mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-16 18:56:41 +07:00
0cab6559f8
Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
1199 lines
34 KiB
C
1199 lines
34 KiB
C
/*
|
|
* Copyright (c) 2008-2009 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "hw.h"
|
|
|
|
static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
|
|
{
|
|
return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
|
|
}
|
|
|
|
static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
|
|
{
|
|
return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
|
|
}
|
|
|
|
static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
|
|
{
|
|
#define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u16 *eep_data = (u16 *)&ah->eeprom.map4k;
|
|
int addr, eep_start_loc = 0;
|
|
|
|
eep_start_loc = 64;
|
|
|
|
if (!ath9k_hw_use_flash(ah)) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Reading from EEPROM, not flash\n");
|
|
}
|
|
|
|
for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
|
|
if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Unable to read eeprom region \n");
|
|
return false;
|
|
}
|
|
eep_data++;
|
|
}
|
|
|
|
return true;
|
|
#undef SIZE_EEPROM_4K
|
|
}
|
|
|
|
static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
|
|
{
|
|
#define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ar5416_eeprom_4k *eep =
|
|
(struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
|
|
u16 *eepdata, temp, magic, magic2;
|
|
u32 sum = 0, el;
|
|
bool need_swap = false;
|
|
int i, addr;
|
|
|
|
|
|
if (!ath9k_hw_use_flash(ah)) {
|
|
if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
|
|
&magic)) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Reading Magic # failed\n");
|
|
return false;
|
|
}
|
|
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"Read Magic = 0x%04X\n", magic);
|
|
|
|
if (magic != AR5416_EEPROM_MAGIC) {
|
|
magic2 = swab16(magic);
|
|
|
|
if (magic2 == AR5416_EEPROM_MAGIC) {
|
|
need_swap = true;
|
|
eepdata = (u16 *) (&ah->eeprom);
|
|
|
|
for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
|
|
temp = swab16(*eepdata);
|
|
*eepdata = temp;
|
|
eepdata++;
|
|
}
|
|
} else {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Invalid EEPROM Magic. "
|
|
"endianness mismatch.\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
|
|
need_swap ? "True" : "False");
|
|
|
|
if (need_swap)
|
|
el = swab16(ah->eeprom.map4k.baseEepHeader.length);
|
|
else
|
|
el = ah->eeprom.map4k.baseEepHeader.length;
|
|
|
|
if (el > sizeof(struct ar5416_eeprom_4k))
|
|
el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
|
|
else
|
|
el = el / sizeof(u16);
|
|
|
|
eepdata = (u16 *)(&ah->eeprom);
|
|
|
|
for (i = 0; i < el; i++)
|
|
sum ^= *eepdata++;
|
|
|
|
if (need_swap) {
|
|
u32 integer;
|
|
u16 word;
|
|
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"EEPROM Endianness is not native.. Changing\n");
|
|
|
|
word = swab16(eep->baseEepHeader.length);
|
|
eep->baseEepHeader.length = word;
|
|
|
|
word = swab16(eep->baseEepHeader.checksum);
|
|
eep->baseEepHeader.checksum = word;
|
|
|
|
word = swab16(eep->baseEepHeader.version);
|
|
eep->baseEepHeader.version = word;
|
|
|
|
word = swab16(eep->baseEepHeader.regDmn[0]);
|
|
eep->baseEepHeader.regDmn[0] = word;
|
|
|
|
word = swab16(eep->baseEepHeader.regDmn[1]);
|
|
eep->baseEepHeader.regDmn[1] = word;
|
|
|
|
word = swab16(eep->baseEepHeader.rfSilent);
|
|
eep->baseEepHeader.rfSilent = word;
|
|
|
|
word = swab16(eep->baseEepHeader.blueToothOptions);
|
|
eep->baseEepHeader.blueToothOptions = word;
|
|
|
|
word = swab16(eep->baseEepHeader.deviceCap);
|
|
eep->baseEepHeader.deviceCap = word;
|
|
|
|
integer = swab32(eep->modalHeader.antCtrlCommon);
|
|
eep->modalHeader.antCtrlCommon = integer;
|
|
|
|
for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
|
|
integer = swab32(eep->modalHeader.antCtrlChain[i]);
|
|
eep->modalHeader.antCtrlChain[i] = integer;
|
|
}
|
|
|
|
for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
|
|
word = swab16(eep->modalHeader.spurChans[i].spurChan);
|
|
eep->modalHeader.spurChans[i].spurChan = word;
|
|
}
|
|
}
|
|
|
|
if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
|
|
ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Bad EEPROM checksum 0x%x or revision 0x%04x\n",
|
|
sum, ah->eep_ops->get_eeprom_ver(ah));
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
#undef EEPROM_4K_SIZE
|
|
}
|
|
|
|
static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
|
|
enum eeprom_param param)
|
|
{
|
|
struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
|
|
struct modal_eep_4k_header *pModal = &eep->modalHeader;
|
|
struct base_eep_header_4k *pBase = &eep->baseEepHeader;
|
|
|
|
switch (param) {
|
|
case EEP_NFTHRESH_2:
|
|
return pModal->noiseFloorThreshCh[0];
|
|
case AR_EEPROM_MAC(0):
|
|
return pBase->macAddr[0] << 8 | pBase->macAddr[1];
|
|
case AR_EEPROM_MAC(1):
|
|
return pBase->macAddr[2] << 8 | pBase->macAddr[3];
|
|
case AR_EEPROM_MAC(2):
|
|
return pBase->macAddr[4] << 8 | pBase->macAddr[5];
|
|
case EEP_REG_0:
|
|
return pBase->regDmn[0];
|
|
case EEP_REG_1:
|
|
return pBase->regDmn[1];
|
|
case EEP_OP_CAP:
|
|
return pBase->deviceCap;
|
|
case EEP_OP_MODE:
|
|
return pBase->opCapFlags;
|
|
case EEP_RF_SILENT:
|
|
return pBase->rfSilent;
|
|
case EEP_OB_2:
|
|
return pModal->ob_0;
|
|
case EEP_DB_2:
|
|
return pModal->db1_1;
|
|
case EEP_MINOR_REV:
|
|
return pBase->version & AR5416_EEP_VER_MINOR_MASK;
|
|
case EEP_TX_MASK:
|
|
return pBase->txMask;
|
|
case EEP_RX_MASK:
|
|
return pBase->rxMask;
|
|
case EEP_FRAC_N_5G:
|
|
return 0;
|
|
case EEP_PWR_TABLE_OFFSET:
|
|
return AR5416_PWR_TABLE_OFFSET_DB;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
struct cal_data_per_freq_4k *pRawDataSet,
|
|
u8 *bChans, u16 availPiers,
|
|
u16 tPdGainOverlap, int16_t *pMinCalPower,
|
|
u16 *pPdGainBoundaries, u8 *pPDADCValues,
|
|
u16 numXpdGains)
|
|
{
|
|
#define TMP_VAL_VPD_TABLE \
|
|
((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
|
|
int i, j, k;
|
|
int16_t ss;
|
|
u16 idxL = 0, idxR = 0, numPiers;
|
|
static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
|
|
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
|
|
static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
|
|
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
|
|
static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
|
|
[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
|
|
|
|
u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
|
|
u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
|
|
u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
|
|
int16_t vpdStep;
|
|
int16_t tmpVal;
|
|
u16 sizeCurrVpdTable, maxIndex, tgtIndex;
|
|
bool match;
|
|
int16_t minDelta = 0;
|
|
struct chan_centers centers;
|
|
#define PD_GAIN_BOUNDARY_DEFAULT 58;
|
|
|
|
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
|
|
|
|
for (numPiers = 0; numPiers < availPiers; numPiers++) {
|
|
if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
|
|
break;
|
|
}
|
|
|
|
match = ath9k_hw_get_lower_upper_index(
|
|
(u8)FREQ2FBIN(centers.synth_center,
|
|
IS_CHAN_2GHZ(chan)), bChans, numPiers,
|
|
&idxL, &idxR);
|
|
|
|
if (match) {
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
|
|
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
|
|
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
|
|
pRawDataSet[idxL].pwrPdg[i],
|
|
pRawDataSet[idxL].vpdPdg[i],
|
|
AR5416_EEP4K_PD_GAIN_ICEPTS,
|
|
vpdTableI[i]);
|
|
}
|
|
} else {
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
pVpdL = pRawDataSet[idxL].vpdPdg[i];
|
|
pPwrL = pRawDataSet[idxL].pwrPdg[i];
|
|
pVpdR = pRawDataSet[idxR].vpdPdg[i];
|
|
pPwrR = pRawDataSet[idxR].pwrPdg[i];
|
|
|
|
minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
|
|
|
|
maxPwrT4[i] =
|
|
min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
|
|
pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
|
|
|
|
|
|
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
|
|
pPwrL, pVpdL,
|
|
AR5416_EEP4K_PD_GAIN_ICEPTS,
|
|
vpdTableL[i]);
|
|
ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
|
|
pPwrR, pVpdR,
|
|
AR5416_EEP4K_PD_GAIN_ICEPTS,
|
|
vpdTableR[i]);
|
|
|
|
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
|
|
vpdTableI[i][j] =
|
|
(u8)(ath9k_hw_interpolate((u16)
|
|
FREQ2FBIN(centers.
|
|
synth_center,
|
|
IS_CHAN_2GHZ
|
|
(chan)),
|
|
bChans[idxL], bChans[idxR],
|
|
vpdTableL[i][j], vpdTableR[i][j]));
|
|
}
|
|
}
|
|
}
|
|
|
|
*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
|
|
|
|
k = 0;
|
|
|
|
for (i = 0; i < numXpdGains; i++) {
|
|
if (i == (numXpdGains - 1))
|
|
pPdGainBoundaries[i] =
|
|
(u16)(maxPwrT4[i] / 2);
|
|
else
|
|
pPdGainBoundaries[i] =
|
|
(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
|
|
|
|
pPdGainBoundaries[i] =
|
|
min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
|
|
|
|
if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
|
|
minDelta = pPdGainBoundaries[0] - 23;
|
|
pPdGainBoundaries[0] = 23;
|
|
} else {
|
|
minDelta = 0;
|
|
}
|
|
|
|
if (i == 0) {
|
|
if (AR_SREV_9280_10_OR_LATER(ah))
|
|
ss = (int16_t)(0 - (minPwrT4[i] / 2));
|
|
else
|
|
ss = 0;
|
|
} else {
|
|
ss = (int16_t)((pPdGainBoundaries[i - 1] -
|
|
(minPwrT4[i] / 2)) -
|
|
tPdGainOverlap + 1 + minDelta);
|
|
}
|
|
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
|
|
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
|
|
|
|
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
|
|
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
|
|
pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
|
|
ss++;
|
|
}
|
|
|
|
sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
|
|
tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
|
|
(minPwrT4[i] / 2));
|
|
maxIndex = (tgtIndex < sizeCurrVpdTable) ?
|
|
tgtIndex : sizeCurrVpdTable;
|
|
|
|
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
|
|
pPDADCValues[k++] = vpdTableI[i][ss++];
|
|
|
|
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
|
|
vpdTableI[i][sizeCurrVpdTable - 2]);
|
|
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
|
|
|
|
if (tgtIndex >= maxIndex) {
|
|
while ((ss <= tgtIndex) &&
|
|
(k < (AR5416_NUM_PDADC_VALUES - 1))) {
|
|
tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
|
|
pPDADCValues[k++] = (u8)((tmpVal > 255) ?
|
|
255 : tmpVal);
|
|
ss++;
|
|
}
|
|
}
|
|
}
|
|
|
|
while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
|
|
pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
|
|
i++;
|
|
}
|
|
|
|
while (k < AR5416_NUM_PDADC_VALUES) {
|
|
pPDADCValues[k] = pPDADCValues[k - 1];
|
|
k++;
|
|
}
|
|
|
|
return;
|
|
#undef TMP_VAL_VPD_TABLE
|
|
}
|
|
|
|
static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
int16_t *pTxPowerIndexOffset)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
|
|
struct cal_data_per_freq_4k *pRawDataset;
|
|
u8 *pCalBChans = NULL;
|
|
u16 pdGainOverlap_t2;
|
|
static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
|
|
u16 gainBoundaries[AR5416_EEP4K_PD_GAINS_IN_MASK];
|
|
u16 numPiers, i, j;
|
|
int16_t tMinCalPower;
|
|
u16 numXpdGain, xpdMask;
|
|
u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
|
|
u32 reg32, regOffset, regChainOffset;
|
|
|
|
xpdMask = pEepData->modalHeader.xpdGain;
|
|
|
|
if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_2) {
|
|
pdGainOverlap_t2 =
|
|
pEepData->modalHeader.pdGainOverlap;
|
|
} else {
|
|
pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
|
|
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
|
|
}
|
|
|
|
pCalBChans = pEepData->calFreqPier2G;
|
|
numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
|
|
|
|
numXpdGain = 0;
|
|
|
|
for (i = 1; i <= AR5416_EEP4K_PD_GAINS_IN_MASK; i++) {
|
|
if ((xpdMask >> (AR5416_EEP4K_PD_GAINS_IN_MASK - i)) & 1) {
|
|
if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
|
|
break;
|
|
xpdGainValues[numXpdGain] =
|
|
(u16)(AR5416_EEP4K_PD_GAINS_IN_MASK - i);
|
|
numXpdGain++;
|
|
}
|
|
}
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
|
|
(numXpdGain - 1) & 0x3);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
|
|
xpdGainValues[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
|
|
xpdGainValues[1]);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
|
|
|
|
for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
|
|
if (AR_SREV_5416_20_OR_LATER(ah) &&
|
|
(ah->rxchainmask == 5 || ah->txchainmask == 5) &&
|
|
(i != 0)) {
|
|
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
|
|
} else
|
|
regChainOffset = i * 0x1000;
|
|
|
|
if (pEepData->baseEepHeader.txMask & (1 << i)) {
|
|
pRawDataset = pEepData->calPierData2G[i];
|
|
|
|
ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
|
|
pRawDataset, pCalBChans,
|
|
numPiers, pdGainOverlap_t2,
|
|
&tMinCalPower, gainBoundaries,
|
|
pdadcValues, numXpdGain);
|
|
|
|
if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
|
|
REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
|
|
SM(pdGainOverlap_t2,
|
|
AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
|
|
| SM(gainBoundaries[0],
|
|
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
|
|
| SM(gainBoundaries[1],
|
|
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
|
|
| SM(gainBoundaries[2],
|
|
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
|
|
| SM(gainBoundaries[3],
|
|
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
|
|
}
|
|
|
|
regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
|
|
for (j = 0; j < 32; j++) {
|
|
reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
|
|
((pdadcValues[4 * j + 1] & 0xFF) << 8) |
|
|
((pdadcValues[4 * j + 2] & 0xFF) << 16)|
|
|
((pdadcValues[4 * j + 3] & 0xFF) << 24);
|
|
REG_WRITE(ah, regOffset, reg32);
|
|
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"PDADC (%d,%4x): %4.4x %8.8x\n",
|
|
i, regChainOffset, regOffset,
|
|
reg32);
|
|
ath_print(common, ATH_DBG_EEPROM,
|
|
"PDADC: Chain %d | "
|
|
"PDADC %3d Value %3d | "
|
|
"PDADC %3d Value %3d | "
|
|
"PDADC %3d Value %3d | "
|
|
"PDADC %3d Value %3d |\n",
|
|
i, 4 * j, pdadcValues[4 * j],
|
|
4 * j + 1, pdadcValues[4 * j + 1],
|
|
4 * j + 2, pdadcValues[4 * j + 2],
|
|
4 * j + 3,
|
|
pdadcValues[4 * j + 3]);
|
|
|
|
regOffset += 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
*pTxPowerIndexOffset = 0;
|
|
}
|
|
|
|
static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
int16_t *ratesArray,
|
|
u16 cfgCtl,
|
|
u16 AntennaReduction,
|
|
u16 twiceMaxRegulatoryPower,
|
|
u16 powerLimit)
|
|
{
|
|
#define CMP_TEST_GRP \
|
|
(((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
|
|
pEepData->ctlIndex[i]) \
|
|
|| (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
|
|
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
|
|
|
|
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
|
|
int i;
|
|
int16_t twiceLargestAntenna;
|
|
u16 twiceMinEdgePower;
|
|
u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
|
|
u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
|
|
u16 numCtlModes, *pCtlMode, ctlMode, freq;
|
|
struct chan_centers centers;
|
|
struct cal_ctl_data_4k *rep;
|
|
struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
|
|
static const u16 tpScaleReductionTable[5] =
|
|
{ 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
|
|
struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
|
|
0, { 0, 0, 0, 0}
|
|
};
|
|
struct cal_target_power_leg targetPowerOfdmExt = {
|
|
0, { 0, 0, 0, 0} }, targetPowerCckExt = {
|
|
0, { 0, 0, 0, 0 }
|
|
};
|
|
struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
|
|
0, {0, 0, 0, 0}
|
|
};
|
|
u16 ctlModesFor11g[] =
|
|
{ CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
|
|
CTL_2GHT40
|
|
};
|
|
|
|
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
|
|
|
|
twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
|
|
twiceLargestAntenna = (int16_t)min(AntennaReduction -
|
|
twiceLargestAntenna, 0);
|
|
|
|
maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
|
|
if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
|
|
maxRegAllowedPower -=
|
|
(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
|
|
}
|
|
|
|
scaledPower = min(powerLimit, maxRegAllowedPower);
|
|
scaledPower = max((u16)0, scaledPower);
|
|
|
|
numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
|
|
pCtlMode = ctlModesFor11g;
|
|
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPowerCck,
|
|
AR5416_NUM_2G_CCK_TARGET_POWERS,
|
|
&targetPowerCck, 4, false);
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPower2G,
|
|
AR5416_NUM_2G_20_TARGET_POWERS,
|
|
&targetPowerOfdm, 4, false);
|
|
ath9k_hw_get_target_powers(ah, chan,
|
|
pEepData->calTargetPower2GHT20,
|
|
AR5416_NUM_2G_20_TARGET_POWERS,
|
|
&targetPowerHt20, 8, false);
|
|
|
|
if (IS_CHAN_HT40(chan)) {
|
|
numCtlModes = ARRAY_SIZE(ctlModesFor11g);
|
|
ath9k_hw_get_target_powers(ah, chan,
|
|
pEepData->calTargetPower2GHT40,
|
|
AR5416_NUM_2G_40_TARGET_POWERS,
|
|
&targetPowerHt40, 8, true);
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPowerCck,
|
|
AR5416_NUM_2G_CCK_TARGET_POWERS,
|
|
&targetPowerCckExt, 4, true);
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPower2G,
|
|
AR5416_NUM_2G_20_TARGET_POWERS,
|
|
&targetPowerOfdmExt, 4, true);
|
|
}
|
|
|
|
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
|
|
bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
|
|
(pCtlMode[ctlMode] == CTL_2GHT40);
|
|
|
|
if (isHt40CtlMode)
|
|
freq = centers.synth_center;
|
|
else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
|
|
freq = centers.ext_center;
|
|
else
|
|
freq = centers.ctl_center;
|
|
|
|
if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
|
|
ah->eep_ops->get_eeprom_rev(ah) <= 2)
|
|
twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
|
|
|
|
for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
|
|
pEepData->ctlIndex[i]; i++) {
|
|
|
|
if (CMP_TEST_GRP) {
|
|
rep = &(pEepData->ctlData[i]);
|
|
|
|
twiceMinEdgePower = ath9k_hw_get_max_edge_power(
|
|
freq,
|
|
rep->ctlEdges[
|
|
ar5416_get_ntxchains(ah->txchainmask) - 1],
|
|
IS_CHAN_2GHZ(chan),
|
|
AR5416_EEP4K_NUM_BAND_EDGES);
|
|
|
|
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
|
|
twiceMaxEdgePower =
|
|
min(twiceMaxEdgePower,
|
|
twiceMinEdgePower);
|
|
} else {
|
|
twiceMaxEdgePower = twiceMinEdgePower;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
|
|
|
|
switch (pCtlMode[ctlMode]) {
|
|
case CTL_11B:
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
|
|
targetPowerCck.tPow2x[i] =
|
|
min((u16)targetPowerCck.tPow2x[i],
|
|
minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_11G:
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
|
|
targetPowerOfdm.tPow2x[i] =
|
|
min((u16)targetPowerOfdm.tPow2x[i],
|
|
minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_2GHT20:
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
|
|
targetPowerHt20.tPow2x[i] =
|
|
min((u16)targetPowerHt20.tPow2x[i],
|
|
minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_11B_EXT:
|
|
targetPowerCckExt.tPow2x[0] =
|
|
min((u16)targetPowerCckExt.tPow2x[0],
|
|
minCtlPower);
|
|
break;
|
|
case CTL_11G_EXT:
|
|
targetPowerOfdmExt.tPow2x[0] =
|
|
min((u16)targetPowerOfdmExt.tPow2x[0],
|
|
minCtlPower);
|
|
break;
|
|
case CTL_2GHT40:
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
|
|
targetPowerHt40.tPow2x[i] =
|
|
min((u16)targetPowerHt40.tPow2x[i],
|
|
minCtlPower);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
ratesArray[rate6mb] =
|
|
ratesArray[rate9mb] =
|
|
ratesArray[rate12mb] =
|
|
ratesArray[rate18mb] =
|
|
ratesArray[rate24mb] =
|
|
targetPowerOfdm.tPow2x[0];
|
|
|
|
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
|
|
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
|
|
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
|
|
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
|
|
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
|
|
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
|
|
|
|
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
|
|
ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
|
|
ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
|
|
ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
|
|
|
|
if (IS_CHAN_HT40(chan)) {
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
|
|
ratesArray[rateHt40_0 + i] =
|
|
targetPowerHt40.tPow2x[i];
|
|
}
|
|
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
|
|
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
|
|
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
|
|
ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
|
|
}
|
|
|
|
#undef CMP_TEST_GRP
|
|
}
|
|
|
|
static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
u16 cfgCtl,
|
|
u8 twiceAntennaReduction,
|
|
u8 twiceMaxRegulatoryPower,
|
|
u8 powerLimit)
|
|
{
|
|
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
|
|
struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
|
|
struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
|
|
int16_t ratesArray[Ar5416RateSize];
|
|
int16_t txPowerIndexOffset = 0;
|
|
u8 ht40PowerIncForPdadc = 2;
|
|
int i;
|
|
|
|
memset(ratesArray, 0, sizeof(ratesArray));
|
|
|
|
if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_2) {
|
|
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
|
|
}
|
|
|
|
ath9k_hw_set_4k_power_per_rate_table(ah, chan,
|
|
&ratesArray[0], cfgCtl,
|
|
twiceAntennaReduction,
|
|
twiceMaxRegulatoryPower,
|
|
powerLimit);
|
|
|
|
ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
|
|
ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
|
|
if (ratesArray[i] > AR5416_MAX_RATE_POWER)
|
|
ratesArray[i] = AR5416_MAX_RATE_POWER;
|
|
}
|
|
|
|
|
|
/* Update regulatory */
|
|
|
|
i = rate6mb;
|
|
if (IS_CHAN_HT40(chan))
|
|
i = rateHt40_0;
|
|
else if (IS_CHAN_HT20(chan))
|
|
i = rateHt20_0;
|
|
|
|
regulatory->max_power_level = ratesArray[i];
|
|
|
|
if (AR_SREV_9280_10_OR_LATER(ah)) {
|
|
for (i = 0; i < Ar5416RateSize; i++)
|
|
ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
|
|
}
|
|
|
|
/* OFDM power per rate */
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
|
|
ATH9K_POW_SM(ratesArray[rate18mb], 24)
|
|
| ATH9K_POW_SM(ratesArray[rate12mb], 16)
|
|
| ATH9K_POW_SM(ratesArray[rate9mb], 8)
|
|
| ATH9K_POW_SM(ratesArray[rate6mb], 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
|
|
ATH9K_POW_SM(ratesArray[rate54mb], 24)
|
|
| ATH9K_POW_SM(ratesArray[rate48mb], 16)
|
|
| ATH9K_POW_SM(ratesArray[rate36mb], 8)
|
|
| ATH9K_POW_SM(ratesArray[rate24mb], 0));
|
|
|
|
/* CCK power per rate */
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
|
|
ATH9K_POW_SM(ratesArray[rate2s], 24)
|
|
| ATH9K_POW_SM(ratesArray[rate2l], 16)
|
|
| ATH9K_POW_SM(ratesArray[rateXr], 8)
|
|
| ATH9K_POW_SM(ratesArray[rate1l], 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
|
|
ATH9K_POW_SM(ratesArray[rate11s], 24)
|
|
| ATH9K_POW_SM(ratesArray[rate11l], 16)
|
|
| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
|
|
| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
|
|
|
|
/* HT20 power per rate */
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
|
|
ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
|
|
ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
|
|
|
|
/* HT40 power per rate */
|
|
if (IS_CHAN_HT40(chan)) {
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
|
|
ATH9K_POW_SM(ratesArray[rateHt40_3] +
|
|
ht40PowerIncForPdadc, 24)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_2] +
|
|
ht40PowerIncForPdadc, 16)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_1] +
|
|
ht40PowerIncForPdadc, 8)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_0] +
|
|
ht40PowerIncForPdadc, 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
|
|
ATH9K_POW_SM(ratesArray[rateHt40_7] +
|
|
ht40PowerIncForPdadc, 24)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_6] +
|
|
ht40PowerIncForPdadc, 16)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_5] +
|
|
ht40PowerIncForPdadc, 8)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_4] +
|
|
ht40PowerIncForPdadc, 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
|
|
ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
|
|
| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
|
|
| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
|
|
| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
|
|
}
|
|
}
|
|
|
|
static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
struct modal_eep_4k_header *pModal;
|
|
struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
|
|
u8 biaslevel;
|
|
|
|
if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
|
|
return;
|
|
|
|
if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
|
|
return;
|
|
|
|
pModal = &eep->modalHeader;
|
|
|
|
if (pModal->xpaBiasLvl != 0xff) {
|
|
biaslevel = pModal->xpaBiasLvl;
|
|
INI_RA(&ah->iniAddac, 7, 1) =
|
|
(INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
|
|
}
|
|
}
|
|
|
|
static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
|
|
struct modal_eep_4k_header *pModal,
|
|
struct ar5416_eeprom_4k *eep,
|
|
u8 txRxAttenLocal)
|
|
{
|
|
REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
|
|
pModal->antCtrlChain[0]);
|
|
|
|
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
|
|
(REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
|
|
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
|
|
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
|
|
SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
|
|
SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
|
|
|
|
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_3) {
|
|
txRxAttenLocal = pModal->txRxAttenCh[0];
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
|
|
pModal->xatten2Margin[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
|
|
|
|
/* Set the block 1 value to block 0 value */
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
|
|
pModal->bswMargin[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
|
|
pModal->xatten2Margin[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_DB,
|
|
pModal->xatten2Db[0]);
|
|
}
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
|
|
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
|
|
REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
|
|
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
|
|
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
|
|
REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
|
|
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
|
|
|
|
if (AR_SREV_9285_11(ah))
|
|
REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
|
|
}
|
|
|
|
/*
|
|
* Read EEPROM header info and program the device for correct operation
|
|
* given the channel value.
|
|
*/
|
|
static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
struct modal_eep_4k_header *pModal;
|
|
struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
|
|
u8 txRxAttenLocal;
|
|
u8 ob[5], db1[5], db2[5];
|
|
u8 ant_div_control1, ant_div_control2;
|
|
u32 regVal;
|
|
|
|
pModal = &eep->modalHeader;
|
|
txRxAttenLocal = 23;
|
|
|
|
REG_WRITE(ah, AR_PHY_SWITCH_COM,
|
|
ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
|
|
|
|
/* Single chain for 4K EEPROM*/
|
|
ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
|
|
|
|
/* Initialize Ant Diversity settings from EEPROM */
|
|
if (pModal->version >= 3) {
|
|
ant_div_control1 = pModal->antdiv_ctl1;
|
|
ant_div_control2 = pModal->antdiv_ctl2;
|
|
|
|
regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
|
|
regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
|
|
|
|
regVal |= SM(ant_div_control1,
|
|
AR_PHY_9285_ANT_DIV_CTL);
|
|
regVal |= SM(ant_div_control2,
|
|
AR_PHY_9285_ANT_DIV_ALT_LNACONF);
|
|
regVal |= SM((ant_div_control2 >> 2),
|
|
AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
|
|
regVal |= SM((ant_div_control1 >> 1),
|
|
AR_PHY_9285_ANT_DIV_ALT_GAINTB);
|
|
regVal |= SM((ant_div_control1 >> 2),
|
|
AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
|
|
|
|
|
|
REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
|
|
regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
|
|
regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
|
|
regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
|
|
regVal |= SM((ant_div_control1 >> 3),
|
|
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
|
|
|
|
REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
|
|
regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
|
|
}
|
|
|
|
if (pModal->version >= 2) {
|
|
ob[0] = pModal->ob_0;
|
|
ob[1] = pModal->ob_1;
|
|
ob[2] = pModal->ob_2;
|
|
ob[3] = pModal->ob_3;
|
|
ob[4] = pModal->ob_4;
|
|
|
|
db1[0] = pModal->db1_0;
|
|
db1[1] = pModal->db1_1;
|
|
db1[2] = pModal->db1_2;
|
|
db1[3] = pModal->db1_3;
|
|
db1[4] = pModal->db1_4;
|
|
|
|
db2[0] = pModal->db2_0;
|
|
db2[1] = pModal->db2_1;
|
|
db2[2] = pModal->db2_2;
|
|
db2[3] = pModal->db2_3;
|
|
db2[4] = pModal->db2_4;
|
|
} else if (pModal->version == 1) {
|
|
ob[0] = pModal->ob_0;
|
|
ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
|
|
db1[0] = pModal->db1_0;
|
|
db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
|
|
db2[0] = pModal->db2_0;
|
|
db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
|
|
} else {
|
|
int i;
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
ob[i] = pModal->ob_0;
|
|
db1[i] = pModal->db1_0;
|
|
db2[i] = pModal->db1_0;
|
|
}
|
|
}
|
|
|
|
if (AR_SREV_9271(ah)) {
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9271_AN_RF2G3_OB_cck,
|
|
AR9271_AN_RF2G3_OB_cck_S,
|
|
ob[0]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9271_AN_RF2G3_OB_psk,
|
|
AR9271_AN_RF2G3_OB_psk_S,
|
|
ob[1]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9271_AN_RF2G3_OB_qam,
|
|
AR9271_AN_RF2G3_OB_qam_S,
|
|
ob[2]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9271_AN_RF2G3_DB_1,
|
|
AR9271_AN_RF2G3_DB_1_S,
|
|
db1[0]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9271_AN_RF2G4_DB_2,
|
|
AR9271_AN_RF2G4_DB_2_S,
|
|
db2[0]);
|
|
} else {
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_OB_0,
|
|
AR9285_AN_RF2G3_OB_0_S,
|
|
ob[0]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_OB_1,
|
|
AR9285_AN_RF2G3_OB_1_S,
|
|
ob[1]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_OB_2,
|
|
AR9285_AN_RF2G3_OB_2_S,
|
|
ob[2]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_OB_3,
|
|
AR9285_AN_RF2G3_OB_3_S,
|
|
ob[3]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_OB_4,
|
|
AR9285_AN_RF2G3_OB_4_S,
|
|
ob[4]);
|
|
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_DB1_0,
|
|
AR9285_AN_RF2G3_DB1_0_S,
|
|
db1[0]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_DB1_1,
|
|
AR9285_AN_RF2G3_DB1_1_S,
|
|
db1[1]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_DB1_2,
|
|
AR9285_AN_RF2G3_DB1_2_S,
|
|
db1[2]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB1_3,
|
|
AR9285_AN_RF2G4_DB1_3_S,
|
|
db1[3]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB1_4,
|
|
AR9285_AN_RF2G4_DB1_4_S, db1[4]);
|
|
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB2_0,
|
|
AR9285_AN_RF2G4_DB2_0_S,
|
|
db2[0]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB2_1,
|
|
AR9285_AN_RF2G4_DB2_1_S,
|
|
db2[1]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB2_2,
|
|
AR9285_AN_RF2G4_DB2_2_S,
|
|
db2[2]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB2_3,
|
|
AR9285_AN_RF2G4_DB2_3_S,
|
|
db2[3]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB2_4,
|
|
AR9285_AN_RF2G4_DB2_4_S,
|
|
db2[4]);
|
|
}
|
|
|
|
|
|
if (AR_SREV_9285_11(ah))
|
|
REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
|
|
pModal->switchSettling);
|
|
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
|
|
pModal->adcDesiredSize);
|
|
|
|
REG_WRITE(ah, AR_PHY_RF_CTL4,
|
|
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
|
|
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
|
|
SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
|
|
SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
|
|
pModal->txEndToRxOn);
|
|
|
|
if (AR_SREV_9271_10(ah))
|
|
REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
|
|
pModal->txEndToRxOn);
|
|
REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
|
|
pModal->thresh62);
|
|
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
|
|
pModal->thresh62);
|
|
|
|
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_2) {
|
|
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
|
|
pModal->txFrameToDataStart);
|
|
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
|
|
pModal->txFrameToPaOn);
|
|
}
|
|
|
|
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_3) {
|
|
if (IS_CHAN_HT40(chan))
|
|
REG_RMW_FIELD(ah, AR_PHY_SETTLING,
|
|
AR_PHY_SETTLING_SWITCH,
|
|
pModal->swSettleHt40);
|
|
}
|
|
}
|
|
|
|
static u16 ath9k_hw_4k_get_eeprom_antenna_cfg(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
|
|
struct modal_eep_4k_header *pModal = &eep->modalHeader;
|
|
|
|
return pModal->antCtrlCommon & 0xFFFF;
|
|
}
|
|
|
|
static u8 ath9k_hw_4k_get_num_ant_config(struct ath_hw *ah,
|
|
enum ieee80211_band freq_band)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
|
|
{
|
|
#define EEP_MAP4K_SPURCHAN \
|
|
(ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
u16 spur_val = AR_NO_SPUR;
|
|
|
|
ath_print(common, ATH_DBG_ANI,
|
|
"Getting spur idx %d is2Ghz. %d val %x\n",
|
|
i, is2GHz, ah->config.spurchans[i][is2GHz]);
|
|
|
|
switch (ah->config.spurmode) {
|
|
case SPUR_DISABLE:
|
|
break;
|
|
case SPUR_ENABLE_IOCTL:
|
|
spur_val = ah->config.spurchans[i][is2GHz];
|
|
ath_print(common, ATH_DBG_ANI,
|
|
"Getting spur val from new loc. %d\n", spur_val);
|
|
break;
|
|
case SPUR_ENABLE_EEPROM:
|
|
spur_val = EEP_MAP4K_SPURCHAN;
|
|
break;
|
|
}
|
|
|
|
return spur_val;
|
|
|
|
#undef EEP_MAP4K_SPURCHAN
|
|
}
|
|
|
|
const struct eeprom_ops eep_4k_ops = {
|
|
.check_eeprom = ath9k_hw_4k_check_eeprom,
|
|
.get_eeprom = ath9k_hw_4k_get_eeprom,
|
|
.fill_eeprom = ath9k_hw_4k_fill_eeprom,
|
|
.get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
|
|
.get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
|
|
.get_num_ant_config = ath9k_hw_4k_get_num_ant_config,
|
|
.get_eeprom_antenna_cfg = ath9k_hw_4k_get_eeprom_antenna_cfg,
|
|
.set_board_values = ath9k_hw_4k_set_board_values,
|
|
.set_addac = ath9k_hw_4k_set_addac,
|
|
.set_txpower = ath9k_hw_4k_set_txpower,
|
|
.get_spur_channel = ath9k_hw_4k_get_spur_channel
|
|
};
|