linux_dsm_epyc7002/arch/arm/kernel/kprobes-test.c
Jon Medhurst 48f7bc86b6 ARM: kprobes: Prevent known test failures stopping other tests running
Due to a long-standing issue with Thumb symbol lookup [1] the jprobes
tests fail when built into a kernel compiled as Thumb mode. (They work
fine for ARM mode kernels or for Thumb when built as a loadable module.)

Rather than have this problem terminate testing prematurely lets instead
emit an error message and carry on with the main kprobes tests, delaying
the final failure report until the end.

[1] http://lists.infradead.org/pipermail/linux-arm-kernel/2011-August/063026.html

Signed-off-by: Jon Medhurst <tixy@linaro.org>
2014-07-02 12:48:36 +01:00

1712 lines
42 KiB
C

/*
* arch/arm/kernel/kprobes-test.c
*
* Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/*
* This file contains test code for ARM kprobes.
*
* The top level function run_all_tests() executes tests for all of the
* supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
* fall into two categories; run_api_tests() checks basic functionality of the
* kprobes API, and run_test_cases() is a comprehensive test for kprobes
* instruction decoding and simulation.
*
* run_test_cases() first checks the kprobes decoding table for self consistency
* (using table_test()) then executes a series of test cases for each of the CPU
* instruction forms. coverage_start() and coverage_end() are used to verify
* that these test cases cover all of the possible combinations of instructions
* described by the kprobes decoding tables.
*
* The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
* which use the macros defined in kprobes-test.h. The rest of this
* documentation will describe the operation of the framework used by these
* test cases.
*/
/*
* TESTING METHODOLOGY
* -------------------
*
* The methodology used to test an ARM instruction 'test_insn' is to use
* inline assembler like:
*
* test_before: nop
* test_case: test_insn
* test_after: nop
*
* When the test case is run a kprobe is placed of each nop. The
* post-handler of the test_before probe is used to modify the saved CPU
* register context to that which we require for the test case. The
* pre-handler of the of the test_after probe saves a copy of the CPU
* register context. In this way we can execute test_insn with a specific
* register context and see the results afterwards.
*
* To actually test the kprobes instruction emulation we perform the above
* step a second time but with an additional kprobe on the test_case
* instruction itself. If the emulation is accurate then the results seen
* by the test_after probe will be identical to the first run which didn't
* have a probe on test_case.
*
* Each test case is run several times with a variety of variations in the
* flags value of stored in CPSR, and for Thumb code, different ITState.
*
* For instructions which can modify PC, a second test_after probe is used
* like this:
*
* test_before: nop
* test_case: test_insn
* test_after: nop
* b test_done
* test_after2: nop
* test_done:
*
* The test case is constructed such that test_insn branches to
* test_after2, or, if testing a conditional instruction, it may just
* continue to test_after. The probes inserted at both locations let us
* determine which happened. A similar approach is used for testing
* backwards branches...
*
* b test_before
* b test_done @ helps to cope with off by 1 branches
* test_after2: nop
* b test_done
* test_before: nop
* test_case: test_insn
* test_after: nop
* test_done:
*
* The macros used to generate the assembler instructions describe above
* are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
* (branch backwards). In these, the local variables numbered 1, 50, 2 and
* 99 represent: test_before, test_case, test_after2 and test_done.
*
* FRAMEWORK
* ---------
*
* Each test case is wrapped between the pair of macros TESTCASE_START and
* TESTCASE_END. As well as performing the inline assembler boilerplate,
* these call out to the kprobes_test_case_start() and
* kprobes_test_case_end() functions which drive the execution of the test
* case. The specific arguments to use for each test case are stored as
* inline data constructed using the various TEST_ARG_* macros. Putting
* this all together, a simple test case may look like:
*
* TESTCASE_START("Testing mov r0, r7")
* TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
* TEST_ARG_END("")
* TEST_INSTRUCTION("mov r0, r7")
* TESTCASE_END
*
* Note, in practice the single convenience macro TEST_R would be used for this
* instead.
*
* The above would expand to assembler looking something like:
*
* @ TESTCASE_START
* bl __kprobes_test_case_start
* @ start of inline data...
* .ascii "mov r0, r7" @ text title for test case
* .byte 0
* .align 2, 0
*
* @ TEST_ARG_REG
* .byte ARG_TYPE_REG
* .byte 7
* .short 0
* .word 0x1234567
*
* @ TEST_ARG_END
* .byte ARG_TYPE_END
* .byte TEST_ISA @ flags, including ISA being tested
* .short 50f-0f @ offset of 'test_before'
* .short 2f-0f @ offset of 'test_after2' (if relevent)
* .short 99f-0f @ offset of 'test_done'
* @ start of test case code...
* 0:
* .code TEST_ISA @ switch to ISA being tested
*
* @ TEST_INSTRUCTION
* 50: nop @ location for 'test_before' probe
* 1: mov r0, r7 @ the test case instruction 'test_insn'
* nop @ location for 'test_after' probe
*
* // TESTCASE_END
* 2:
* 99: bl __kprobes_test_case_end_##TEST_ISA
* .code NONMAL_ISA
*
* When the above is execute the following happens...
*
* __kprobes_test_case_start() is an assembler wrapper which sets up space
* for a stack buffer and calls the C function kprobes_test_case_start().
* This C function will do some initial processing of the inline data and
* setup some global state. It then inserts the test_before and test_after
* kprobes and returns a value which causes the assembler wrapper to jump
* to the start of the test case code, (local label '0').
*
* When the test case code executes, the test_before probe will be hit and
* test_before_post_handler will call setup_test_context(). This fills the
* stack buffer and CPU registers with a test pattern and then processes
* the test case arguments. In our example there is one TEST_ARG_REG which
* indicates that R7 should be loaded with the value 0x12345678.
*
* When the test_before probe ends, the test case continues and executes
* the "mov r0, r7" instruction. It then hits the test_after probe and the
* pre-handler for this (test_after_pre_handler) will save a copy of the
* CPU register context. This should now have R0 holding the same value as
* R7.
*
* Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
* an assembler wrapper which switches back to the ISA used by the test
* code and calls the C function kprobes_test_case_end().
*
* For each run through the test case, test_case_run_count is incremented
* by one. For even runs, kprobes_test_case_end() saves a copy of the
* register and stack buffer contents from the test case just run. It then
* inserts a kprobe on the test case instruction 'test_insn' and returns a
* value to cause the test case code to be re-run.
*
* For odd numbered runs, kprobes_test_case_end() compares the register and
* stack buffer contents to those that were saved on the previous even
* numbered run (the one without the kprobe on test_insn). These should be
* the same if the kprobe instruction simulation routine is correct.
*
* The pair of test case runs is repeated with different combinations of
* flag values in CPSR and, for Thumb, different ITState. This is
* controlled by test_context_cpsr().
*
* BUILDING TEST CASES
* -------------------
*
*
* As an aid to building test cases, the stack buffer is initialised with
* some special values:
*
* [SP+13*4] Contains SP+120. This can be used to test instructions
* which load a value into SP.
*
* [SP+15*4] When testing branching instructions using TEST_BRANCH_{F,B},
* this holds the target address of the branch, 'test_after2'.
* This can be used to test instructions which load a PC value
* from memory.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kprobes.h>
#include <linux/errno.h>
#include <linux/stddef.h>
#include <linux/bug.h>
#include <asm/opcodes.h>
#include "kprobes.h"
#include "probes-arm.h"
#include "probes-thumb.h"
#include "kprobes-test.h"
#define BENCHMARKING 1
/*
* Test basic API
*/
static bool test_regs_ok;
static int test_func_instance;
static int pre_handler_called;
static int post_handler_called;
static int jprobe_func_called;
static int kretprobe_handler_called;
static int tests_failed;
#define FUNC_ARG1 0x12345678
#define FUNC_ARG2 0xabcdef
#ifndef CONFIG_THUMB2_KERNEL
long arm_func(long r0, long r1);
static void __used __naked __arm_kprobes_test_func(void)
{
__asm__ __volatile__ (
".arm \n\t"
".type arm_func, %%function \n\t"
"arm_func: \n\t"
"adds r0, r0, r1 \n\t"
"bx lr \n\t"
".code "NORMAL_ISA /* Back to Thumb if necessary */
: : : "r0", "r1", "cc"
);
}
#else /* CONFIG_THUMB2_KERNEL */
long thumb16_func(long r0, long r1);
long thumb32even_func(long r0, long r1);
long thumb32odd_func(long r0, long r1);
static void __used __naked __thumb_kprobes_test_funcs(void)
{
__asm__ __volatile__ (
".type thumb16_func, %%function \n\t"
"thumb16_func: \n\t"
"adds.n r0, r0, r1 \n\t"
"bx lr \n\t"
".align \n\t"
".type thumb32even_func, %%function \n\t"
"thumb32even_func: \n\t"
"adds.w r0, r0, r1 \n\t"
"bx lr \n\t"
".align \n\t"
"nop.n \n\t"
".type thumb32odd_func, %%function \n\t"
"thumb32odd_func: \n\t"
"adds.w r0, r0, r1 \n\t"
"bx lr \n\t"
: : : "r0", "r1", "cc"
);
}
#endif /* CONFIG_THUMB2_KERNEL */
static int call_test_func(long (*func)(long, long), bool check_test_regs)
{
long ret;
++test_func_instance;
test_regs_ok = false;
ret = (*func)(FUNC_ARG1, FUNC_ARG2);
if (ret != FUNC_ARG1 + FUNC_ARG2) {
pr_err("FAIL: call_test_func: func returned %lx\n", ret);
return false;
}
if (check_test_regs && !test_regs_ok) {
pr_err("FAIL: test regs not OK\n");
return false;
}
return true;
}
static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
{
pre_handler_called = test_func_instance;
if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
test_regs_ok = true;
return 0;
}
static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
unsigned long flags)
{
post_handler_called = test_func_instance;
if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
test_regs_ok = false;
}
static struct kprobe the_kprobe = {
.addr = 0,
.pre_handler = pre_handler,
.post_handler = post_handler
};
static int test_kprobe(long (*func)(long, long))
{
int ret;
the_kprobe.addr = (kprobe_opcode_t *)func;
ret = register_kprobe(&the_kprobe);
if (ret < 0) {
pr_err("FAIL: register_kprobe failed with %d\n", ret);
return ret;
}
ret = call_test_func(func, true);
unregister_kprobe(&the_kprobe);
the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
if (!ret)
return -EINVAL;
if (pre_handler_called != test_func_instance) {
pr_err("FAIL: kprobe pre_handler not called\n");
return -EINVAL;
}
if (post_handler_called != test_func_instance) {
pr_err("FAIL: kprobe post_handler not called\n");
return -EINVAL;
}
if (!call_test_func(func, false))
return -EINVAL;
if (pre_handler_called == test_func_instance ||
post_handler_called == test_func_instance) {
pr_err("FAIL: probe called after unregistering\n");
return -EINVAL;
}
return 0;
}
static void __kprobes jprobe_func(long r0, long r1)
{
jprobe_func_called = test_func_instance;
if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
test_regs_ok = true;
jprobe_return();
}
static struct jprobe the_jprobe = {
.entry = jprobe_func,
};
static int test_jprobe(long (*func)(long, long))
{
int ret;
the_jprobe.kp.addr = (kprobe_opcode_t *)func;
ret = register_jprobe(&the_jprobe);
if (ret < 0) {
pr_err("FAIL: register_jprobe failed with %d\n", ret);
return ret;
}
ret = call_test_func(func, true);
unregister_jprobe(&the_jprobe);
the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
if (!ret)
return -EINVAL;
if (jprobe_func_called != test_func_instance) {
pr_err("FAIL: jprobe handler function not called\n");
return -EINVAL;
}
if (!call_test_func(func, false))
return -EINVAL;
if (jprobe_func_called == test_func_instance) {
pr_err("FAIL: probe called after unregistering\n");
return -EINVAL;
}
return 0;
}
static int __kprobes
kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
{
kretprobe_handler_called = test_func_instance;
if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
test_regs_ok = true;
return 0;
}
static struct kretprobe the_kretprobe = {
.handler = kretprobe_handler,
};
static int test_kretprobe(long (*func)(long, long))
{
int ret;
the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
ret = register_kretprobe(&the_kretprobe);
if (ret < 0) {
pr_err("FAIL: register_kretprobe failed with %d\n", ret);
return ret;
}
ret = call_test_func(func, true);
unregister_kretprobe(&the_kretprobe);
the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
if (!ret)
return -EINVAL;
if (kretprobe_handler_called != test_func_instance) {
pr_err("FAIL: kretprobe handler not called\n");
return -EINVAL;
}
if (!call_test_func(func, false))
return -EINVAL;
if (jprobe_func_called == test_func_instance) {
pr_err("FAIL: kretprobe called after unregistering\n");
return -EINVAL;
}
return 0;
}
static int run_api_tests(long (*func)(long, long))
{
int ret;
pr_info(" kprobe\n");
ret = test_kprobe(func);
if (ret < 0)
return ret;
pr_info(" jprobe\n");
ret = test_jprobe(func);
#if defined(CONFIG_THUMB2_KERNEL) && !defined(MODULE)
if (ret == -EINVAL) {
pr_err("FAIL: Known longtime bug with jprobe on Thumb kernels\n");
tests_failed = ret;
ret = 0;
}
#endif
if (ret < 0)
return ret;
pr_info(" kretprobe\n");
ret = test_kretprobe(func);
if (ret < 0)
return ret;
return 0;
}
/*
* Benchmarking
*/
#if BENCHMARKING
static void __naked benchmark_nop(void)
{
__asm__ __volatile__ (
"nop \n\t"
"bx lr"
);
}
#ifdef CONFIG_THUMB2_KERNEL
#define wide ".w"
#else
#define wide
#endif
static void __naked benchmark_pushpop1(void)
{
__asm__ __volatile__ (
"stmdb"wide" sp!, {r3-r11,lr} \n\t"
"ldmia"wide" sp!, {r3-r11,pc}"
);
}
static void __naked benchmark_pushpop2(void)
{
__asm__ __volatile__ (
"stmdb"wide" sp!, {r0-r8,lr} \n\t"
"ldmia"wide" sp!, {r0-r8,pc}"
);
}
static void __naked benchmark_pushpop3(void)
{
__asm__ __volatile__ (
"stmdb"wide" sp!, {r4,lr} \n\t"
"ldmia"wide" sp!, {r4,pc}"
);
}
static void __naked benchmark_pushpop4(void)
{
__asm__ __volatile__ (
"stmdb"wide" sp!, {r0,lr} \n\t"
"ldmia"wide" sp!, {r0,pc}"
);
}
#ifdef CONFIG_THUMB2_KERNEL
static void __naked benchmark_pushpop_thumb(void)
{
__asm__ __volatile__ (
"push.n {r0-r7,lr} \n\t"
"pop.n {r0-r7,pc}"
);
}
#endif
static int __kprobes
benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
return 0;
}
static int benchmark(void(*fn)(void))
{
unsigned n, i, t, t0;
for (n = 1000; ; n *= 2) {
t0 = sched_clock();
for (i = n; i > 0; --i)
fn();
t = sched_clock() - t0;
if (t >= 250000000)
break; /* Stop once we took more than 0.25 seconds */
}
return t / n; /* Time for one iteration in nanoseconds */
};
static int kprobe_benchmark(void(*fn)(void), unsigned offset)
{
struct kprobe k = {
.addr = (kprobe_opcode_t *)((uintptr_t)fn + offset),
.pre_handler = benchmark_pre_handler,
};
int ret = register_kprobe(&k);
if (ret < 0) {
pr_err("FAIL: register_kprobe failed with %d\n", ret);
return ret;
}
ret = benchmark(fn);
unregister_kprobe(&k);
return ret;
};
struct benchmarks {
void (*fn)(void);
unsigned offset;
const char *title;
};
static int run_benchmarks(void)
{
int ret;
struct benchmarks list[] = {
{&benchmark_nop, 0, "nop"},
/*
* benchmark_pushpop{1,3} will have the optimised
* instruction emulation, whilst benchmark_pushpop{2,4} will
* be the equivalent unoptimised instructions.
*/
{&benchmark_pushpop1, 0, "stmdb sp!, {r3-r11,lr}"},
{&benchmark_pushpop1, 4, "ldmia sp!, {r3-r11,pc}"},
{&benchmark_pushpop2, 0, "stmdb sp!, {r0-r8,lr}"},
{&benchmark_pushpop2, 4, "ldmia sp!, {r0-r8,pc}"},
{&benchmark_pushpop3, 0, "stmdb sp!, {r4,lr}"},
{&benchmark_pushpop3, 4, "ldmia sp!, {r4,pc}"},
{&benchmark_pushpop4, 0, "stmdb sp!, {r0,lr}"},
{&benchmark_pushpop4, 4, "ldmia sp!, {r0,pc}"},
#ifdef CONFIG_THUMB2_KERNEL
{&benchmark_pushpop_thumb, 0, "push.n {r0-r7,lr}"},
{&benchmark_pushpop_thumb, 2, "pop.n {r0-r7,pc}"},
#endif
{0}
};
struct benchmarks *b;
for (b = list; b->fn; ++b) {
ret = kprobe_benchmark(b->fn, b->offset);
if (ret < 0)
return ret;
pr_info(" %dns for kprobe %s\n", ret, b->title);
}
pr_info("\n");
return 0;
}
#endif /* BENCHMARKING */
/*
* Decoding table self-consistency tests
*/
static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
[DECODE_TYPE_TABLE] = sizeof(struct decode_table),
[DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom),
[DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate),
[DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate),
[DECODE_TYPE_OR] = sizeof(struct decode_or),
[DECODE_TYPE_REJECT] = sizeof(struct decode_reject)
};
static int table_iter(const union decode_item *table,
int (*fn)(const struct decode_header *, void *),
void *args)
{
const struct decode_header *h = (struct decode_header *)table;
int result;
for (;;) {
enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
if (type == DECODE_TYPE_END)
return 0;
result = fn(h, args);
if (result)
return result;
h = (struct decode_header *)
((uintptr_t)h + decode_struct_sizes[type]);
}
}
static int table_test_fail(const struct decode_header *h, const char* message)
{
pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
message, h->mask.bits, h->value.bits);
return -EINVAL;
}
struct table_test_args {
const union decode_item *root_table;
u32 parent_mask;
u32 parent_value;
};
static int table_test_fn(const struct decode_header *h, void *args)
{
struct table_test_args *a = (struct table_test_args *)args;
enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
if (h->value.bits & ~h->mask.bits)
return table_test_fail(h, "Match value has bits not in mask");
if ((h->mask.bits & a->parent_mask) != a->parent_mask)
return table_test_fail(h, "Mask has bits not in parent mask");
if ((h->value.bits ^ a->parent_value) & a->parent_mask)
return table_test_fail(h, "Value is inconsistent with parent");
if (type == DECODE_TYPE_TABLE) {
struct decode_table *d = (struct decode_table *)h;
struct table_test_args args2 = *a;
args2.parent_mask = h->mask.bits;
args2.parent_value = h->value.bits;
return table_iter(d->table.table, table_test_fn, &args2);
}
return 0;
}
static int table_test(const union decode_item *table)
{
struct table_test_args args = {
.root_table = table,
.parent_mask = 0,
.parent_value = 0
};
return table_iter(args.root_table, table_test_fn, &args);
}
/*
* Decoding table test coverage analysis
*
* coverage_start() builds a coverage_table which contains a list of
* coverage_entry's to match each entry in the specified kprobes instruction
* decoding table.
*
* When test cases are run, coverage_add() is called to process each case.
* This looks up the corresponding entry in the coverage_table and sets it as
* being matched, as well as clearing the regs flag appropriate for the test.
*
* After all test cases have been run, coverage_end() is called to check that
* all entries in coverage_table have been matched and that all regs flags are
* cleared. I.e. that all possible combinations of instructions described by
* the kprobes decoding tables have had a test case executed for them.
*/
bool coverage_fail;
#define MAX_COVERAGE_ENTRIES 256
struct coverage_entry {
const struct decode_header *header;
unsigned regs;
unsigned nesting;
char matched;
};
struct coverage_table {
struct coverage_entry *base;
unsigned num_entries;
unsigned nesting;
};
struct coverage_table coverage;
#define COVERAGE_ANY_REG (1<<0)
#define COVERAGE_SP (1<<1)
#define COVERAGE_PC (1<<2)
#define COVERAGE_PCWB (1<<3)
static const char coverage_register_lookup[16] = {
[REG_TYPE_ANY] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
[REG_TYPE_SAMEAS16] = COVERAGE_ANY_REG,
[REG_TYPE_SP] = COVERAGE_SP,
[REG_TYPE_PC] = COVERAGE_PC,
[REG_TYPE_NOSP] = COVERAGE_ANY_REG | COVERAGE_SP,
[REG_TYPE_NOSPPC] = COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
[REG_TYPE_NOPC] = COVERAGE_ANY_REG | COVERAGE_PC,
[REG_TYPE_NOPCWB] = COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
[REG_TYPE_NOPCX] = COVERAGE_ANY_REG,
[REG_TYPE_NOSPPCX] = COVERAGE_ANY_REG | COVERAGE_SP,
};
unsigned coverage_start_registers(const struct decode_header *h)
{
unsigned regs = 0;
int i;
for (i = 0; i < 20; i += 4) {
int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
regs |= coverage_register_lookup[r] << i;
}
return regs;
}
static int coverage_start_fn(const struct decode_header *h, void *args)
{
struct coverage_table *coverage = (struct coverage_table *)args;
enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
struct coverage_entry *entry = coverage->base + coverage->num_entries;
if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
pr_err("FAIL: Out of space for test coverage data");
return -ENOMEM;
}
++coverage->num_entries;
entry->header = h;
entry->regs = coverage_start_registers(h);
entry->nesting = coverage->nesting;
entry->matched = false;
if (type == DECODE_TYPE_TABLE) {
struct decode_table *d = (struct decode_table *)h;
int ret;
++coverage->nesting;
ret = table_iter(d->table.table, coverage_start_fn, coverage);
--coverage->nesting;
return ret;
}
return 0;
}
static int coverage_start(const union decode_item *table)
{
coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
sizeof(struct coverage_entry), GFP_KERNEL);
coverage.num_entries = 0;
coverage.nesting = 0;
return table_iter(table, coverage_start_fn, &coverage);
}
static void
coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
{
int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
int i;
for (i = 0; i < 20; i += 4) {
enum decode_reg_type reg_type = (regs >> i) & 0xf;
int reg = (insn >> i) & 0xf;
int flag;
if (!reg_type)
continue;
if (reg == 13)
flag = COVERAGE_SP;
else if (reg == 15)
flag = COVERAGE_PC;
else
flag = COVERAGE_ANY_REG;
entry->regs &= ~(flag << i);
switch (reg_type) {
case REG_TYPE_NONE:
case REG_TYPE_ANY:
case REG_TYPE_SAMEAS16:
break;
case REG_TYPE_SP:
if (reg != 13)
return;
break;
case REG_TYPE_PC:
if (reg != 15)
return;
break;
case REG_TYPE_NOSP:
if (reg == 13)
return;
break;
case REG_TYPE_NOSPPC:
case REG_TYPE_NOSPPCX:
if (reg == 13 || reg == 15)
return;
break;
case REG_TYPE_NOPCWB:
if (!is_writeback(insn))
break;
if (reg == 15) {
entry->regs &= ~(COVERAGE_PCWB << i);
return;
}
break;
case REG_TYPE_NOPC:
case REG_TYPE_NOPCX:
if (reg == 15)
return;
break;
}
}
}
static void coverage_add(kprobe_opcode_t insn)
{
struct coverage_entry *entry = coverage.base;
struct coverage_entry *end = coverage.base + coverage.num_entries;
bool matched = false;
unsigned nesting = 0;
for (; entry < end; ++entry) {
const struct decode_header *h = entry->header;
enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
if (entry->nesting > nesting)
continue; /* Skip sub-table we didn't match */
if (entry->nesting < nesting)
break; /* End of sub-table we were scanning */
if (!matched) {
if ((insn & h->mask.bits) != h->value.bits)
continue;
entry->matched = true;
}
switch (type) {
case DECODE_TYPE_TABLE:
++nesting;
break;
case DECODE_TYPE_CUSTOM:
case DECODE_TYPE_SIMULATE:
case DECODE_TYPE_EMULATE:
coverage_add_registers(entry, insn);
return;
case DECODE_TYPE_OR:
matched = true;
break;
case DECODE_TYPE_REJECT:
default:
return;
}
}
}
static void coverage_end(void)
{
struct coverage_entry *entry = coverage.base;
struct coverage_entry *end = coverage.base + coverage.num_entries;
for (; entry < end; ++entry) {
u32 mask = entry->header->mask.bits;
u32 value = entry->header->value.bits;
if (entry->regs) {
pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
mask, value, entry->regs);
coverage_fail = true;
}
if (!entry->matched) {
pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
mask, value);
coverage_fail = true;
}
}
kfree(coverage.base);
}
/*
* Framework for instruction set test cases
*/
void __naked __kprobes_test_case_start(void)
{
__asm__ __volatile__ (
"stmdb sp!, {r4-r11} \n\t"
"sub sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
"bic r0, lr, #1 @ r0 = inline title string \n\t"
"mov r1, sp \n\t"
"bl kprobes_test_case_start \n\t"
"bx r0 \n\t"
);
}
#ifndef CONFIG_THUMB2_KERNEL
void __naked __kprobes_test_case_end_32(void)
{
__asm__ __volatile__ (
"mov r4, lr \n\t"
"bl kprobes_test_case_end \n\t"
"cmp r0, #0 \n\t"
"movne pc, r0 \n\t"
"mov r0, r4 \n\t"
"add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
"ldmia sp!, {r4-r11} \n\t"
"mov pc, r0 \n\t"
);
}
#else /* CONFIG_THUMB2_KERNEL */
void __naked __kprobes_test_case_end_16(void)
{
__asm__ __volatile__ (
"mov r4, lr \n\t"
"bl kprobes_test_case_end \n\t"
"cmp r0, #0 \n\t"
"bxne r0 \n\t"
"mov r0, r4 \n\t"
"add sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
"ldmia sp!, {r4-r11} \n\t"
"bx r0 \n\t"
);
}
void __naked __kprobes_test_case_end_32(void)
{
__asm__ __volatile__ (
".arm \n\t"
"orr lr, lr, #1 @ will return to Thumb code \n\t"
"ldr pc, 1f \n\t"
"1: \n\t"
".word __kprobes_test_case_end_16 \n\t"
);
}
#endif
int kprobe_test_flags;
int kprobe_test_cc_position;
static int test_try_count;
static int test_pass_count;
static int test_fail_count;
static struct pt_regs initial_regs;
static struct pt_regs expected_regs;
static struct pt_regs result_regs;
static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
static const char *current_title;
static struct test_arg *current_args;
static u32 *current_stack;
static uintptr_t current_branch_target;
static uintptr_t current_code_start;
static kprobe_opcode_t current_instruction;
#define TEST_CASE_PASSED -1
#define TEST_CASE_FAILED -2
static int test_case_run_count;
static bool test_case_is_thumb;
static int test_instance;
/*
* We ignore the state of the imprecise abort disable flag (CPSR.A) because this
* can change randomly as the kernel doesn't take care to preserve or initialise
* this across context switches. Also, with Security Extentions, the flag may
* not be under control of the kernel; for this reason we ignore the state of
* the FIQ disable flag CPSR.F as well.
*/
#define PSR_IGNORE_BITS (PSR_A_BIT | PSR_F_BIT)
static unsigned long test_check_cc(int cc, unsigned long cpsr)
{
int ret = arm_check_condition(cc << 28, cpsr);
return (ret != ARM_OPCODE_CONDTEST_FAIL);
}
static int is_last_scenario;
static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
static int memory_needs_checking;
static unsigned long test_context_cpsr(int scenario)
{
unsigned long cpsr;
probe_should_run = 1;
/* Default case is that we cycle through 16 combinations of flags */
cpsr = (scenario & 0xf) << 28; /* N,Z,C,V flags */
cpsr |= (scenario & 0xf) << 16; /* GE flags */
cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
if (!test_case_is_thumb) {
/* Testing ARM code */
int cc = current_instruction >> 28;
probe_should_run = test_check_cc(cc, cpsr) != 0;
if (scenario == 15)
is_last_scenario = true;
} else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
/* Testing Thumb code without setting ITSTATE */
if (kprobe_test_cc_position) {
int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
probe_should_run = test_check_cc(cc, cpsr) != 0;
}
if (scenario == 15)
is_last_scenario = true;
} else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
/* Testing Thumb code with all combinations of ITSTATE */
unsigned x = (scenario >> 4);
unsigned cond_base = x % 7; /* ITSTATE<7:5> */
unsigned mask = x / 7 + 2; /* ITSTATE<4:0>, bits reversed */
if (mask > 0x1f) {
/* Finish by testing state from instruction 'itt al' */
cond_base = 7;
mask = 0x4;
if ((scenario & 0xf) == 0xf)
is_last_scenario = true;
}
cpsr |= cond_base << 13; /* ITSTATE<7:5> */
cpsr |= (mask & 0x1) << 12; /* ITSTATE<4> */
cpsr |= (mask & 0x2) << 10; /* ITSTATE<3> */
cpsr |= (mask & 0x4) << 8; /* ITSTATE<2> */
cpsr |= (mask & 0x8) << 23; /* ITSTATE<1> */
cpsr |= (mask & 0x10) << 21; /* ITSTATE<0> */
probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
} else {
/* Testing Thumb code with several combinations of ITSTATE */
switch (scenario) {
case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
cpsr = 0x00000800;
probe_should_run = 0;
break;
case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
cpsr = 0xf0007800;
probe_should_run = 0;
break;
case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
cpsr = 0x00009800;
break;
case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
cpsr = 0xf0002800;
is_last_scenario = true;
break;
}
}
return cpsr;
}
static void setup_test_context(struct pt_regs *regs)
{
int scenario = test_case_run_count>>1;
unsigned long val;
struct test_arg *args;
int i;
is_last_scenario = false;
memory_needs_checking = false;
/* Initialise test memory on stack */
val = (scenario & 1) ? VALM : ~VALM;
for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
current_stack[i] = val + (i << 8);
/* Put target of branch on stack for tests which load PC from memory */
if (current_branch_target)
current_stack[15] = current_branch_target;
/* Put a value for SP on stack for tests which load SP from memory */
current_stack[13] = (u32)current_stack + 120;
/* Initialise register values to their default state */
val = (scenario & 2) ? VALR : ~VALR;
for (i = 0; i < 13; ++i)
regs->uregs[i] = val ^ (i << 8);
regs->ARM_lr = val ^ (14 << 8);
regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
regs->ARM_cpsr |= test_context_cpsr(scenario);
/* Perform testcase specific register setup */
args = current_args;
for (; args[0].type != ARG_TYPE_END; ++args)
switch (args[0].type) {
case ARG_TYPE_REG: {
struct test_arg_regptr *arg =
(struct test_arg_regptr *)args;
regs->uregs[arg->reg] = arg->val;
break;
}
case ARG_TYPE_PTR: {
struct test_arg_regptr *arg =
(struct test_arg_regptr *)args;
regs->uregs[arg->reg] =
(unsigned long)current_stack + arg->val;
memory_needs_checking = true;
break;
}
case ARG_TYPE_MEM: {
struct test_arg_mem *arg = (struct test_arg_mem *)args;
current_stack[arg->index] = arg->val;
break;
}
default:
break;
}
}
struct test_probe {
struct kprobe kprobe;
bool registered;
int hit;
};
static void unregister_test_probe(struct test_probe *probe)
{
if (probe->registered) {
unregister_kprobe(&probe->kprobe);
probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
}
probe->registered = false;
}
static int register_test_probe(struct test_probe *probe)
{
int ret;
if (probe->registered)
BUG();
ret = register_kprobe(&probe->kprobe);
if (ret >= 0) {
probe->registered = true;
probe->hit = -1;
}
return ret;
}
static int __kprobes
test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
container_of(p, struct test_probe, kprobe)->hit = test_instance;
return 0;
}
static void __kprobes
test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
unsigned long flags)
{
setup_test_context(regs);
initial_regs = *regs;
initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
}
static int __kprobes
test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
container_of(p, struct test_probe, kprobe)->hit = test_instance;
return 0;
}
static int __kprobes
test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
return 0; /* Already run for this test instance */
result_regs = *regs;
result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
/* Undo any changes done to SP by the test case */
regs->ARM_sp = (unsigned long)current_stack;
container_of(p, struct test_probe, kprobe)->hit = test_instance;
return 0;
}
static struct test_probe test_before_probe = {
.kprobe.pre_handler = test_before_pre_handler,
.kprobe.post_handler = test_before_post_handler,
};
static struct test_probe test_case_probe = {
.kprobe.pre_handler = test_case_pre_handler,
};
static struct test_probe test_after_probe = {
.kprobe.pre_handler = test_after_pre_handler,
};
static struct test_probe test_after2_probe = {
.kprobe.pre_handler = test_after_pre_handler,
};
static void test_case_cleanup(void)
{
unregister_test_probe(&test_before_probe);
unregister_test_probe(&test_case_probe);
unregister_test_probe(&test_after_probe);
unregister_test_probe(&test_after2_probe);
}
static void print_registers(struct pt_regs *regs)
{
pr_err("r0 %08lx | r1 %08lx | r2 %08lx | r3 %08lx\n",
regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
pr_err("r4 %08lx | r5 %08lx | r6 %08lx | r7 %08lx\n",
regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
pr_err("r8 %08lx | r9 %08lx | r10 %08lx | r11 %08lx\n",
regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
pr_err("r12 %08lx | sp %08lx | lr %08lx | pc %08lx\n",
regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
pr_err("cpsr %08lx\n", regs->ARM_cpsr);
}
static void print_memory(u32 *mem, size_t size)
{
int i;
for (i = 0; i < size / sizeof(u32); i += 4)
pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
mem[i+2], mem[i+3]);
}
static size_t expected_memory_size(u32 *sp)
{
size_t size = sizeof(expected_memory);
int offset = (uintptr_t)sp - (uintptr_t)current_stack;
if (offset > 0)
size -= offset;
return size;
}
static void test_case_failed(const char *message)
{
test_case_cleanup();
pr_err("FAIL: %s\n", message);
pr_err("FAIL: Test %s\n", current_title);
pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
}
static unsigned long next_instruction(unsigned long pc)
{
#ifdef CONFIG_THUMB2_KERNEL
if ((pc & 1) &&
!is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
return pc + 2;
else
#endif
return pc + 4;
}
static uintptr_t __used kprobes_test_case_start(const char *title, void *stack)
{
struct test_arg *args;
struct test_arg_end *end_arg;
unsigned long test_code;
args = (struct test_arg *)PTR_ALIGN(title + strlen(title) + 1, 4);
current_title = title;
current_args = args;
current_stack = stack;
++test_try_count;
while (args->type != ARG_TYPE_END)
++args;
end_arg = (struct test_arg_end *)args;
test_code = (unsigned long)(args + 1); /* Code starts after args */
test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
if (test_case_is_thumb)
test_code |= 1;
current_code_start = test_code;
current_branch_target = 0;
if (end_arg->branch_offset != end_arg->end_offset)
current_branch_target = test_code + end_arg->branch_offset;
test_code += end_arg->code_offset;
test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
test_code = next_instruction(test_code);
test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
if (test_case_is_thumb) {
u16 *p = (u16 *)(test_code & ~1);
current_instruction = __mem_to_opcode_thumb16(p[0]);
if (is_wide_instruction(current_instruction)) {
u16 instr2 = __mem_to_opcode_thumb16(p[1]);
current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
}
} else {
current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
}
if (current_title[0] == '.')
verbose("%s\n", current_title);
else
verbose("%s\t@ %0*x\n", current_title,
test_case_is_thumb ? 4 : 8,
current_instruction);
test_code = next_instruction(test_code);
test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
if (!test_case_is_thumb ||
is_wide_instruction(current_instruction)) {
test_case_failed("expected 16-bit instruction");
goto fail;
}
} else {
if (test_case_is_thumb &&
!is_wide_instruction(current_instruction)) {
test_case_failed("expected 32-bit instruction");
goto fail;
}
}
coverage_add(current_instruction);
if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
if (register_test_probe(&test_case_probe) < 0)
goto pass;
test_case_failed("registered probe for unsupported instruction");
goto fail;
}
if (end_arg->flags & ARG_FLAG_SUPPORTED) {
if (register_test_probe(&test_case_probe) >= 0)
goto pass;
test_case_failed("couldn't register probe for supported instruction");
goto fail;
}
if (register_test_probe(&test_before_probe) < 0) {
test_case_failed("register test_before_probe failed");
goto fail;
}
if (register_test_probe(&test_after_probe) < 0) {
test_case_failed("register test_after_probe failed");
goto fail;
}
if (current_branch_target) {
test_after2_probe.kprobe.addr =
(kprobe_opcode_t *)current_branch_target;
if (register_test_probe(&test_after2_probe) < 0) {
test_case_failed("register test_after2_probe failed");
goto fail;
}
}
/* Start first run of test case */
test_case_run_count = 0;
++test_instance;
return current_code_start;
pass:
test_case_run_count = TEST_CASE_PASSED;
return (uintptr_t)test_after_probe.kprobe.addr;
fail:
test_case_run_count = TEST_CASE_FAILED;
return (uintptr_t)test_after_probe.kprobe.addr;
}
static bool check_test_results(void)
{
size_t mem_size = 0;
u32 *mem = 0;
if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
test_case_failed("registers differ");
goto fail;
}
if (memory_needs_checking) {
mem = (u32 *)result_regs.ARM_sp;
mem_size = expected_memory_size(mem);
if (memcmp(expected_memory, mem, mem_size)) {
test_case_failed("test memory differs");
goto fail;
}
}
return true;
fail:
pr_err("initial_regs:\n");
print_registers(&initial_regs);
pr_err("expected_regs:\n");
print_registers(&expected_regs);
pr_err("result_regs:\n");
print_registers(&result_regs);
if (mem) {
pr_err("current_stack=%p\n", current_stack);
pr_err("expected_memory:\n");
print_memory(expected_memory, mem_size);
pr_err("result_memory:\n");
print_memory(mem, mem_size);
}
return false;
}
static uintptr_t __used kprobes_test_case_end(void)
{
if (test_case_run_count < 0) {
if (test_case_run_count == TEST_CASE_PASSED)
/* kprobes_test_case_start did all the needed testing */
goto pass;
else
/* kprobes_test_case_start failed */
goto fail;
}
if (test_before_probe.hit != test_instance) {
test_case_failed("test_before_handler not run");
goto fail;
}
if (test_after_probe.hit != test_instance &&
test_after2_probe.hit != test_instance) {
test_case_failed("test_after_handler not run");
goto fail;
}
/*
* Even numbered test runs ran without a probe on the test case so
* we can gather reference results. The subsequent odd numbered run
* will have the probe inserted.
*/
if ((test_case_run_count & 1) == 0) {
/* Save results from run without probe */
u32 *mem = (u32 *)result_regs.ARM_sp;
expected_regs = result_regs;
memcpy(expected_memory, mem, expected_memory_size(mem));
/* Insert probe onto test case instruction */
if (register_test_probe(&test_case_probe) < 0) {
test_case_failed("register test_case_probe failed");
goto fail;
}
} else {
/* Check probe ran as expected */
if (probe_should_run == 1) {
if (test_case_probe.hit != test_instance) {
test_case_failed("test_case_handler not run");
goto fail;
}
} else if (probe_should_run == 0) {
if (test_case_probe.hit == test_instance) {
test_case_failed("test_case_handler ran");
goto fail;
}
}
/* Remove probe for any subsequent reference run */
unregister_test_probe(&test_case_probe);
if (!check_test_results())
goto fail;
if (is_last_scenario)
goto pass;
}
/* Do next test run */
++test_case_run_count;
++test_instance;
return current_code_start;
fail:
++test_fail_count;
goto end;
pass:
++test_pass_count;
end:
test_case_cleanup();
return 0;
}
/*
* Top level test functions
*/
static int run_test_cases(void (*tests)(void), const union decode_item *table)
{
int ret;
pr_info(" Check decoding tables\n");
ret = table_test(table);
if (ret)
return ret;
pr_info(" Run test cases\n");
ret = coverage_start(table);
if (ret)
return ret;
tests();
coverage_end();
return 0;
}
static int __init run_all_tests(void)
{
int ret = 0;
pr_info("Beginning kprobe tests...\n");
#ifndef CONFIG_THUMB2_KERNEL
pr_info("Probe ARM code\n");
ret = run_api_tests(arm_func);
if (ret)
goto out;
pr_info("ARM instruction simulation\n");
ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
if (ret)
goto out;
#else /* CONFIG_THUMB2_KERNEL */
pr_info("Probe 16-bit Thumb code\n");
ret = run_api_tests(thumb16_func);
if (ret)
goto out;
pr_info("Probe 32-bit Thumb code, even halfword\n");
ret = run_api_tests(thumb32even_func);
if (ret)
goto out;
pr_info("Probe 32-bit Thumb code, odd halfword\n");
ret = run_api_tests(thumb32odd_func);
if (ret)
goto out;
pr_info("16-bit Thumb instruction simulation\n");
ret = run_test_cases(kprobe_thumb16_test_cases,
probes_decode_thumb16_table);
if (ret)
goto out;
pr_info("32-bit Thumb instruction simulation\n");
ret = run_test_cases(kprobe_thumb32_test_cases,
probes_decode_thumb32_table);
if (ret)
goto out;
#endif
pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
test_try_count, test_pass_count, test_fail_count);
if (test_fail_count) {
ret = -EINVAL;
goto out;
}
#if BENCHMARKING
pr_info("Benchmarks\n");
ret = run_benchmarks();
if (ret)
goto out;
#endif
#if __LINUX_ARM_ARCH__ >= 7
/* We are able to run all test cases so coverage should be complete */
if (coverage_fail) {
pr_err("FAIL: Test coverage checks failed\n");
ret = -EINVAL;
goto out;
}
#endif
out:
if (ret == 0)
ret = tests_failed;
if (ret == 0)
pr_info("Finished kprobe tests OK\n");
else
pr_err("kprobe tests failed\n");
return ret;
}
/*
* Module setup
*/
#ifdef MODULE
static void __exit kprobe_test_exit(void)
{
}
module_init(run_all_tests)
module_exit(kprobe_test_exit)
MODULE_LICENSE("GPL");
#else /* !MODULE */
late_initcall(run_all_tests);
#endif