac_len = skb->network_header - skb->mac_header;
|
|
}
|
|
|
|
static inline unsigned char *skb_inner_transport_header(const struct sk_buff
|
|
*skb)
|
|
{
|
|
return skb->head + skb->inner_transport_header;
|
|
}
|
|
|
|
static inline int skb_inner_transport_offset(const struct sk_buff *skb)
|
|
{
|
|
return skb_inner_transport_header(skb) - skb->data;
|
|
}
|
|
|
|
static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
|
|
{
|
|
skb->inner_transport_header = skb->data - skb->head;
|
|
}
|
|
|
|
static inline void skb_set_inner_transport_header(struct sk_buff *skb,
|
|
const int offset)
|
|
{
|
|
skb_reset_inner_transport_header(skb);
|
|
skb->inner_transport_header += offset;
|
|
}
|
|
|
|
static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
|
|
{
|
|
return skb->head + skb->inner_network_header;
|
|
}
|
|
|
|
static inline void skb_reset_inner_network_header(struct sk_buff *skb)
|
|
{
|
|
skb->inner_network_header = skb->data - skb->head;
|
|
}
|
|
|
|
static inline void skb_set_inner_network_header(struct sk_buff *skb,
|
|
const int offset)
|
|
{
|
|
skb_reset_inner_network_header(skb);
|
|
skb->inner_network_header += offset;
|
|
}
|
|
|
|
static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
|
|
{
|
|
return skb->head + skb->inner_mac_header;
|
|
}
|
|
|
|
static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
|
|
{
|
|
skb->inner_mac_header = skb->data - skb->head;
|
|
}
|
|
|
|
static inline void skb_set_inner_mac_header(struct sk_buff *skb,
|
|
const int offset)
|
|
{
|
|
skb_reset_inner_mac_header(skb);
|
|
skb->inner_mac_header += offset;
|
|
}
|
|
static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
|
|
{
|
|
return skb->transport_header != (typeof(skb->transport_header))~0U;
|
|
}
|
|
|
|
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
|
|
{
|
|
return skb->head + skb->transport_header;
|
|
}
|
|
|
|
static inline void skb_reset_transport_header(struct sk_buff *skb)
|
|
{
|
|
skb->transport_header = skb->data - skb->head;
|
|
}
|
|
|
|
static inline void skb_set_transport_header(struct sk_buff *skb,
|
|
const int offset)
|
|
{
|
|
skb_reset_transport_header(skb);
|
|
skb->transport_header += offset;
|
|
}
|
|
|
|
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
|
|
{
|
|
return skb->head + skb->network_header;
|
|
}
|
|
|
|
static inline void skb_reset_network_header(struct sk_buff *skb)
|
|
{
|
|
skb->network_header = skb->data - skb->head;
|
|
}
|
|
|
|
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
|
|
{
|
|
skb_reset_network_header(skb);
|
|
skb->network_header += offset;
|
|
}
|
|
|
|
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
|
|
{
|
|
return skb->head + skb->mac_header;
|
|
}
|
|
|
|
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
|
|
{
|
|
return skb->mac_header != (typeof(skb->mac_header))~0U;
|
|
}
|
|
|
|
static inline void skb_reset_mac_header(struct sk_buff *skb)
|
|
{
|
|
skb->mac_header = skb->data - skb->head;
|
|
}
|
|
|
|
static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
|
|
{
|
|
skb_reset_mac_header(skb);
|
|
skb->mac_header += offset;
|
|
}
|
|
|
|
static inline void skb_pop_mac_header(struct sk_buff *skb)
|
|
{
|
|
skb->mac_header = skb->network_header;
|
|
}
|
|
|
|
static inline void skb_probe_transport_header(struct sk_buff *skb,
|
|
const int offset_hint)
|
|
{
|
|
struct flow_keys keys;
|
|
|
|
if (skb_transport_header_was_set(skb))
|
|
return;
|
|
else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
|
|
skb_set_transport_header(skb, keys.control.thoff);
|
|
else
|
|
skb_set_transport_header(skb, offset_hint);
|
|
}
|
|
|
|
static inline void skb_mac_header_rebuild(struct sk_buff *skb)
|
|
{
|
|
if (skb_mac_header_was_set(skb)) {
|
|
const unsigned char *old_mac = skb_mac_header(skb);
|
|
|
|
skb_set_mac_header(skb, -skb->mac_len);
|
|
memmove(skb_mac_header(skb), old_mac, skb->mac_len);
|
|
}
|
|
}
|
|
|
|
static inline int skb_checksum_start_offset(const struct sk_buff *skb)
|
|
{
|
|
return skb->csum_start - skb_headroom(skb);
|
|
}
|
|
|
|
static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
|
|
{
|
|
return skb->head + skb->csum_start;
|
|
}
|
|
|
|
static inline int skb_transport_offset(const struct sk_buff *skb)
|
|
{
|
|
return skb_transport_header(skb) - skb->data;
|
|
}
|
|
|
|
static inline u32 skb_network_header_len(const struct sk_buff *skb)
|
|
{
|
|
return skb->transport_header - skb->network_header;
|
|
}
|
|
|
|
static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
|
|
{
|
|
return skb->inner_transport_header - skb->inner_network_header;
|
|
}
|
|
|
|
static inline int skb_network_offset(const struct sk_buff *skb)
|
|
{
|
|
return skb_network_header(skb) - skb->data;
|
|
}
|
|
|
|
static inline int skb_inner_network_offset(const struct sk_buff *skb)
|
|
{
|
|
return skb_inner_network_header(skb) - skb->data;
|
|
}
|
|
|
|
static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
return pskb_may_pull(skb, skb_network_offset(skb) + len);
|
|
}
|
|
|
|
/*
|
|
* CPUs often take a performance hit when accessing unaligned memory
|
|
* locations. The actual performance hit varies, it can be small if the
|
|
* hardware handles it or large if we have to take an exception and fix it
|
|
* in software.
|
|
*
|
|
* Since an ethernet header is 14 bytes network drivers often end up with
|
|
* the IP header at an unaligned offset. The IP header can be aligned by
|
|
* shifting the start of the packet by 2 bytes. Drivers should do this
|
|
* with:
|
|
*
|
|
* skb_reserve(skb, NET_IP_ALIGN);
|
|
*
|
|
* The downside to this alignment of the IP header is that the DMA is now
|
|
* unaligned. On some architectures the cost of an unaligned DMA is high
|
|
* and this cost outweighs the gains made by aligning the IP header.
|
|
*
|
|
* Since this trade off varies between architectures, we allow NET_IP_ALIGN
|
|
* to be overridden.
|
|
*/
|
|
#ifndef NET_IP_ALIGN
|
|
#define NET_IP_ALIGN 2
|
|
#endif
|
|
|
|
/*
|
|
* The networking layer reserves some headroom in skb data (via
|
|
* dev_alloc_skb). This is used to avoid having to reallocate skb data when
|
|
* the header has to grow. In the default case, if the header has to grow
|
|
* 32 bytes or less we avoid the reallocation.
|
|
*
|
|
* Unfortunately this headroom changes the DMA alignment of the resulting
|
|
* network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
|
|
* on some architectures. An architecture can override this value,
|
|
* perhaps setting it to a cacheline in size (since that will maintain
|
|
* cacheline alignment of the DMA). It must be a power of 2.
|
|
*
|
|
* Various parts of the networking layer expect at least 32 bytes of
|
|
* headroom, you should not reduce this.
|
|
*
|
|
* Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
|
|
* to reduce average number of cache lines per packet.
|
|
* get_rps_cpus() for example only access one 64 bytes aligned block :
|
|
* NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
|
|
*/
|
|
#ifndef NET_SKB_PAD
|
|
#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
|
|
#endif
|
|
|
|
int ___pskb_trim(struct sk_buff *skb, unsigned int len);
|
|
|
|
static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (unlikely(skb_is_nonlinear(skb))) {
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
skb->len = len;
|
|
skb_set_tail_pointer(skb, len);
|
|
}
|
|
|
|
static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
__skb_set_length(skb, len);
|
|
}
|
|
|
|
void skb_trim(struct sk_buff *skb, unsigned int len);
|
|
|
|
static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (skb->data_len)
|
|
return ___pskb_trim(skb, len);
|
|
__skb_trim(skb, len);
|
|
return 0;
|
|
}
|
|
|
|
static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
return (len < skb->len) ? __pskb_trim(skb, len) : 0;
|
|
}
|
|
|
|
/**
|
|
* pskb_trim_unique - remove end from a paged unique (not cloned) buffer
|
|
* @skb: buffer to alter
|
|
* @len: new length
|
|
*
|
|
* This is identical to pskb_trim except that the caller knows that
|
|
* the skb is not cloned so we should never get an error due to out-
|
|
* of-memory.
|
|
*/
|
|
static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
int err = pskb_trim(skb, len);
|
|
BUG_ON(err);
|
|
}
|
|
|
|
static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
unsigned int diff = len - skb->len;
|
|
|
|
if (skb_tailroom(skb) < diff) {
|
|
int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
|
|
GFP_ATOMIC);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
__skb_set_length(skb, len);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* skb_orphan - orphan a buffer
|
|
* @skb: buffer to orphan
|
|
*
|
|
* If a buffer currently has an owner then we call the owner's
|
|
* destructor function and make the @skb unowned. The buffer continues
|
|
* to exist but is no longer charged to its former owner.
|
|
*/
|
|
static inline void skb_orphan(struct sk_buff *skb)
|
|
{
|
|
if (skb->destructor) {
|
|
skb->destructor(skb);
|
|
skb->destructor = NULL;
|
|
skb->sk = NULL;
|
|
} else {
|
|
BUG_ON(skb->sk);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* skb_orphan_frags - orphan the frags contained in a buffer
|
|
* @skb: buffer to orphan frags from
|
|
* @gfp_mask: allocation mask for replacement pages
|
|
*
|
|
* For each frag in the SKB which needs a destructor (i.e. has an
|
|
* owner) create a copy of that frag and release the original
|
|
* page by calling the destructor.
|
|
*/
|
|
static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
|
|
{
|
|
if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
|
|
return 0;
|
|
return skb_copy_ubufs(skb, gfp_mask);
|
|
}
|
|
|
|
/**
|
|
* __skb_queue_purge - empty a list
|
|
* @list: list to empty
|
|
*
|
|
* Delete all buffers on an &sk_buff list. Each buffer is removed from
|
|
* the list and one reference dropped. This function does not take the
|
|
* list lock and the caller must hold the relevant locks to use it.
|
|
*/
|
|
void skb_queue_purge(struct sk_buff_head *list);
|
|
static inline void __skb_queue_purge(struct sk_buff_head *list)
|
|
{
|
|
struct sk_buff *skb;
|
|
while ((skb = __skb_dequeue(list)) != NULL)
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
void skb_rbtree_purge(struct rb_root *root);
|
|
|
|
void *netdev_alloc_frag(unsigned int fragsz);
|
|
|
|
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
|
|
gfp_t gfp_mask);
|
|
|
|
/**
|
|
* netdev_alloc_skb - allocate an skbuff for rx on a specific device
|
|
* @dev: network device to receive on
|
|
* @length: length to allocate
|
|
*
|
|
* Allocate a new &sk_buff and assign it a usage count of one. The
|
|
* buffer has unspecified headroom built in. Users should allocate
|
|
* the headroom they think they need without accounting for the
|
|
* built in space. The built in space is used for optimisations.
|
|
*
|
|
* %NULL is returned if there is no free memory. Although this function
|
|
* allocates memory it can be called from an interrupt.
|
|
*/
|
|
static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
|
|
unsigned int length)
|
|
{
|
|
return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
|
|
}
|
|
|
|
/* legacy helper around __netdev_alloc_skb() */
|
|
static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
|
|
gfp_t gfp_mask)
|
|
{
|
|
return __netdev_alloc_skb(NULL, length, gfp_mask);
|
|
}
|
|
|
|
/* legacy helper around netdev_alloc_skb() */
|
|
static inline struct sk_buff *dev_alloc_skb(unsigned int length)
|
|
{
|
|
return netdev_alloc_skb(NULL, length);
|
|
}
|
|
|
|
|
|
static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
|
|
unsigned int length, gfp_t gfp)
|
|
{
|
|
struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
|
|
|
|
if (NET_IP_ALIGN && skb)
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
return skb;
|
|
}
|
|
|
|
static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
|
|
unsigned int length)
|
|
{
|
|
return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
|
|
}
|
|
|
|
static inline void skb_free_frag(void *addr)
|
|
{
|
|
__free_page_frag(addr);
|
|
}
|
|
|
|
void *napi_alloc_frag(unsigned int fragsz);
|
|
struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
|
|
unsigned int length, gfp_t gfp_mask);
|
|
static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
|
|
unsigned int length)
|
|
{
|
|
return __napi_alloc_skb(napi, length, GFP_ATOMIC);
|
|
}
|
|
void napi_consume_skb(struct sk_buff *skb, int budget);
|
|
|
|
void __kfree_skb_flush(void);
|
|
void __kfree_skb_defer(struct sk_buff *skb);
|
|
|
|
/**
|
|
* __dev_alloc_pages - allocate page for network Rx
|
|
* @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
|
|
* @order: size of the allocation
|
|
*
|
|
* Allocate a new page.
|
|
*
|
|
* %NULL is returned if there is no free memory.
|
|
*/
|
|
static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
|
|
unsigned int order)
|
|
{
|
|
/* This piece of code contains several assumptions.
|
|
* 1. This is for device Rx, therefor a cold page is preferred.
|
|
* 2. The expectation is the user wants a compound page.
|
|
* 3. If requesting a order 0 page it will not be compound
|
|
* due to the check to see if order has a value in prep_new_page
|
|
* 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
|
|
* code in gfp_to_alloc_flags that should be enforcing this.
|
|
*/
|
|
gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
|
|
|
|
return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
|
|
}
|
|
|
|
static inline struct page *dev_alloc_pages(unsigned int order)
|
|
{
|
|
return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
|
|
}
|
|
|
|
/**
|
|
* __dev_alloc_page - allocate a page for network Rx
|
|
* @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
|
|
*
|
|
* Allocate a new page.
|
|
*
|
|
* %NULL is returned if there is no free memory.
|
|
*/
|
|
static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
|
|
{
|
|
return __dev_alloc_pages(gfp_mask, 0);
|
|
}
|
|
|
|
static inline struct page *dev_alloc_page(void)
|
|
{
|
|
return dev_alloc_pages(0);
|
|
}
|
|
|
|
/**
|
|
* skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
|
|
* @page: The page that was allocated from skb_alloc_page
|
|
* @skb: The skb that may need pfmemalloc set
|
|
*/
|
|
static inline void skb_propagate_pfmemalloc(struct page *page,
|
|
struct sk_buff *skb)
|
|
{
|
|
if (page_is_pfmemalloc(page))
|
|
skb->pfmemalloc = true;
|
|
}
|
|
|
|
/**
|
|
* skb_frag_page - retrieve the page referred to by a paged fragment
|
|
* @frag: the paged fragment
|
|
*
|
|
* Returns the &struct page associated with @frag.
|
|
*/
|
|
static inline struct page *skb_frag_page(const skb_frag_t *frag)
|
|
{
|
|
return frag->page.p;
|
|
}
|
|
|
|
/**
|
|
* __skb_frag_ref - take an addition reference on a paged fragment.
|
|
* @frag: the paged fragment
|
|
*
|
|
* Takes an additional reference on the paged fragment @frag.
|
|
*/
|
|
static inline void __skb_frag_ref(skb_frag_t *frag)
|
|
{
|
|
get_page(skb_frag_page(frag));
|
|
}
|
|
|
|
/**
|
|
* skb_frag_ref - take an addition reference on a paged fragment of an skb.
|
|
* @skb: the buffer
|
|
* @f: the fragment offset.
|
|
*
|
|
* Takes an additional reference on the @f'th paged fragment of @skb.
|
|
*/
|
|
static inline void skb_frag_ref(struct sk_buff *skb, int f)
|
|
{
|
|
__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
|
|
}
|
|
|
|
/**
|
|
* __skb_frag_unref - release a reference on a paged fragment.
|
|
* @frag: the paged fragment
|
|
*
|
|
* Releases a reference on the paged fragment @frag.
|
|
*/
|
|
static inline void __skb_frag_unref(skb_frag_t *frag)
|
|
{
|
|
put_page(skb_frag_page(frag));
|
|
}
|
|
|
|
/**
|
|
* skb_frag_unref - release a reference on a paged fragment of an skb.
|
|
* @skb: the buffer
|
|
* @f: the fragment offset
|
|
*
|
|
* Releases a reference on the @f'th paged fragment of @skb.
|
|
*/
|
|
static inline void skb_frag_unref(struct sk_buff *skb, int f)
|
|
{
|
|
__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
|
|
}
|
|
|
|
/**
|
|
* skb_frag_address - gets the address of the data contained in a paged fragment
|
|
* @frag: the paged fragment buffer
|
|
*
|
|
* Returns the address of the data within @frag. The page must already
|
|
* be mapped.
|
|
*/
|
|
static inline void *skb_frag_address(const skb_frag_t *frag)
|
|
{
|
|
return page_address(skb_frag_page(frag)) + frag->page_offset;
|
|
}
|
|
|
|
/**
|
|
* skb_frag_address_safe - gets the address of the data contained in a paged fragment
|
|
* @frag: the paged fragment buffer
|
|
*
|
|
* Returns the address of the data within @frag. Checks that the page
|
|
* is mapped and returns %NULL otherwise.
|
|
*/
|
|
static inline void *skb_frag_address_safe(const skb_frag_t *frag)
|
|
{
|
|
void *ptr = page_address(skb_frag_page(frag));
|
|
if (unlikely(!ptr))
|
|
return NULL;
|
|
|
|
return ptr + frag->page_offset;
|
|
}
|
|
|
|
/**
|
|
* __skb_frag_set_page - sets the page contained in a paged fragment
|
|
* @frag: the paged fragment
|
|
* @page: the page to set
|
|
*
|
|
* Sets the fragment @frag to contain @page.
|
|
*/
|
|
static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
|
|
{
|
|
frag->page.p = page;
|
|
}
|
|
|
|
/**
|
|
* skb_frag_set_page - sets the page contained in a paged fragment of an skb
|
|
* @skb: the buffer
|
|
* @f: the fragment offset
|
|
* @page: the page to set
|
|
*
|
|
* Sets the @f'th fragment of @skb to contain @page.
|
|
*/
|
|
static inline void skb_frag_set_page(struct sk_buff *skb, int f,
|
|
struct page *page)
|
|
{
|
|
__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
|
|
}
|
|
|
|
bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
|
|
|
|
/**
|
|
* skb_frag_dma_map - maps a paged fragment via the DMA API
|
|
* @dev: the device to map the fragment to
|
|
* @frag: the paged fragment to map
|
|
* @offset: the offset within the fragment (starting at the
|
|
* fragment's own offset)
|
|
* @size: the number of bytes to map
|
|
* @dir: the direction of the mapping (%PCI_DMA_*)
|
|
*
|
|
* Maps the page associated with @frag to @device.
|
|
*/
|
|
static inline dma_addr_t skb_frag_dma_map(struct device *dev,
|
|
const skb_frag_t *frag,
|
|
size_t offset, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
return dma_map_page(dev, skb_frag_page(frag),
|
|
frag->page_offset + offset, size, dir);
|
|
}
|
|
|
|
static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
|
|
gfp_t gfp_mask)
|
|
{
|
|
return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
|
|
}
|
|
|
|
|
|
static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
|
|
gfp_t gfp_mask)
|
|
{
|
|
return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
|
|
}
|
|
|
|
|
|
/**
|
|
* skb_clone_writable - is the header of a clone writable
|
|
* @skb: buffer to check
|
|
* @len: length up to which to write
|
|
*
|
|
* Returns true if modifying the header part of the cloned buffer
|
|
* does not requires the data to be copied.
|
|
*/
|
|
static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
|
|
{
|
|
return !skb_header_cloned(skb) &&
|
|
skb_headroom(skb) + len <= skb->hdr_len;
|
|
}
|
|
|
|
static inline int skb_try_make_writable(struct sk_buff *skb,
|
|
unsigned int write_len)
|
|
{
|
|
return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
|
|
pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
|
|
}
|
|
|
|
static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
|
|
int cloned)
|
|
{
|
|
int delta = 0;
|
|
|
|
if (headroom > skb_headroom(skb))
|
|
delta = headroom - skb_headroom(skb);
|
|
|
|
if (delta || cloned)
|
|
return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
|
|
GFP_ATOMIC);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* skb_cow - copy header of skb when it is required
|
|
* @skb: buffer to cow
|
|
* @headroom: needed headroom
|
|
*
|
|
* If the skb passed lacks sufficient headroom or its data part
|
|
* is shared, data is reallocated. If reallocation fails, an error
|
|
* is returned and original skb is not changed.
|
|
*
|
|
* The result is skb with writable area skb->head...skb->tail
|
|
* and at least @headroom of space at head.
|
|
*/
|
|
static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
|
|
{
|
|
return __skb_cow(skb, headroom, skb_cloned(skb));
|
|
}
|
|
|
|
/**
|
|
* skb_cow_head - skb_cow but only making the head writable
|
|
* @skb: buffer to cow
|
|
* @headroom: needed headroom
|
|
*
|
|
* This function is identical to skb_cow except that we replace the
|
|
* skb_cloned check by skb_header_cloned. It should be used when
|
|
* you only need to push on some header and do not need to modify
|
|
* the data.
|
|
*/
|
|
static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
|
|
{
|
|
return __skb_cow(skb, headroom, skb_header_cloned(skb));
|
|
}
|
|
|
|
/**
|
|
* skb_padto - pad an skbuff up to a minimal size
|
|
* @skb: buffer to pad
|
|
* @len: minimal length
|
|
*
|
|
* Pads up a buffer to ensure the trailing bytes exist and are
|
|
* blanked. If the buffer already contains sufficient data it
|
|
* is untouched. Otherwise it is extended. Returns zero on
|
|
* success. The skb is freed on error.
|
|
*/
|
|
static inline int skb_padto(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
unsigned int size = skb->len;
|
|
if (likely(size >= len))
|
|
return 0;
|
|
return skb_pad(skb, len - size);
|
|
}
|
|
|
|
/**
|
|
* skb_put_padto - increase size and pad an skbuff up to a minimal size
|
|
* @skb: buffer to pad
|
|
* @len: minimal length
|
|
*
|
|
* Pads up a buffer to ensure the trailing bytes exist and are
|
|
* blanked. If the buffer already contains sufficient data it
|
|
* is untouched. Otherwise it is extended. Returns zero on
|
|
* success. The skb is freed on error.
|
|
*/
|
|
static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
unsigned int size = skb->len;
|
|
|
|
if (unlikely(size < len)) {
|
|
len -= size;
|
|
if (skb_pad(skb, len))
|
|
return -ENOMEM;
|
|
__skb_put(skb, len);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int skb_add_data(struct sk_buff *skb,
|
|
struct iov_iter *from, int copy)
|
|
{
|
|
const int off = skb->len;
|
|
|
|
if (skb->ip_summed == CHECKSUM_NONE) {
|
|
__wsum csum = 0;
|
|
if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
|
|
&csum, from) == copy) {
|
|
skb->csum = csum_block_add(skb->csum, csum, off);
|
|
return 0;
|
|
}
|
|
} else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
|
|
return 0;
|
|
|
|
__skb_trim(skb, off);
|
|
return -EFAULT;
|
|
}
|
|
|
|
static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
|
|
const struct page *page, int off)
|
|
{
|
|
if (i) {
|
|
const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
|
|
|
|
return page == skb_frag_page(frag) &&
|
|
off == frag->page_offset + skb_frag_size(frag);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline int __skb_linearize(struct sk_buff *skb)
|
|
{
|
|
return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* skb_linearize - convert paged skb to linear one
|
|
* @skb: buffer to linarize
|
|
*
|
|
* If there is no free memory -ENOMEM is returned, otherwise zero
|
|
* is returned and the old skb data released.
|
|
*/
|
|
static inline int skb_linearize(struct sk_buff *skb)
|
|
{
|
|
return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
|
|
}
|
|
|
|
/**
|
|
* skb_has_shared_frag - can any frag be overwritten
|
|
* @skb: buffer to test
|
|
*
|
|
* Return true if the skb has at least one frag that might be modified
|
|
* by an external entity (as in vmsplice()/sendfile())
|
|
*/
|
|
static inline bool skb_has_shared_frag(const struct sk_buff *skb)
|
|
{
|
|
return skb_is_nonlinear(skb) &&
|
|
skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
|
|
}
|
|
|
|
/**
|
|
* skb_linearize_cow - make sure skb is linear and writable
|
|
* @skb: buffer to process
|
|
*
|
|
* If there is no free memory -ENOMEM is returned, otherwise zero
|
|
* is returned and the old skb data released.
|
|
*/
|
|
static inline int skb_linearize_cow(struct sk_buff *skb)
|
|
{
|
|
return skb_is_nonlinear(skb) || skb_cloned(skb) ?
|
|
__skb_linearize(skb) : 0;
|
|
}
|
|
|
|
static __always_inline void
|
|
__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
|
|
unsigned int off)
|
|
{
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
|
skb->csum = csum_block_sub(skb->csum,
|
|
csum_partial(start, len, 0), off);
|
|
else if (skb->ip_summed == CHECKSUM_PARTIAL &&
|
|
skb_checksum_start_offset(skb) < 0)
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
}
|
|
|
|
/**
|
|
* skb_postpull_rcsum - update checksum for received skb after pull
|
|
* @skb: buffer to update
|
|
* @start: start of data before pull
|
|
* @len: length of data pulled
|
|
*
|
|
* After doing a pull on a received packet, you need to call this to
|
|
* update the CHECKSUM_COMPLETE checksum, or set ip_summed to
|
|
* CHECKSUM_NONE so that it can be recomputed from scratch.
|
|
*/
|
|
static inline void skb_postpull_rcsum(struct sk_buff *skb,
|
|
const void *start, unsigned int len)
|
|
{
|
|
__skb_postpull_rcsum(skb, start, len, 0);
|
|
}
|
|
|
|
static __always_inline void
|
|
__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
|
|
unsigned int off)
|
|
{
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
|
skb->csum = csum_block_add(skb->csum,
|
|
csum_partial(start, len, 0), off);
|
|
}
|
|
|
|
/**
|
|
* skb_postpush_rcsum - update checksum for received skb after push
|
|
* @skb: buffer to update
|
|
* @start: start of data after push
|
|
* @len: length of data pushed
|
|
*
|
|
* After doing a push on a received packet, you need to call this to
|
|
* update the CHECKSUM_COMPLETE checksum.
|
|
*/
|
|
static inline void skb_postpush_rcsum(struct sk_buff *skb,
|
|
const void *start, unsigned int len)
|
|
{
|
|
__skb_postpush_rcsum(skb, start, len, 0);
|
|
}
|
|
|
|
unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
|
|
|
|
/**
|
|
* skb_push_rcsum - push skb and update receive checksum
|
|
* @skb: buffer to update
|
|
* @len: length of data pulled
|
|
*
|
|
* This function performs an skb_push on the packet and updates
|
|
* the CHECKSUM_COMPLETE checksum. It should be used on
|
|
* receive path processing instead of skb_push unless you know
|
|
* that the checksum difference is zero (e.g., a valid IP header)
|
|
* or you are setting ip_summed to CHECKSUM_NONE.
|
|
*/
|
|
static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
|
|
unsigned int len)
|
|
{
|
|
skb_push(skb, len);
|
|
skb_postpush_rcsum(skb, skb->data, len);
|
|
return skb->data;
|
|
}
|
|
|
|
/**
|
|
* pskb_trim_rcsum - trim received skb and update checksum
|
|
* @skb: buffer to trim
|
|
* @len: new length
|
|
*
|
|
* This is exactly the same as pskb_trim except that it ensures the
|
|
* checksum of received packets are still valid after the operation.
|
|
*/
|
|
|
|
static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (likely(len >= skb->len))
|
|
return 0;
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
return __pskb_trim(skb, len);
|
|
}
|
|
|
|
static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
__skb_trim(skb, len);
|
|
return 0;
|
|
}
|
|
|
|
static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
|
|
{
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
return __skb_grow(skb, len);
|
|
}
|
|
|
|
#define skb_queue_walk(queue, skb) \
|
|
for (skb = (queue)->next; \
|
|
skb != (struct sk_buff *)(queue); \
|
|
skb = skb->next)
|
|
|
|
#define skb_queue_walk_safe(queue, skb, tmp) \
|
|
for (skb = (queue)->next, tmp = skb->next; \
|
|
skb != (struct sk_buff *)(queue); \
|
|
skb = tmp, tmp = skb->next)
|
|
|
|
#define skb_queue_walk_from(queue, skb) \
|
|
for (; skb != (struct sk_buff *)(queue); \
|
|
skb = skb->next)
|
|
|
|
#define skb_queue_walk_from_safe(queue, skb, tmp) \
|
|
for (tmp = skb->next; \
|
|
skb != (struct sk_buff *)(queue); \
|
|
skb = tmp, tmp = skb->next)
|
|
|
|
#define skb_queue_reverse_walk(queue, skb) \
|
|
for (skb = (queue)->prev; \
|
|
skb != (struct sk_buff *)(queue); \
|
|
skb = skb->prev)
|
|
|
|
#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
|
|
for (skb = (queue)->prev, tmp = skb->prev; \
|
|
skb != (struct sk_buff *)(queue); \
|
|
skb = tmp, tmp = skb->prev)
|
|
|
|
#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
|
|
for (tmp = skb->prev; \
|
|
skb != (struct sk_buff *)(queue); \
|
|
skb = tmp, tmp = skb->prev)
|
|
|
|
static inline bool skb_has_frag_list(const struct sk_buff *skb)
|
|
{
|
|
return skb_shinfo(skb)->frag_list != NULL;
|
|
}
|
|
|
|
static inline void skb_frag_list_init(struct sk_buff *skb)
|
|
{
|
|
skb_shinfo(skb)->frag_list = NULL;
|
|
}
|
|
|
|
#define skb_walk_frags(skb, iter) \
|
|
for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
|
|
|
|
|
|
int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
|
|
const struct sk_buff *skb);
|
|
struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
|
|
void (*destructor)(struct sock *sk,
|
|
struct sk_buff *skb),
|
|
int *peeked, int *off, int *err,
|
|
struct sk_buff **last);
|
|
struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
|
|
void (*destructor)(struct sock *sk,
|
|
struct sk_buff *skb),
|
|
int *peeked, int *off, int *err);
|
|
struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
|
|
int *err);
|
|
unsigned int datagram_poll(struct file *file, struct socket *sock,
|
|
struct poll_table_struct *wait);
|
|
int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
|
|
struct iov_iter *to, int size);
|
|
static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
|
|
struct msghdr *msg, int size)
|
|
{
|
|
return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
|
|
}
|
|
int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
|
|
struct msghdr *msg);
|
|
int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
|
|
struct iov_iter *from, int len);
|
|
int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
|
|
void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
|
|
void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
|
|
static inline void skb_free_datagram_locked(struct sock *sk,
|
|
struct sk_buff *skb)
|
|
{
|
|
__skb_free_datagram_locked(sk, skb, 0);
|
|
}
|
|
int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
|
|
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
|
|
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
|
|
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
|
|
int len, __wsum csum);
|
|
int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
|
|
struct pipe_inode_info *pipe, unsigned int len,
|
|
unsigned int flags);
|
|
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
|
|
unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
|
|
int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
|
|
int len, int hlen);
|
|
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
|
|
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
|
|
void skb_scrub_packet(struct sk_buff *skb, bool xnet);
|
|
unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
|
|
bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
|
|
struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
|
|
struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
|
|
int skb_ensure_writable(struct sk_buff *skb, int write_len);
|
|
int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
|
|
int skb_vlan_pop(struct sk_buff *skb);
|
|
int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
|
|
struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
|
|
gfp_t gfp);
|
|
|
|
static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
|
|
{
|
|
return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
|
|
}
|
|
|
|
static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
|
|
{
|
|
return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
|
|
}
|
|
|
|
struct skb_checksum_ops {
|
|
__wsum (*update)(const void *mem, int len, __wsum wsum);
|
|
__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
|
|
};
|
|
|
|
__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
|
|
__wsum csum, const struct skb_checksum_ops *ops);
|
|
__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
|
|
__wsum csum);
|
|
|
|
static inline void * __must_check
|
|
__skb_header_pointer(const struct sk_buff *skb, int offset,
|
|
int len, void *data, int hlen, void *buffer)
|
|
{
|
|
if (hlen - offset >= len)
|
|
return data + offset;
|
|
|
|
if (!skb ||
|
|
skb_copy_bits(skb, offset, buffer, len) < 0)
|
|
return NULL;
|
|
|
|
return buffer;
|
|
}
|
|
|
|
static inline void * __must_check
|
|
skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
|
|
{
|
|
return __skb_header_pointer(skb, offset, len, skb->data,
|
|
skb_headlen(skb), buffer);
|
|
}
|
|
|
|
/**
|
|
* skb_needs_linearize - check if we need to linearize a given skb
|
|
* depending on the given device features.
|
|
* @skb: socket buffer to check
|
|
* @features: net device features
|
|
*
|
|
* Returns true if either:
|
|
* 1. skb has frag_list and the device doesn't support FRAGLIST, or
|
|
* 2. skb is fragmented and the device does not support SG.
|
|
*/
|
|
static inline bool skb_needs_linearize(struct sk_buff *skb,
|
|
netdev_features_t features)
|
|
{
|
|
return skb_is_nonlinear(skb) &&
|
|
((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
|
|
(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
|
|
}
|
|
|
|
static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
|
|
void *to,
|
|
const unsigned int len)
|
|
{
|
|
memcpy(to, skb->data, len);
|
|
}
|
|
|
|
static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
|
|
const int offset, void *to,
|
|
const unsigned int len)
|
|
{
|
|
memcpy(to, skb->data + offset, len);
|
|
}
|
|
|
|
static inline void skb_copy_to_linear_data(struct sk_buff *skb,
|
|
const void *from,
|
|
const unsigned int len)
|
|
{
|
|
memcpy(skb->data, from, len);
|
|
}
|
|
|
|
static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
|
|
const int offset,
|
|
const void *from,
|
|
const unsigned int len)
|
|
{
|
|
memcpy(skb->data + offset, from, len);
|
|
}
|
|
|
|
void skb_init(void);
|
|
|
|
static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
|
|
{
|
|
return skb->tstamp;
|
|
}
|
|
|
|
/**
|
|
* skb_get_timestamp - get timestamp from a skb
|
|
* @skb: skb to get stamp from
|
|
* @stamp: pointer to struct timeval to store stamp in
|
|
*
|
|
* Timestamps are stored in the skb as offsets to a base timestamp.
|
|
* This function converts the offset back to a struct timeval and stores
|
|
* it in stamp.
|
|
*/
|
|
static inline void skb_get_timestamp(const struct sk_buff *skb,
|
|
struct timeval *stamp)
|
|
{
|
|
*stamp = ktime_to_timeval(skb->tstamp);
|
|
}
|
|
|
|
static inline void skb_get_timestampns(const struct sk_buff *skb,
|
|
struct timespec *stamp)
|
|
{
|
|
*stamp = ktime_to_timespec(skb->tstamp);
|
|
}
|
|
|
|
static inline void __net_timestamp(struct sk_buff *skb)
|
|
{
|
|
skb->tstamp = ktime_get_real();
|
|
}
|
|
|
|
static inline ktime_t net_timedelta(ktime_t t)
|
|
{
|
|
return ktime_sub(ktime_get_real(), t);
|
|
}
|
|
|
|
static inline ktime_t net_invalid_timestamp(void)
|
|
{
|
|
return ktime_set(0, 0);
|
|
}
|
|
|
|
struct sk_buff *skb_clone_sk(struct sk_buff *skb);
|
|
|
|
#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
|
|
|
|
void skb_clone_tx_timestamp(struct sk_buff *skb);
|
|
bool skb_defer_rx_timestamp(struct sk_buff *skb);
|
|
|
|
#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
|
|
|
|
static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
|
|
{
|
|
}
|
|
|
|
static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
|
|
|
|
/**
|
|
* skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
|
|
*
|
|
* PHY drivers may accept clones of transmitted packets for
|
|
* timestamping via their phy_driver.txtstamp method. These drivers
|
|
* must call this function to return the skb back to the stack with a
|
|
* timestamp.
|
|
*
|
|
* @skb: clone of the the original outgoing packet
|
|
* @hwtstamps: hardware time stamps
|
|
*
|
|
*/
|
|
void skb_complete_tx_timestamp(struct sk_buff *skb,
|
|
struct skb_shared_hwtstamps *hwtstamps);
|
|
|
|
void __skb_tstamp_tx(struct sk_buff *orig_skb,
|
|
struct skb_shared_hwtstamps *hwtstamps,
|
|
struct sock *sk, int tstype);
|
|
|
|
/**
|
|
* skb_tstamp_tx - queue clone of skb with send time stamps
|
|
* @orig_skb: the original outgoing packet
|
|
* @hwtstamps: hardware time stamps, may be NULL if not available
|
|
*
|
|
* If the skb has a socket associated, then this function clones the
|
|
* skb (thus sharing the actual data and optional structures), stores
|
|
* the optional hardware time stamping information (if non NULL) or
|
|
* generates a software time stamp (otherwise), then queues the clone
|
|
* to the error queue of the socket. Errors are silently ignored.
|
|
*/
|
|
void skb_tstamp_tx(struct sk_buff *orig_skb,
|
|
struct skb_shared_hwtstamps *hwtstamps);
|
|
|
|
static inline void sw_tx_timestamp(struct sk_buff *skb)
|
|
{
|
|
if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
|
|
!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
|
|
skb_tstamp_tx(skb, NULL);
|
|
}
|
|
|
|
/**
|
|
* skb_tx_timestamp() - Driver hook for transmit timestamping
|
|
*
|
|
* Ethernet MAC Drivers should call this function in their hard_xmit()
|
|
* function immediately before giving the sk_buff to the MAC hardware.
|
|
*
|
|
* Specifically, one should make absolutely sure that this function is
|
|
* called before TX completion of this packet can trigger. Otherwise
|
|
* the packet could potentially already be freed.
|
|
*
|
|
* @skb: A socket buffer.
|
|
*/
|
|
static inline void skb_tx_timestamp(struct sk_buff *skb)
|
|
{
|
|
skb_clone_tx_timestamp(skb);
|
|
sw_tx_timestamp(skb);
|
|
}
|
|
|
|
/**
|
|
* skb_complete_wifi_ack - deliver skb with wifi status
|
|
*
|
|
* @skb: the original outgoing packet
|
|
* @acked: ack status
|
|
*
|
|
*/
|
|
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
|
|
|
|
__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
|
|
__sum16 __skb_checksum_complete(struct sk_buff *skb);
|
|
|
|
static inline int skb_csum_unnecessary(const struct sk_buff *skb)
|
|
{
|
|
return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
|
|
skb->csum_valid ||
|
|
(skb->ip_summed == CHECKSUM_PARTIAL &&
|
|
skb_checksum_start_offset(skb) >= 0));
|
|
}
|
|
|
|
/**
|
|
* skb_checksum_complete - Calculate checksum of an entire packet
|
|
* @skb: packet to process
|
|
*
|
|
* This function calculates the checksum over the entire packet plus
|
|
* the value of skb->csum. The latter can be used to supply the
|
|
* checksum of a pseudo header as used by TCP/UDP. It returns the
|
|
* checksum.
|
|
*
|
|
* For protocols that contain complete checksums such as ICMP/TCP/UDP,
|
|
* this function can be used to verify that checksum on received
|
|
* packets. In that case the function should return zero if the
|
|
* checksum is correct. In particular, this function will return zero
|
|
* if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
|
|
* hardware has already verified the correctness of the checksum.
|
|
*/
|
|
static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
|
|
{
|
|
return skb_csum_unnecessary(skb) ?
|
|
0 : __skb_checksum_complete(skb);
|
|
}
|
|
|
|
static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
|
|
{
|
|
if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
|
|
if (skb->csum_level == 0)
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
else
|
|
skb->csum_level--;
|
|
}
|
|
}
|
|
|
|
static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
|
|
{
|
|
if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
|
|
if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
|
|
skb->csum_level++;
|
|
} else if (skb->ip_summed == CHECKSUM_NONE) {
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
skb->csum_level = 0;
|
|
}
|
|
}
|
|
|
|
static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
|
|
{
|
|
/* Mark current checksum as bad (typically called from GRO
|
|
* path). In the case that ip_summed is CHECKSUM_NONE
|
|
* this must be the first checksum encountered in the packet.
|
|
* When ip_summed is CHECKSUM_UNNECESSARY, this is the first
|
|
* checksum after the last one validated. For UDP, a zero
|
|
* checksum can not be marked as bad.
|
|
*/
|
|
|
|
if (skb->ip_summed == CHECKSUM_NONE ||
|
|
skb->ip_summed == CHECKSUM_UNNECESSARY)
|
|
skb->csum_bad = 1;
|
|
}
|
|
|
|
/* Check if we need to perform checksum complete validation.
|
|
*
|
|
* Returns true if checksum complete is needed, false otherwise
|
|
* (either checksum is unnecessary or zero checksum is allowed).
|
|
*/
|
|
static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
|
|
bool zero_okay,
|
|
__sum16 check)
|
|
{
|
|
if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
|
|
skb->csum_valid = 1;
|
|
__skb_decr_checksum_unnecessary(skb);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
|
|
* in checksum_init.
|
|
*/
|
|
#define CHECKSUM_BREAK 76
|
|
|
|
/* Unset checksum-complete
|
|
*
|
|
* Unset checksum complete can be done when packet is being modified
|
|
* (uncompressed for instance) and checksum-complete value is
|
|
* invalidated.
|
|
*/
|
|
static inline void skb_checksum_complete_unset(struct sk_buff *skb)
|
|
{
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
}
|
|
|
|
/* Validate (init) checksum based on checksum complete.
|
|
*
|
|
* Return values:
|
|
* 0: checksum is validated or try to in skb_checksum_complete. In the latter
|
|
* case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
|
|
* checksum is stored in skb->csum for use in __skb_checksum_complete
|
|
* non-zero: value of invalid checksum
|
|
*
|
|
*/
|
|
static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
|
|
bool complete,
|
|
__wsum psum)
|
|
{
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE) {
|
|
if (!csum_fold(csum_add(psum, skb->csum))) {
|
|
skb->csum_valid = 1;
|
|
return 0;
|
|
}
|
|
} else if (skb->csum_bad) {
|
|
/* ip_summed == CHECKSUM_NONE in this case */
|
|
return (__force __sum16)1;
|
|
}
|
|
|
|
skb->csum = psum;
|
|
|
|
if (complete || skb->len <= CHECKSUM_BREAK) {
|
|
__sum16 csum;
|
|
|
|
csum = __skb_checksum_complete(skb);
|
|
skb->csum_valid = !csum;
|
|
return csum;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* Perform checksum validate (init). Note that this is a macro since we only
|
|
* want to calculate the pseudo header which is an input function if necessary.
|
|
* First we try to validate without any computation (checksum unnecessary) and
|
|
* then calculate based on checksum complete calling the function to compute
|
|
* pseudo header.
|
|
*
|
|
* Return values:
|
|
* 0: checksum is validated or try to in skb_checksum_complete
|
|
* non-zero: value of invalid checksum
|
|
*/
|
|
#define __skb_checksum_validate(skb, proto, complete, \
|
|
zero_okay, check, compute_pseudo) \
|
|
({ \
|
|
__sum16 __ret = 0; \
|
|
skb->csum_valid = 0; \
|
|
if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
|
|
__ret = __skb_checksum_validate_complete(skb, \
|
|
complete, compute_pseudo(skb, proto)); \
|
|
__ret; \
|
|
})
|
|
|
|
#define skb_checksum_init(skb, proto, compute_pseudo) \
|
|
__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
|
|
|
|
#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
|
|
__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
|
|
|
|
#define skb_checksum_validate(skb, proto, compute_pseudo) \
|
|
__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
|
|
|
|
#define skb_checksum_validate_zero_check(skb, proto, check, \
|
|
compute_pseudo) \
|
|
__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
|
|
|
|
#define skb_checksum_simple_validate(skb) \
|
|
__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
|
|
|
|
static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
|
|
{
|
|
return (skb->ip_summed == CHECKSUM_NONE &&
|
|
skb->csum_valid && !skb->csum_bad);
|
|
}
|
|
|
|
static inline void __skb_checksum_convert(struct sk_buff *skb,
|
|
__sum16 check, __wsum pseudo)
|
|
{
|
|
skb->csum = ~pseudo;
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
|
}
|
|
|
|
#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
|
|
do { \
|
|
if (__skb_checksum_convert_check(skb)) \
|
|
__skb_checksum_convert(skb, check, \
|
|
compute_pseudo(skb, proto)); \
|
|
} while (0)
|
|
|
|
static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
|
|
u16 start, u16 offset)
|
|
{
|
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
|
skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
|
|
skb->csum_offset = offset - start;
|
|
}
|
|
|
|
/* Update skbuf and packet to reflect the remote checksum offload operation.
|
|
* When called, ptr indicates the starting point for skb->csum when
|
|
* ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
|
|
* here, skb_postpull_rcsum is done so skb->csum start is ptr.
|
|
*/
|
|
static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
|
|
int start, int offset, bool nopartial)
|
|
{
|
|
__wsum delta;
|
|
|
|
if (!nopartial) {
|
|
skb_remcsum_adjust_partial(skb, ptr, start, offset);
|
|
return;
|
|
}
|
|
|
|
if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
|
|
__skb_checksum_complete(skb);
|
|
skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
|
|
}
|
|
|
|
delta = remcsum_adjust(ptr, skb->csum, start, offset);
|
|
|
|
/* Adjust skb->csum since we changed the packet */
|
|
skb->csum = csum_add(skb->csum, delta);
|
|
}
|
|
|
|
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
|
|
void nf_conntrack_destroy(struct nf_conntrack *nfct);
|
|
static inline void nf_conntrack_put(struct nf_conntrack *nfct)
|
|
{
|
|
if (nfct && atomic_dec_and_test(&nfct->use))
|
|
nf_conntrack_destroy(nfct);
|
|
}
|
|
static inline void nf_conntrack_get(struct nf_conntrack *nfct)
|
|
{
|
|
if (nfct)
|
|
atomic_inc(&nfct->use);
|
|
}
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
|
|
static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
|
|
{
|
|
if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
|
|
kfree(nf_bridge);
|
|
}
|
|
static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
|
|
{
|
|
if (nf_bridge)
|
|
atomic_inc(&nf_bridge->use);
|
|
}
|
|
#endif /* CONFIG_BRIDGE_NETFILTER */
|
|
static inline void nf_reset(struct sk_buff *skb)
|
|
{
|
|
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
|
|
nf_conntrack_put(skb->nfct);
|
|
skb->nfct = NULL;
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
|
|
nf_bridge_put(skb->nf_bridge);
|
|
skb->nf_bridge = NULL;
|
|
#endif
|
|
}
|
|
|
|
static inline void nf_reset_trace(struct sk_buff *skb)
|
|
{
|
|
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
|
|
skb->nf_trace = 0;
|
|
#endif
|
|
}
|
|
|
|
/* Note: This doesn't put any conntrack and bridge info in dst. */
|
|
static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
|
|
bool copy)
|
|
{
|
|
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
|
|
dst->nfct = src->nfct;
|
|
nf_conntrack_get(src->nfct);
|
|
if (copy)
|
|
dst->nfctinfo = src->nfctinfo;
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
|
|
dst->nf_bridge = src->nf_bridge;
|
|
nf_bridge_get(src->nf_bridge);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
|
|
if (copy)
|
|
dst->nf_trace = src->nf_trace;
|
|
#endif
|
|
}
|
|
|
|
static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
|
|
{
|
|
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
|
|
nf_conntrack_put(dst->nfct);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
|
|
nf_bridge_put(dst->nf_bridge);
|
|
#endif
|
|
__nf_copy(dst, src, true);
|
|
}
|
|
|
|
#ifdef CONFIG_NETWORK_SECMARK
|
|
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
|
|
{
|
|
to->secmark = from->secmark;
|
|
}
|
|
|
|
static inline void skb_init_secmark(struct sk_buff *skb)
|
|
{
|
|
skb->secmark = 0;
|
|
}
|
|
#else
|
|
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
|
|
{ }
|
|
|
|
static inline void skb_init_secmark(struct sk_buff *skb)
|
|
{ }
|
|
#endif
|
|
|
|
static inline bool skb_irq_freeable(const struct sk_buff *skb)
|
|
{
|
|
return !skb->destructor &&
|
|
#if IS_ENABLED(CONFIG_XFRM)
|
|
!skb->sp &&
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
|
|
!skb->nfct &&
|
|
#endif
|
|
!skb->_skb_refdst &&
|
|
!skb_has_frag_list(skb);
|
|
}
|
|
|
|
static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
|
|
{
|
|
skb->queue_mapping = queue_mapping;
|
|
}
|
|
|
|
static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
|
|
{
|
|
return skb->queue_mapping;
|
|
}
|
|
|
|
static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
|
|
{
|
|
to->queue_mapping = from->queue_mapping;
|
|
}
|
|
|
|
static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
|
|
{
|
|
skb->queue_mapping = rx_queue + 1;
|
|
}
|
|
|
|
static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
|
|
{
|
|
return skb->queue_mapping - 1;
|
|
}
|
|
|
|
static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
|
|
{
|
|
return skb->queue_mapping != 0;
|
|
}
|
|
|
|
static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
|
|
{
|
|
#ifdef CONFIG_XFRM
|
|
return skb->sp;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
/* Keeps track of mac header offset relative to skb->head.
|
|
* It is useful for TSO of Tunneling protocol. e.g. GRE.
|
|
* For non-tunnel skb it points to skb_mac_header() and for
|
|
* tunnel skb it points to outer mac header.
|
|
* Keeps track of level of encapsulation of network headers.
|
|
*/
|
|
struct skb_gso_cb {
|
|
union {
|
|
int mac_offset;
|
|
int data_offset;
|
|
};
|
|
int encap_level;
|
|
__wsum csum;
|
|
__u16 csum_start;
|
|
};
|
|
#define SKB_SGO_CB_OFFSET 32
|
|
#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
|
|
|
|
static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
|
|
{
|
|
return (skb_mac_header(inner_skb) - inner_skb->head) -
|
|
SKB_GSO_CB(inner_skb)->mac_offset;
|
|
}
|
|
|
|
static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
|
|
{
|
|
int new_headroom, headroom;
|
|
int ret;
|
|
|
|
headroom = skb_headroom(skb);
|
|
ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
|
|
if (ret)
|
|
return ret;
|
|
|
|
new_headroom = skb_headroom(skb);
|
|
SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
|
|
return 0;
|
|
}
|
|
|
|
static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
|
|
{
|
|
/* Do not update partial checksums if remote checksum is enabled. */
|
|
if (skb->remcsum_offload)
|
|
return;
|
|
|
|
SKB_GSO_CB(skb)->csum = res;
|
|
SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
|
|
}
|
|
|
|
/* Compute the checksum for a gso segment. First compute the checksum value
|
|
* from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
|
|
* then add in skb->csum (checksum from csum_start to end of packet).
|
|
* skb->csum and csum_start are then updated to reflect the checksum of the
|
|
* resultant packet starting from the transport header-- the resultant checksum
|
|
* is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
|
|
* header.
|
|
*/
|
|
static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
|
|
{
|
|
unsigned char *csum_start = skb_transport_header(skb);
|
|
int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
|
|
__wsum partial = SKB_GSO_CB(skb)->csum;
|
|
|
|
SKB_GSO_CB(skb)->csum = res;
|
|
SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
|
|
|
|
return csum_fold(csum_partial(csum_start, plen, partial));
|
|
}
|
|
|
|
static inline bool skb_is_gso(const struct sk_buff *skb)
|
|
{
|
|
return skb_shinfo(skb)->gso_size;
|
|
}
|
|
|
|
/* Note: Should be called only if skb_is_gso(skb) is true */
|
|
static inline bool skb_is_gso_v6(const struct sk_buff *skb)
|
|
{
|
|
return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
|
|
}
|
|
|
|
static inline void skb_gso_reset(struct sk_buff *skb)
|
|
{
|
|
skb_shinfo(skb)->gso_size = 0;
|
|
skb_shinfo(skb)->gso_segs = 0;
|
|
skb_shinfo(skb)->gso_type = 0;
|
|
}
|
|
|
|
void __skb_warn_lro_forwarding(const struct sk_buff *skb);
|
|
|
|
static inline bool skb_warn_if_lro(const struct sk_buff *skb)
|
|
{
|
|
/* LRO sets gso_size but not gso_type, whereas if GSO is really
|
|
* wanted then gso_type will be set. */
|
|
const struct skb_shared_info *shinfo = skb_shinfo(skb);
|
|
|
|
if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
|
|
unlikely(shinfo->gso_type == 0)) {
|
|
__skb_warn_lro_forwarding(skb);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline void skb_forward_csum(struct sk_buff *skb)
|
|
{
|
|
/* Unfortunately we don't support this one. Any brave souls? */
|
|
if (skb->ip_summed == CHECKSUM_COMPLETE)
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
}
|
|
|
|
/**
|
|
* skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
|
|
* @skb: skb to check
|
|
*
|
|
* fresh skbs have their ip_summed set to CHECKSUM_NONE.
|
|
* Instead of forcing ip_summed to CHECKSUM_NONE, we can
|
|
* use this helper, to document places where we make this assertion.
|
|
*/
|
|
static inline void skb_checksum_none_assert(const struct sk_buff *skb)
|
|
{
|
|
#ifdef DEBUG
|
|
BUG_ON(skb->ip_summed != CHECKSUM_NONE);
|
|
#endif
|
|
}
|
|
|
|
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
|
|
|
|
int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
|
|
struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
|
|
unsigned int transport_len,
|
|
__sum16(*skb_chkf)(struct sk_buff *skb));
|
|
|
|
/**
|
|
* skb_head_is_locked - Determine if the skb->head is locked down
|
|
* @skb: skb to check
|
|
*
|
|
* The head on skbs build around a head frag can be removed if they are
|
|
* not cloned. This function returns true if the skb head is locked down
|
|
* due to either being allocated via kmalloc, or by being a clone with
|
|
* multiple references to the head.
|
|
*/
|
|
static inline bool skb_head_is_locked(const struct sk_buff *skb)
|
|
{
|
|
return !skb->head_frag || skb_cloned(skb);
|
|
}
|
|
|
|
/**
|
|
* skb_gso_network_seglen - Return length of individual segments of a gso packet
|
|
*
|
|
* @skb: GSO skb
|
|
*
|
|
* skb_gso_network_seglen is used to determine the real size of the
|
|
* individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
|
|
*
|
|
* The MAC/L2 header is not accounted for.
|
|
*/
|
|
static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
|
|
{
|
|
unsigned int hdr_len = skb_transport_header(skb) -
|
|
skb_network_header(skb);
|
|
return hdr_len + skb_gso_transport_seglen(skb);
|
|
}
|
|
|
|
/* Local Checksum Offload.
|
|
* Compute outer checksum based on the assumption that the
|
|
* inner checksum will be offloaded later.
|
|
* See Documentation/networking/checksum-offloads.txt for
|
|
* explanation of how this works.
|
|
* Fill in outer checksum adjustment (e.g. with sum of outer
|
|
* pseudo-header) before calling.
|
|
* Also ensure that inner checksum is in linear data area.
|
|
*/
|
|
static inline __wsum lco_csum(struct sk_buff *skb)
|
|
{
|
|
unsigned char *csum_start = skb_checksum_start(skb);
|
|
unsigned char *l4_hdr = skb_transport_header(skb);
|
|
__wsum partial;
|
|
|
|
/* Start with complement of inner checksum adjustment */
|
|
partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
|
|
skb->csum_offset));
|
|
|
|
/* Add in checksum of our headers (incl. outer checksum
|
|
* adjustment filled in by caller) and return result.
|
|
*/
|
|
return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
|
|
}
|
|
|
|
#endif /* __KERNEL__ */
|
|
#endif /* _LINUX_SKBUFF_H */
|