linux_dsm_epyc7002/drivers/gpu/drm/drm_dp_mst_topology.c
Imre Deak 636c4c3e76 drm/mst: Avoid processing partially received up/down message transactions
Currently we may process up/down message transactions containing
uninitialized data. This can happen if there was an error during the
reception of any message in the transaction, but we happened to receive
the last message correctly with the end-of-message flag set.

To avoid this abort the reception of the transaction when the first
error is detected, rejecting any messages until a message with the
start-of-message flag is received (which will start a new transaction).
This is also what the DP 1.4 spec 2.11.8.2 calls for in this case.

In addtion this also prevents receiving bogus transactions without the
first message with the the start-of-message flag set.

v2:
- unchanged
v3:
- git add the part that actually skips messages after an error in
  drm_dp_sideband_msg_build()

Cc: Dave Airlie <airlied@redhat.com>
Cc: Lyude <lyude@redhat.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Imre Deak <imre.deak@intel.com>
Reviewed-by: Lyude <lyude@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/20170719134632.13366-1-imre.deak@intel.com
2017-07-20 10:20:31 +02:00

3278 lines
88 KiB
C

/*
* Copyright © 2014 Red Hat
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that copyright
* notice and this permission notice appear in supporting documentation, and
* that the name of the copyright holders not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. The copyright holders make no representations
* about the suitability of this software for any purpose. It is provided "as
* is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/i2c.h>
#include <drm/drm_dp_mst_helper.h>
#include <drm/drmP.h>
#include <drm/drm_fixed.h>
/**
* DOC: dp mst helper
*
* These functions contain parts of the DisplayPort 1.2a MultiStream Transport
* protocol. The helpers contain a topology manager and bandwidth manager.
* The helpers encapsulate the sending and received of sideband msgs.
*/
static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr,
char *buf);
static int test_calc_pbn_mode(void);
static void drm_dp_put_port(struct drm_dp_mst_port *port);
static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr,
int id,
struct drm_dp_payload *payload);
static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port,
int offset, int size, u8 *bytes);
static void drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_branch *mstb);
static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_branch *mstb,
struct drm_dp_mst_port *port);
static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr,
u8 *guid);
static int drm_dp_mst_register_i2c_bus(struct drm_dp_aux *aux);
static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_aux *aux);
static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr);
/* sideband msg handling */
static u8 drm_dp_msg_header_crc4(const uint8_t *data, size_t num_nibbles)
{
u8 bitmask = 0x80;
u8 bitshift = 7;
u8 array_index = 0;
int number_of_bits = num_nibbles * 4;
u8 remainder = 0;
while (number_of_bits != 0) {
number_of_bits--;
remainder <<= 1;
remainder |= (data[array_index] & bitmask) >> bitshift;
bitmask >>= 1;
bitshift--;
if (bitmask == 0) {
bitmask = 0x80;
bitshift = 7;
array_index++;
}
if ((remainder & 0x10) == 0x10)
remainder ^= 0x13;
}
number_of_bits = 4;
while (number_of_bits != 0) {
number_of_bits--;
remainder <<= 1;
if ((remainder & 0x10) != 0)
remainder ^= 0x13;
}
return remainder;
}
static u8 drm_dp_msg_data_crc4(const uint8_t *data, u8 number_of_bytes)
{
u8 bitmask = 0x80;
u8 bitshift = 7;
u8 array_index = 0;
int number_of_bits = number_of_bytes * 8;
u16 remainder = 0;
while (number_of_bits != 0) {
number_of_bits--;
remainder <<= 1;
remainder |= (data[array_index] & bitmask) >> bitshift;
bitmask >>= 1;
bitshift--;
if (bitmask == 0) {
bitmask = 0x80;
bitshift = 7;
array_index++;
}
if ((remainder & 0x100) == 0x100)
remainder ^= 0xd5;
}
number_of_bits = 8;
while (number_of_bits != 0) {
number_of_bits--;
remainder <<= 1;
if ((remainder & 0x100) != 0)
remainder ^= 0xd5;
}
return remainder & 0xff;
}
static inline u8 drm_dp_calc_sb_hdr_size(struct drm_dp_sideband_msg_hdr *hdr)
{
u8 size = 3;
size += (hdr->lct / 2);
return size;
}
static void drm_dp_encode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr,
u8 *buf, int *len)
{
int idx = 0;
int i;
u8 crc4;
buf[idx++] = ((hdr->lct & 0xf) << 4) | (hdr->lcr & 0xf);
for (i = 0; i < (hdr->lct / 2); i++)
buf[idx++] = hdr->rad[i];
buf[idx++] = (hdr->broadcast << 7) | (hdr->path_msg << 6) |
(hdr->msg_len & 0x3f);
buf[idx++] = (hdr->somt << 7) | (hdr->eomt << 6) | (hdr->seqno << 4);
crc4 = drm_dp_msg_header_crc4(buf, (idx * 2) - 1);
buf[idx - 1] |= (crc4 & 0xf);
*len = idx;
}
static bool drm_dp_decode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr,
u8 *buf, int buflen, u8 *hdrlen)
{
u8 crc4;
u8 len;
int i;
u8 idx;
if (buf[0] == 0)
return false;
len = 3;
len += ((buf[0] & 0xf0) >> 4) / 2;
if (len > buflen)
return false;
crc4 = drm_dp_msg_header_crc4(buf, (len * 2) - 1);
if ((crc4 & 0xf) != (buf[len - 1] & 0xf)) {
DRM_DEBUG_KMS("crc4 mismatch 0x%x 0x%x\n", crc4, buf[len - 1]);
return false;
}
hdr->lct = (buf[0] & 0xf0) >> 4;
hdr->lcr = (buf[0] & 0xf);
idx = 1;
for (i = 0; i < (hdr->lct / 2); i++)
hdr->rad[i] = buf[idx++];
hdr->broadcast = (buf[idx] >> 7) & 0x1;
hdr->path_msg = (buf[idx] >> 6) & 0x1;
hdr->msg_len = buf[idx] & 0x3f;
idx++;
hdr->somt = (buf[idx] >> 7) & 0x1;
hdr->eomt = (buf[idx] >> 6) & 0x1;
hdr->seqno = (buf[idx] >> 4) & 0x1;
idx++;
*hdrlen = idx;
return true;
}
static void drm_dp_encode_sideband_req(struct drm_dp_sideband_msg_req_body *req,
struct drm_dp_sideband_msg_tx *raw)
{
int idx = 0;
int i;
u8 *buf = raw->msg;
buf[idx++] = req->req_type & 0x7f;
switch (req->req_type) {
case DP_ENUM_PATH_RESOURCES:
buf[idx] = (req->u.port_num.port_number & 0xf) << 4;
idx++;
break;
case DP_ALLOCATE_PAYLOAD:
buf[idx] = (req->u.allocate_payload.port_number & 0xf) << 4 |
(req->u.allocate_payload.number_sdp_streams & 0xf);
idx++;
buf[idx] = (req->u.allocate_payload.vcpi & 0x7f);
idx++;
buf[idx] = (req->u.allocate_payload.pbn >> 8);
idx++;
buf[idx] = (req->u.allocate_payload.pbn & 0xff);
idx++;
for (i = 0; i < req->u.allocate_payload.number_sdp_streams / 2; i++) {
buf[idx] = ((req->u.allocate_payload.sdp_stream_sink[i * 2] & 0xf) << 4) |
(req->u.allocate_payload.sdp_stream_sink[i * 2 + 1] & 0xf);
idx++;
}
if (req->u.allocate_payload.number_sdp_streams & 1) {
i = req->u.allocate_payload.number_sdp_streams - 1;
buf[idx] = (req->u.allocate_payload.sdp_stream_sink[i] & 0xf) << 4;
idx++;
}
break;
case DP_QUERY_PAYLOAD:
buf[idx] = (req->u.query_payload.port_number & 0xf) << 4;
idx++;
buf[idx] = (req->u.query_payload.vcpi & 0x7f);
idx++;
break;
case DP_REMOTE_DPCD_READ:
buf[idx] = (req->u.dpcd_read.port_number & 0xf) << 4;
buf[idx] |= ((req->u.dpcd_read.dpcd_address & 0xf0000) >> 16) & 0xf;
idx++;
buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff00) >> 8;
idx++;
buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff);
idx++;
buf[idx] = (req->u.dpcd_read.num_bytes);
idx++;
break;
case DP_REMOTE_DPCD_WRITE:
buf[idx] = (req->u.dpcd_write.port_number & 0xf) << 4;
buf[idx] |= ((req->u.dpcd_write.dpcd_address & 0xf0000) >> 16) & 0xf;
idx++;
buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff00) >> 8;
idx++;
buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff);
idx++;
buf[idx] = (req->u.dpcd_write.num_bytes);
idx++;
memcpy(&buf[idx], req->u.dpcd_write.bytes, req->u.dpcd_write.num_bytes);
idx += req->u.dpcd_write.num_bytes;
break;
case DP_REMOTE_I2C_READ:
buf[idx] = (req->u.i2c_read.port_number & 0xf) << 4;
buf[idx] |= (req->u.i2c_read.num_transactions & 0x3);
idx++;
for (i = 0; i < (req->u.i2c_read.num_transactions & 0x3); i++) {
buf[idx] = req->u.i2c_read.transactions[i].i2c_dev_id & 0x7f;
idx++;
buf[idx] = req->u.i2c_read.transactions[i].num_bytes;
idx++;
memcpy(&buf[idx], req->u.i2c_read.transactions[i].bytes, req->u.i2c_read.transactions[i].num_bytes);
idx += req->u.i2c_read.transactions[i].num_bytes;
buf[idx] = (req->u.i2c_read.transactions[i].no_stop_bit & 0x1) << 5;
buf[idx] |= (req->u.i2c_read.transactions[i].i2c_transaction_delay & 0xf);
idx++;
}
buf[idx] = (req->u.i2c_read.read_i2c_device_id) & 0x7f;
idx++;
buf[idx] = (req->u.i2c_read.num_bytes_read);
idx++;
break;
case DP_REMOTE_I2C_WRITE:
buf[idx] = (req->u.i2c_write.port_number & 0xf) << 4;
idx++;
buf[idx] = (req->u.i2c_write.write_i2c_device_id) & 0x7f;
idx++;
buf[idx] = (req->u.i2c_write.num_bytes);
idx++;
memcpy(&buf[idx], req->u.i2c_write.bytes, req->u.i2c_write.num_bytes);
idx += req->u.i2c_write.num_bytes;
break;
}
raw->cur_len = idx;
}
static void drm_dp_crc_sideband_chunk_req(u8 *msg, u8 len)
{
u8 crc4;
crc4 = drm_dp_msg_data_crc4(msg, len);
msg[len] = crc4;
}
static void drm_dp_encode_sideband_reply(struct drm_dp_sideband_msg_reply_body *rep,
struct drm_dp_sideband_msg_tx *raw)
{
int idx = 0;
u8 *buf = raw->msg;
buf[idx++] = (rep->reply_type & 0x1) << 7 | (rep->req_type & 0x7f);
raw->cur_len = idx;
}
/* this adds a chunk of msg to the builder to get the final msg */
static bool drm_dp_sideband_msg_build(struct drm_dp_sideband_msg_rx *msg,
u8 *replybuf, u8 replybuflen, bool hdr)
{
int ret;
u8 crc4;
if (hdr) {
u8 hdrlen;
struct drm_dp_sideband_msg_hdr recv_hdr;
ret = drm_dp_decode_sideband_msg_hdr(&recv_hdr, replybuf, replybuflen, &hdrlen);
if (ret == false) {
print_hex_dump(KERN_DEBUG, "failed hdr", DUMP_PREFIX_NONE, 16, 1, replybuf, replybuflen, false);
return false;
}
/*
* ignore out-of-order messages or messages that are part of a
* failed transaction
*/
if (!recv_hdr.somt && !msg->have_somt)
return false;
/* get length contained in this portion */
msg->curchunk_len = recv_hdr.msg_len;
msg->curchunk_hdrlen = hdrlen;
/* we have already gotten an somt - don't bother parsing */
if (recv_hdr.somt && msg->have_somt)
return false;
if (recv_hdr.somt) {
memcpy(&msg->initial_hdr, &recv_hdr, sizeof(struct drm_dp_sideband_msg_hdr));
msg->have_somt = true;
}
if (recv_hdr.eomt)
msg->have_eomt = true;
/* copy the bytes for the remainder of this header chunk */
msg->curchunk_idx = min(msg->curchunk_len, (u8)(replybuflen - hdrlen));
memcpy(&msg->chunk[0], replybuf + hdrlen, msg->curchunk_idx);
} else {
memcpy(&msg->chunk[msg->curchunk_idx], replybuf, replybuflen);
msg->curchunk_idx += replybuflen;
}
if (msg->curchunk_idx >= msg->curchunk_len) {
/* do CRC */
crc4 = drm_dp_msg_data_crc4(msg->chunk, msg->curchunk_len - 1);
/* copy chunk into bigger msg */
memcpy(&msg->msg[msg->curlen], msg->chunk, msg->curchunk_len - 1);
msg->curlen += msg->curchunk_len - 1;
}
return true;
}
static bool drm_dp_sideband_parse_link_address(struct drm_dp_sideband_msg_rx *raw,
struct drm_dp_sideband_msg_reply_body *repmsg)
{
int idx = 1;
int i;
memcpy(repmsg->u.link_addr.guid, &raw->msg[idx], 16);
idx += 16;
repmsg->u.link_addr.nports = raw->msg[idx] & 0xf;
idx++;
if (idx > raw->curlen)
goto fail_len;
for (i = 0; i < repmsg->u.link_addr.nports; i++) {
if (raw->msg[idx] & 0x80)
repmsg->u.link_addr.ports[i].input_port = 1;
repmsg->u.link_addr.ports[i].peer_device_type = (raw->msg[idx] >> 4) & 0x7;
repmsg->u.link_addr.ports[i].port_number = (raw->msg[idx] & 0xf);
idx++;
if (idx > raw->curlen)
goto fail_len;
repmsg->u.link_addr.ports[i].mcs = (raw->msg[idx] >> 7) & 0x1;
repmsg->u.link_addr.ports[i].ddps = (raw->msg[idx] >> 6) & 0x1;
if (repmsg->u.link_addr.ports[i].input_port == 0)
repmsg->u.link_addr.ports[i].legacy_device_plug_status = (raw->msg[idx] >> 5) & 0x1;
idx++;
if (idx > raw->curlen)
goto fail_len;
if (repmsg->u.link_addr.ports[i].input_port == 0) {
repmsg->u.link_addr.ports[i].dpcd_revision = (raw->msg[idx]);
idx++;
if (idx > raw->curlen)
goto fail_len;
memcpy(repmsg->u.link_addr.ports[i].peer_guid, &raw->msg[idx], 16);
idx += 16;
if (idx > raw->curlen)
goto fail_len;
repmsg->u.link_addr.ports[i].num_sdp_streams = (raw->msg[idx] >> 4) & 0xf;
repmsg->u.link_addr.ports[i].num_sdp_stream_sinks = (raw->msg[idx] & 0xf);
idx++;
}
if (idx > raw->curlen)
goto fail_len;
}
return true;
fail_len:
DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen);
return false;
}
static bool drm_dp_sideband_parse_remote_dpcd_read(struct drm_dp_sideband_msg_rx *raw,
struct drm_dp_sideband_msg_reply_body *repmsg)
{
int idx = 1;
repmsg->u.remote_dpcd_read_ack.port_number = raw->msg[idx] & 0xf;
idx++;
if (idx > raw->curlen)
goto fail_len;
repmsg->u.remote_dpcd_read_ack.num_bytes = raw->msg[idx];
if (idx > raw->curlen)
goto fail_len;
memcpy(repmsg->u.remote_dpcd_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_dpcd_read_ack.num_bytes);
return true;
fail_len:
DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen);
return false;
}
static bool drm_dp_sideband_parse_remote_dpcd_write(struct drm_dp_sideband_msg_rx *raw,
struct drm_dp_sideband_msg_reply_body *repmsg)
{
int idx = 1;
repmsg->u.remote_dpcd_write_ack.port_number = raw->msg[idx] & 0xf;
idx++;
if (idx > raw->curlen)
goto fail_len;
return true;
fail_len:
DRM_DEBUG_KMS("parse length fail %d %d\n", idx, raw->curlen);
return false;
}
static bool drm_dp_sideband_parse_remote_i2c_read_ack(struct drm_dp_sideband_msg_rx *raw,
struct drm_dp_sideband_msg_reply_body *repmsg)
{
int idx = 1;
repmsg->u.remote_i2c_read_ack.port_number = (raw->msg[idx] & 0xf);
idx++;
if (idx > raw->curlen)
goto fail_len;
repmsg->u.remote_i2c_read_ack.num_bytes = raw->msg[idx];
idx++;
/* TODO check */
memcpy(repmsg->u.remote_i2c_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_i2c_read_ack.num_bytes);
return true;
fail_len:
DRM_DEBUG_KMS("remote i2c reply parse length fail %d %d\n", idx, raw->curlen);
return false;
}
static bool drm_dp_sideband_parse_enum_path_resources_ack(struct drm_dp_sideband_msg_rx *raw,
struct drm_dp_sideband_msg_reply_body *repmsg)
{
int idx = 1;
repmsg->u.path_resources.port_number = (raw->msg[idx] >> 4) & 0xf;
idx++;
if (idx > raw->curlen)
goto fail_len;
repmsg->u.path_resources.full_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
idx += 2;
if (idx > raw->curlen)
goto fail_len;
repmsg->u.path_resources.avail_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
idx += 2;
if (idx > raw->curlen)
goto fail_len;
return true;
fail_len:
DRM_DEBUG_KMS("enum resource parse length fail %d %d\n", idx, raw->curlen);
return false;
}
static bool drm_dp_sideband_parse_allocate_payload_ack(struct drm_dp_sideband_msg_rx *raw,
struct drm_dp_sideband_msg_reply_body *repmsg)
{
int idx = 1;
repmsg->u.allocate_payload.port_number = (raw->msg[idx] >> 4) & 0xf;
idx++;
if (idx > raw->curlen)
goto fail_len;
repmsg->u.allocate_payload.vcpi = raw->msg[idx];
idx++;
if (idx > raw->curlen)
goto fail_len;
repmsg->u.allocate_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
idx += 2;
if (idx > raw->curlen)
goto fail_len;
return true;
fail_len:
DRM_DEBUG_KMS("allocate payload parse length fail %d %d\n", idx, raw->curlen);
return false;
}
static bool drm_dp_sideband_parse_query_payload_ack(struct drm_dp_sideband_msg_rx *raw,
struct drm_dp_sideband_msg_reply_body *repmsg)
{
int idx = 1;
repmsg->u.query_payload.port_number = (raw->msg[idx] >> 4) & 0xf;
idx++;
if (idx > raw->curlen)
goto fail_len;
repmsg->u.query_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]);
idx += 2;
if (idx > raw->curlen)
goto fail_len;
return true;
fail_len:
DRM_DEBUG_KMS("query payload parse length fail %d %d\n", idx, raw->curlen);
return false;
}
static bool drm_dp_sideband_parse_reply(struct drm_dp_sideband_msg_rx *raw,
struct drm_dp_sideband_msg_reply_body *msg)
{
memset(msg, 0, sizeof(*msg));
msg->reply_type = (raw->msg[0] & 0x80) >> 7;
msg->req_type = (raw->msg[0] & 0x7f);
if (msg->reply_type) {
memcpy(msg->u.nak.guid, &raw->msg[1], 16);
msg->u.nak.reason = raw->msg[17];
msg->u.nak.nak_data = raw->msg[18];
return false;
}
switch (msg->req_type) {
case DP_LINK_ADDRESS:
return drm_dp_sideband_parse_link_address(raw, msg);
case DP_QUERY_PAYLOAD:
return drm_dp_sideband_parse_query_payload_ack(raw, msg);
case DP_REMOTE_DPCD_READ:
return drm_dp_sideband_parse_remote_dpcd_read(raw, msg);
case DP_REMOTE_DPCD_WRITE:
return drm_dp_sideband_parse_remote_dpcd_write(raw, msg);
case DP_REMOTE_I2C_READ:
return drm_dp_sideband_parse_remote_i2c_read_ack(raw, msg);
case DP_ENUM_PATH_RESOURCES:
return drm_dp_sideband_parse_enum_path_resources_ack(raw, msg);
case DP_ALLOCATE_PAYLOAD:
return drm_dp_sideband_parse_allocate_payload_ack(raw, msg);
default:
DRM_ERROR("Got unknown reply 0x%02x\n", msg->req_type);
return false;
}
}
static bool drm_dp_sideband_parse_connection_status_notify(struct drm_dp_sideband_msg_rx *raw,
struct drm_dp_sideband_msg_req_body *msg)
{
int idx = 1;
msg->u.conn_stat.port_number = (raw->msg[idx] & 0xf0) >> 4;
idx++;
if (idx > raw->curlen)
goto fail_len;
memcpy(msg->u.conn_stat.guid, &raw->msg[idx], 16);
idx += 16;
if (idx > raw->curlen)
goto fail_len;
msg->u.conn_stat.legacy_device_plug_status = (raw->msg[idx] >> 6) & 0x1;
msg->u.conn_stat.displayport_device_plug_status = (raw->msg[idx] >> 5) & 0x1;
msg->u.conn_stat.message_capability_status = (raw->msg[idx] >> 4) & 0x1;
msg->u.conn_stat.input_port = (raw->msg[idx] >> 3) & 0x1;
msg->u.conn_stat.peer_device_type = (raw->msg[idx] & 0x7);
idx++;
return true;
fail_len:
DRM_DEBUG_KMS("connection status reply parse length fail %d %d\n", idx, raw->curlen);
return false;
}
static bool drm_dp_sideband_parse_resource_status_notify(struct drm_dp_sideband_msg_rx *raw,
struct drm_dp_sideband_msg_req_body *msg)
{
int idx = 1;
msg->u.resource_stat.port_number = (raw->msg[idx] & 0xf0) >> 4;
idx++;
if (idx > raw->curlen)
goto fail_len;
memcpy(msg->u.resource_stat.guid, &raw->msg[idx], 16);
idx += 16;
if (idx > raw->curlen)
goto fail_len;
msg->u.resource_stat.available_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]);
idx++;
return true;
fail_len:
DRM_DEBUG_KMS("resource status reply parse length fail %d %d\n", idx, raw->curlen);
return false;
}
static bool drm_dp_sideband_parse_req(struct drm_dp_sideband_msg_rx *raw,
struct drm_dp_sideband_msg_req_body *msg)
{
memset(msg, 0, sizeof(*msg));
msg->req_type = (raw->msg[0] & 0x7f);
switch (msg->req_type) {
case DP_CONNECTION_STATUS_NOTIFY:
return drm_dp_sideband_parse_connection_status_notify(raw, msg);
case DP_RESOURCE_STATUS_NOTIFY:
return drm_dp_sideband_parse_resource_status_notify(raw, msg);
default:
DRM_ERROR("Got unknown request 0x%02x\n", msg->req_type);
return false;
}
}
static int build_dpcd_write(struct drm_dp_sideband_msg_tx *msg, u8 port_num, u32 offset, u8 num_bytes, u8 *bytes)
{
struct drm_dp_sideband_msg_req_body req;
req.req_type = DP_REMOTE_DPCD_WRITE;
req.u.dpcd_write.port_number = port_num;
req.u.dpcd_write.dpcd_address = offset;
req.u.dpcd_write.num_bytes = num_bytes;
req.u.dpcd_write.bytes = bytes;
drm_dp_encode_sideband_req(&req, msg);
return 0;
}
static int build_link_address(struct drm_dp_sideband_msg_tx *msg)
{
struct drm_dp_sideband_msg_req_body req;
req.req_type = DP_LINK_ADDRESS;
drm_dp_encode_sideband_req(&req, msg);
return 0;
}
static int build_enum_path_resources(struct drm_dp_sideband_msg_tx *msg, int port_num)
{
struct drm_dp_sideband_msg_req_body req;
req.req_type = DP_ENUM_PATH_RESOURCES;
req.u.port_num.port_number = port_num;
drm_dp_encode_sideband_req(&req, msg);
msg->path_msg = true;
return 0;
}
static int build_allocate_payload(struct drm_dp_sideband_msg_tx *msg, int port_num,
u8 vcpi, uint16_t pbn,
u8 number_sdp_streams,
u8 *sdp_stream_sink)
{
struct drm_dp_sideband_msg_req_body req;
memset(&req, 0, sizeof(req));
req.req_type = DP_ALLOCATE_PAYLOAD;
req.u.allocate_payload.port_number = port_num;
req.u.allocate_payload.vcpi = vcpi;
req.u.allocate_payload.pbn = pbn;
req.u.allocate_payload.number_sdp_streams = number_sdp_streams;
memcpy(req.u.allocate_payload.sdp_stream_sink, sdp_stream_sink,
number_sdp_streams);
drm_dp_encode_sideband_req(&req, msg);
msg->path_msg = true;
return 0;
}
static int drm_dp_mst_assign_payload_id(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_vcpi *vcpi)
{
int ret, vcpi_ret;
mutex_lock(&mgr->payload_lock);
ret = find_first_zero_bit(&mgr->payload_mask, mgr->max_payloads + 1);
if (ret > mgr->max_payloads) {
ret = -EINVAL;
DRM_DEBUG_KMS("out of payload ids %d\n", ret);
goto out_unlock;
}
vcpi_ret = find_first_zero_bit(&mgr->vcpi_mask, mgr->max_payloads + 1);
if (vcpi_ret > mgr->max_payloads) {
ret = -EINVAL;
DRM_DEBUG_KMS("out of vcpi ids %d\n", ret);
goto out_unlock;
}
set_bit(ret, &mgr->payload_mask);
set_bit(vcpi_ret, &mgr->vcpi_mask);
vcpi->vcpi = vcpi_ret + 1;
mgr->proposed_vcpis[ret - 1] = vcpi;
out_unlock:
mutex_unlock(&mgr->payload_lock);
return ret;
}
static void drm_dp_mst_put_payload_id(struct drm_dp_mst_topology_mgr *mgr,
int vcpi)
{
int i;
if (vcpi == 0)
return;
mutex_lock(&mgr->payload_lock);
DRM_DEBUG_KMS("putting payload %d\n", vcpi);
clear_bit(vcpi - 1, &mgr->vcpi_mask);
for (i = 0; i < mgr->max_payloads; i++) {
if (mgr->proposed_vcpis[i])
if (mgr->proposed_vcpis[i]->vcpi == vcpi) {
mgr->proposed_vcpis[i] = NULL;
clear_bit(i + 1, &mgr->payload_mask);
}
}
mutex_unlock(&mgr->payload_lock);
}
static bool check_txmsg_state(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_sideband_msg_tx *txmsg)
{
unsigned int state;
/*
* All updates to txmsg->state are protected by mgr->qlock, and the two
* cases we check here are terminal states. For those the barriers
* provided by the wake_up/wait_event pair are enough.
*/
state = READ_ONCE(txmsg->state);
return (state == DRM_DP_SIDEBAND_TX_RX ||
state == DRM_DP_SIDEBAND_TX_TIMEOUT);
}
static int drm_dp_mst_wait_tx_reply(struct drm_dp_mst_branch *mstb,
struct drm_dp_sideband_msg_tx *txmsg)
{
struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
int ret;
ret = wait_event_timeout(mgr->tx_waitq,
check_txmsg_state(mgr, txmsg),
(4 * HZ));
mutex_lock(&mstb->mgr->qlock);
if (ret > 0) {
if (txmsg->state == DRM_DP_SIDEBAND_TX_TIMEOUT) {
ret = -EIO;
goto out;
}
} else {
DRM_DEBUG_KMS("timedout msg send %p %d %d\n", txmsg, txmsg->state, txmsg->seqno);
/* dump some state */
ret = -EIO;
/* remove from q */
if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED ||
txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND) {
list_del(&txmsg->next);
}
if (txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND ||
txmsg->state == DRM_DP_SIDEBAND_TX_SENT) {
mstb->tx_slots[txmsg->seqno] = NULL;
}
}
out:
mutex_unlock(&mgr->qlock);
return ret;
}
static struct drm_dp_mst_branch *drm_dp_add_mst_branch_device(u8 lct, u8 *rad)
{
struct drm_dp_mst_branch *mstb;
mstb = kzalloc(sizeof(*mstb), GFP_KERNEL);
if (!mstb)
return NULL;
mstb->lct = lct;
if (lct > 1)
memcpy(mstb->rad, rad, lct / 2);
INIT_LIST_HEAD(&mstb->ports);
kref_init(&mstb->kref);
return mstb;
}
static void drm_dp_free_mst_port(struct kref *kref);
static void drm_dp_free_mst_branch_device(struct kref *kref)
{
struct drm_dp_mst_branch *mstb = container_of(kref, struct drm_dp_mst_branch, kref);
if (mstb->port_parent) {
if (list_empty(&mstb->port_parent->next))
kref_put(&mstb->port_parent->kref, drm_dp_free_mst_port);
}
kfree(mstb);
}
static void drm_dp_destroy_mst_branch_device(struct kref *kref)
{
struct drm_dp_mst_branch *mstb = container_of(kref, struct drm_dp_mst_branch, kref);
struct drm_dp_mst_port *port, *tmp;
bool wake_tx = false;
/*
* init kref again to be used by ports to remove mst branch when it is
* not needed anymore
*/
kref_init(kref);
if (mstb->port_parent && list_empty(&mstb->port_parent->next))
kref_get(&mstb->port_parent->kref);
/*
* destroy all ports - don't need lock
* as there are no more references to the mst branch
* device at this point.
*/
list_for_each_entry_safe(port, tmp, &mstb->ports, next) {
list_del(&port->next);
drm_dp_put_port(port);
}
/* drop any tx slots msg */
mutex_lock(&mstb->mgr->qlock);
if (mstb->tx_slots[0]) {
mstb->tx_slots[0]->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
mstb->tx_slots[0] = NULL;
wake_tx = true;
}
if (mstb->tx_slots[1]) {
mstb->tx_slots[1]->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
mstb->tx_slots[1] = NULL;
wake_tx = true;
}
mutex_unlock(&mstb->mgr->qlock);
if (wake_tx)
wake_up_all(&mstb->mgr->tx_waitq);
kref_put(kref, drm_dp_free_mst_branch_device);
}
static void drm_dp_put_mst_branch_device(struct drm_dp_mst_branch *mstb)
{
kref_put(&mstb->kref, drm_dp_destroy_mst_branch_device);
}
static void drm_dp_port_teardown_pdt(struct drm_dp_mst_port *port, int old_pdt)
{
struct drm_dp_mst_branch *mstb;
switch (old_pdt) {
case DP_PEER_DEVICE_DP_LEGACY_CONV:
case DP_PEER_DEVICE_SST_SINK:
/* remove i2c over sideband */
drm_dp_mst_unregister_i2c_bus(&port->aux);
break;
case DP_PEER_DEVICE_MST_BRANCHING:
mstb = port->mstb;
port->mstb = NULL;
drm_dp_put_mst_branch_device(mstb);
break;
}
}
static void drm_dp_destroy_port(struct kref *kref)
{
struct drm_dp_mst_port *port = container_of(kref, struct drm_dp_mst_port, kref);
struct drm_dp_mst_topology_mgr *mgr = port->mgr;
if (!port->input) {
port->vcpi.num_slots = 0;
kfree(port->cached_edid);
/*
* The only time we don't have a connector
* on an output port is if the connector init
* fails.
*/
if (port->connector) {
/* we can't destroy the connector here, as
* we might be holding the mode_config.mutex
* from an EDID retrieval */
mutex_lock(&mgr->destroy_connector_lock);
kref_get(&port->parent->kref);
list_add(&port->next, &mgr->destroy_connector_list);
mutex_unlock(&mgr->destroy_connector_lock);
schedule_work(&mgr->destroy_connector_work);
return;
}
/* no need to clean up vcpi
* as if we have no connector we never setup a vcpi */
drm_dp_port_teardown_pdt(port, port->pdt);
port->pdt = DP_PEER_DEVICE_NONE;
}
kfree(port);
}
static void drm_dp_put_port(struct drm_dp_mst_port *port)
{
kref_put(&port->kref, drm_dp_destroy_port);
}
static struct drm_dp_mst_branch *drm_dp_mst_get_validated_mstb_ref_locked(struct drm_dp_mst_branch *mstb, struct drm_dp_mst_branch *to_find)
{
struct drm_dp_mst_port *port;
struct drm_dp_mst_branch *rmstb;
if (to_find == mstb) {
kref_get(&mstb->kref);
return mstb;
}
list_for_each_entry(port, &mstb->ports, next) {
if (port->mstb) {
rmstb = drm_dp_mst_get_validated_mstb_ref_locked(port->mstb, to_find);
if (rmstb)
return rmstb;
}
}
return NULL;
}
static struct drm_dp_mst_branch *drm_dp_get_validated_mstb_ref(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_branch *mstb)
{
struct drm_dp_mst_branch *rmstb = NULL;
mutex_lock(&mgr->lock);
if (mgr->mst_primary)
rmstb = drm_dp_mst_get_validated_mstb_ref_locked(mgr->mst_primary, mstb);
mutex_unlock(&mgr->lock);
return rmstb;
}
static struct drm_dp_mst_port *drm_dp_mst_get_port_ref_locked(struct drm_dp_mst_branch *mstb, struct drm_dp_mst_port *to_find)
{
struct drm_dp_mst_port *port, *mport;
list_for_each_entry(port, &mstb->ports, next) {
if (port == to_find) {
kref_get(&port->kref);
return port;
}
if (port->mstb) {
mport = drm_dp_mst_get_port_ref_locked(port->mstb, to_find);
if (mport)
return mport;
}
}
return NULL;
}
static struct drm_dp_mst_port *drm_dp_get_validated_port_ref(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
{
struct drm_dp_mst_port *rport = NULL;
mutex_lock(&mgr->lock);
if (mgr->mst_primary)
rport = drm_dp_mst_get_port_ref_locked(mgr->mst_primary, port);
mutex_unlock(&mgr->lock);
return rport;
}
static struct drm_dp_mst_port *drm_dp_get_port(struct drm_dp_mst_branch *mstb, u8 port_num)
{
struct drm_dp_mst_port *port;
list_for_each_entry(port, &mstb->ports, next) {
if (port->port_num == port_num) {
kref_get(&port->kref);
return port;
}
}
return NULL;
}
/*
* calculate a new RAD for this MST branch device
* if parent has an LCT of 2 then it has 1 nibble of RAD,
* if parent has an LCT of 3 then it has 2 nibbles of RAD,
*/
static u8 drm_dp_calculate_rad(struct drm_dp_mst_port *port,
u8 *rad)
{
int parent_lct = port->parent->lct;
int shift = 4;
int idx = (parent_lct - 1) / 2;
if (parent_lct > 1) {
memcpy(rad, port->parent->rad, idx + 1);
shift = (parent_lct % 2) ? 4 : 0;
} else
rad[0] = 0;
rad[idx] |= port->port_num << shift;
return parent_lct + 1;
}
/*
* return sends link address for new mstb
*/
static bool drm_dp_port_setup_pdt(struct drm_dp_mst_port *port)
{
int ret;
u8 rad[6], lct;
bool send_link = false;
switch (port->pdt) {
case DP_PEER_DEVICE_DP_LEGACY_CONV:
case DP_PEER_DEVICE_SST_SINK:
/* add i2c over sideband */
ret = drm_dp_mst_register_i2c_bus(&port->aux);
break;
case DP_PEER_DEVICE_MST_BRANCHING:
lct = drm_dp_calculate_rad(port, rad);
port->mstb = drm_dp_add_mst_branch_device(lct, rad);
port->mstb->mgr = port->mgr;
port->mstb->port_parent = port;
send_link = true;
break;
}
return send_link;
}
static void drm_dp_check_mstb_guid(struct drm_dp_mst_branch *mstb, u8 *guid)
{
int ret;
memcpy(mstb->guid, guid, 16);
if (!drm_dp_validate_guid(mstb->mgr, mstb->guid)) {
if (mstb->port_parent) {
ret = drm_dp_send_dpcd_write(
mstb->mgr,
mstb->port_parent,
DP_GUID,
16,
mstb->guid);
} else {
ret = drm_dp_dpcd_write(
mstb->mgr->aux,
DP_GUID,
mstb->guid,
16);
}
}
}
static void build_mst_prop_path(const struct drm_dp_mst_branch *mstb,
int pnum,
char *proppath,
size_t proppath_size)
{
int i;
char temp[8];
snprintf(proppath, proppath_size, "mst:%d", mstb->mgr->conn_base_id);
for (i = 0; i < (mstb->lct - 1); i++) {
int shift = (i % 2) ? 0 : 4;
int port_num = (mstb->rad[i / 2] >> shift) & 0xf;
snprintf(temp, sizeof(temp), "-%d", port_num);
strlcat(proppath, temp, proppath_size);
}
snprintf(temp, sizeof(temp), "-%d", pnum);
strlcat(proppath, temp, proppath_size);
}
static void drm_dp_add_port(struct drm_dp_mst_branch *mstb,
struct drm_device *dev,
struct drm_dp_link_addr_reply_port *port_msg)
{
struct drm_dp_mst_port *port;
bool ret;
bool created = false;
int old_pdt = 0;
int old_ddps = 0;
port = drm_dp_get_port(mstb, port_msg->port_number);
if (!port) {
port = kzalloc(sizeof(*port), GFP_KERNEL);
if (!port)
return;
kref_init(&port->kref);
port->parent = mstb;
port->port_num = port_msg->port_number;
port->mgr = mstb->mgr;
port->aux.name = "DPMST";
port->aux.dev = dev->dev;
created = true;
} else {
old_pdt = port->pdt;
old_ddps = port->ddps;
}
port->pdt = port_msg->peer_device_type;
port->input = port_msg->input_port;
port->mcs = port_msg->mcs;
port->ddps = port_msg->ddps;
port->ldps = port_msg->legacy_device_plug_status;
port->dpcd_rev = port_msg->dpcd_revision;
port->num_sdp_streams = port_msg->num_sdp_streams;
port->num_sdp_stream_sinks = port_msg->num_sdp_stream_sinks;
/* manage mstb port lists with mgr lock - take a reference
for this list */
if (created) {
mutex_lock(&mstb->mgr->lock);
kref_get(&port->kref);
list_add(&port->next, &mstb->ports);
mutex_unlock(&mstb->mgr->lock);
}
if (old_ddps != port->ddps) {
if (port->ddps) {
if (!port->input)
drm_dp_send_enum_path_resources(mstb->mgr, mstb, port);
} else {
port->available_pbn = 0;
}
}
if (old_pdt != port->pdt && !port->input) {
drm_dp_port_teardown_pdt(port, old_pdt);
ret = drm_dp_port_setup_pdt(port);
if (ret == true)
drm_dp_send_link_address(mstb->mgr, port->mstb);
}
if (created && !port->input) {
char proppath[255];
build_mst_prop_path(mstb, port->port_num, proppath, sizeof(proppath));
port->connector = (*mstb->mgr->cbs->add_connector)(mstb->mgr, port, proppath);
if (!port->connector) {
/* remove it from the port list */
mutex_lock(&mstb->mgr->lock);
list_del(&port->next);
mutex_unlock(&mstb->mgr->lock);
/* drop port list reference */
drm_dp_put_port(port);
goto out;
}
if ((port->pdt == DP_PEER_DEVICE_DP_LEGACY_CONV ||
port->pdt == DP_PEER_DEVICE_SST_SINK) &&
port->port_num >= DP_MST_LOGICAL_PORT_0) {
port->cached_edid = drm_get_edid(port->connector, &port->aux.ddc);
drm_mode_connector_set_tile_property(port->connector);
}
(*mstb->mgr->cbs->register_connector)(port->connector);
}
out:
/* put reference to this port */
drm_dp_put_port(port);
}
static void drm_dp_update_port(struct drm_dp_mst_branch *mstb,
struct drm_dp_connection_status_notify *conn_stat)
{
struct drm_dp_mst_port *port;
int old_pdt;
int old_ddps;
bool dowork = false;
port = drm_dp_get_port(mstb, conn_stat->port_number);
if (!port)
return;
old_ddps = port->ddps;
old_pdt = port->pdt;
port->pdt = conn_stat->peer_device_type;
port->mcs = conn_stat->message_capability_status;
port->ldps = conn_stat->legacy_device_plug_status;
port->ddps = conn_stat->displayport_device_plug_status;
if (old_ddps != port->ddps) {
if (port->ddps) {
dowork = true;
} else {
port->available_pbn = 0;
}
}
if (old_pdt != port->pdt && !port->input) {
drm_dp_port_teardown_pdt(port, old_pdt);
if (drm_dp_port_setup_pdt(port))
dowork = true;
}
drm_dp_put_port(port);
if (dowork)
queue_work(system_long_wq, &mstb->mgr->work);
}
static struct drm_dp_mst_branch *drm_dp_get_mst_branch_device(struct drm_dp_mst_topology_mgr *mgr,
u8 lct, u8 *rad)
{
struct drm_dp_mst_branch *mstb;
struct drm_dp_mst_port *port;
int i;
/* find the port by iterating down */
mutex_lock(&mgr->lock);
mstb = mgr->mst_primary;
for (i = 0; i < lct - 1; i++) {
int shift = (i % 2) ? 0 : 4;
int port_num = (rad[i / 2] >> shift) & 0xf;
list_for_each_entry(port, &mstb->ports, next) {
if (port->port_num == port_num) {
mstb = port->mstb;
if (!mstb) {
DRM_ERROR("failed to lookup MSTB with lct %d, rad %02x\n", lct, rad[0]);
goto out;
}
break;
}
}
}
kref_get(&mstb->kref);
out:
mutex_unlock(&mgr->lock);
return mstb;
}
static struct drm_dp_mst_branch *get_mst_branch_device_by_guid_helper(
struct drm_dp_mst_branch *mstb,
uint8_t *guid)
{
struct drm_dp_mst_branch *found_mstb;
struct drm_dp_mst_port *port;
if (memcmp(mstb->guid, guid, 16) == 0)
return mstb;
list_for_each_entry(port, &mstb->ports, next) {
if (!port->mstb)
continue;
found_mstb = get_mst_branch_device_by_guid_helper(port->mstb, guid);
if (found_mstb)
return found_mstb;
}
return NULL;
}
static struct drm_dp_mst_branch *drm_dp_get_mst_branch_device_by_guid(
struct drm_dp_mst_topology_mgr *mgr,
uint8_t *guid)
{
struct drm_dp_mst_branch *mstb;
/* find the port by iterating down */
mutex_lock(&mgr->lock);
mstb = get_mst_branch_device_by_guid_helper(mgr->mst_primary, guid);
if (mstb)
kref_get(&mstb->kref);
mutex_unlock(&mgr->lock);
return mstb;
}
static void drm_dp_check_and_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_branch *mstb)
{
struct drm_dp_mst_port *port;
struct drm_dp_mst_branch *mstb_child;
if (!mstb->link_address_sent)
drm_dp_send_link_address(mgr, mstb);
list_for_each_entry(port, &mstb->ports, next) {
if (port->input)
continue;
if (!port->ddps)
continue;
if (!port->available_pbn)
drm_dp_send_enum_path_resources(mgr, mstb, port);
if (port->mstb) {
mstb_child = drm_dp_get_validated_mstb_ref(mgr, port->mstb);
if (mstb_child) {
drm_dp_check_and_send_link_address(mgr, mstb_child);
drm_dp_put_mst_branch_device(mstb_child);
}
}
}
}
static void drm_dp_mst_link_probe_work(struct work_struct *work)
{
struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, work);
struct drm_dp_mst_branch *mstb;
mutex_lock(&mgr->lock);
mstb = mgr->mst_primary;
if (mstb) {
kref_get(&mstb->kref);
}
mutex_unlock(&mgr->lock);
if (mstb) {
drm_dp_check_and_send_link_address(mgr, mstb);
drm_dp_put_mst_branch_device(mstb);
}
}
static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr,
u8 *guid)
{
static u8 zero_guid[16];
if (!memcmp(guid, zero_guid, 16)) {
u64 salt = get_jiffies_64();
memcpy(&guid[0], &salt, sizeof(u64));
memcpy(&guid[8], &salt, sizeof(u64));
return false;
}
return true;
}
#if 0
static int build_dpcd_read(struct drm_dp_sideband_msg_tx *msg, u8 port_num, u32 offset, u8 num_bytes)
{
struct drm_dp_sideband_msg_req_body req;
req.req_type = DP_REMOTE_DPCD_READ;
req.u.dpcd_read.port_number = port_num;
req.u.dpcd_read.dpcd_address = offset;
req.u.dpcd_read.num_bytes = num_bytes;
drm_dp_encode_sideband_req(&req, msg);
return 0;
}
#endif
static int drm_dp_send_sideband_msg(struct drm_dp_mst_topology_mgr *mgr,
bool up, u8 *msg, int len)
{
int ret;
int regbase = up ? DP_SIDEBAND_MSG_UP_REP_BASE : DP_SIDEBAND_MSG_DOWN_REQ_BASE;
int tosend, total, offset;
int retries = 0;
retry:
total = len;
offset = 0;
do {
tosend = min3(mgr->max_dpcd_transaction_bytes, 16, total);
ret = drm_dp_dpcd_write(mgr->aux, regbase + offset,
&msg[offset],
tosend);
if (ret != tosend) {
if (ret == -EIO && retries < 5) {
retries++;
goto retry;
}
DRM_DEBUG_KMS("failed to dpcd write %d %d\n", tosend, ret);
return -EIO;
}
offset += tosend;
total -= tosend;
} while (total > 0);
return 0;
}
static int set_hdr_from_dst_qlock(struct drm_dp_sideband_msg_hdr *hdr,
struct drm_dp_sideband_msg_tx *txmsg)
{
struct drm_dp_mst_branch *mstb = txmsg->dst;
u8 req_type;
/* both msg slots are full */
if (txmsg->seqno == -1) {
if (mstb->tx_slots[0] && mstb->tx_slots[1]) {
DRM_DEBUG_KMS("%s: failed to find slot\n", __func__);
return -EAGAIN;
}
if (mstb->tx_slots[0] == NULL && mstb->tx_slots[1] == NULL) {
txmsg->seqno = mstb->last_seqno;
mstb->last_seqno ^= 1;
} else if (mstb->tx_slots[0] == NULL)
txmsg->seqno = 0;
else
txmsg->seqno = 1;
mstb->tx_slots[txmsg->seqno] = txmsg;
}
req_type = txmsg->msg[0] & 0x7f;
if (req_type == DP_CONNECTION_STATUS_NOTIFY ||
req_type == DP_RESOURCE_STATUS_NOTIFY)
hdr->broadcast = 1;
else
hdr->broadcast = 0;
hdr->path_msg = txmsg->path_msg;
hdr->lct = mstb->lct;
hdr->lcr = mstb->lct - 1;
if (mstb->lct > 1)
memcpy(hdr->rad, mstb->rad, mstb->lct / 2);
hdr->seqno = txmsg->seqno;
return 0;
}
/*
* process a single block of the next message in the sideband queue
*/
static int process_single_tx_qlock(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_sideband_msg_tx *txmsg,
bool up)
{
u8 chunk[48];
struct drm_dp_sideband_msg_hdr hdr;
int len, space, idx, tosend;
int ret;
memset(&hdr, 0, sizeof(struct drm_dp_sideband_msg_hdr));
if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED) {
txmsg->seqno = -1;
txmsg->state = DRM_DP_SIDEBAND_TX_START_SEND;
}
/* make hdr from dst mst - for replies use seqno
otherwise assign one */
ret = set_hdr_from_dst_qlock(&hdr, txmsg);
if (ret < 0)
return ret;
/* amount left to send in this message */
len = txmsg->cur_len - txmsg->cur_offset;
/* 48 - sideband msg size - 1 byte for data CRC, x header bytes */
space = 48 - 1 - drm_dp_calc_sb_hdr_size(&hdr);
tosend = min(len, space);
if (len == txmsg->cur_len)
hdr.somt = 1;
if (space >= len)
hdr.eomt = 1;
hdr.msg_len = tosend + 1;
drm_dp_encode_sideband_msg_hdr(&hdr, chunk, &idx);
memcpy(&chunk[idx], &txmsg->msg[txmsg->cur_offset], tosend);
/* add crc at end */
drm_dp_crc_sideband_chunk_req(&chunk[idx], tosend);
idx += tosend + 1;
ret = drm_dp_send_sideband_msg(mgr, up, chunk, idx);
if (ret) {
DRM_DEBUG_KMS("sideband msg failed to send\n");
return ret;
}
txmsg->cur_offset += tosend;
if (txmsg->cur_offset == txmsg->cur_len) {
txmsg->state = DRM_DP_SIDEBAND_TX_SENT;
return 1;
}
return 0;
}
static void process_single_down_tx_qlock(struct drm_dp_mst_topology_mgr *mgr)
{
struct drm_dp_sideband_msg_tx *txmsg;
int ret;
WARN_ON(!mutex_is_locked(&mgr->qlock));
/* construct a chunk from the first msg in the tx_msg queue */
if (list_empty(&mgr->tx_msg_downq))
return;
txmsg = list_first_entry(&mgr->tx_msg_downq, struct drm_dp_sideband_msg_tx, next);
ret = process_single_tx_qlock(mgr, txmsg, false);
if (ret == 1) {
/* txmsg is sent it should be in the slots now */
list_del(&txmsg->next);
} else if (ret) {
DRM_DEBUG_KMS("failed to send msg in q %d\n", ret);
list_del(&txmsg->next);
if (txmsg->seqno != -1)
txmsg->dst->tx_slots[txmsg->seqno] = NULL;
txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
wake_up_all(&mgr->tx_waitq);
}
}
/* called holding qlock */
static void process_single_up_tx_qlock(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_sideband_msg_tx *txmsg)
{
int ret;
/* construct a chunk from the first msg in the tx_msg queue */
ret = process_single_tx_qlock(mgr, txmsg, true);
if (ret != 1)
DRM_DEBUG_KMS("failed to send msg in q %d\n", ret);
txmsg->dst->tx_slots[txmsg->seqno] = NULL;
}
static void drm_dp_queue_down_tx(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_sideband_msg_tx *txmsg)
{
mutex_lock(&mgr->qlock);
list_add_tail(&txmsg->next, &mgr->tx_msg_downq);
if (list_is_singular(&mgr->tx_msg_downq))
process_single_down_tx_qlock(mgr);
mutex_unlock(&mgr->qlock);
}
static void drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_branch *mstb)
{
int len;
struct drm_dp_sideband_msg_tx *txmsg;
int ret;
txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
if (!txmsg)
return;
txmsg->dst = mstb;
len = build_link_address(txmsg);
mstb->link_address_sent = true;
drm_dp_queue_down_tx(mgr, txmsg);
ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
if (ret > 0) {
int i;
if (txmsg->reply.reply_type == 1)
DRM_DEBUG_KMS("link address nak received\n");
else {
DRM_DEBUG_KMS("link address reply: %d\n", txmsg->reply.u.link_addr.nports);
for (i = 0; i < txmsg->reply.u.link_addr.nports; i++) {
DRM_DEBUG_KMS("port %d: input %d, pdt: %d, pn: %d, dpcd_rev: %02x, mcs: %d, ddps: %d, ldps %d, sdp %d/%d\n", i,
txmsg->reply.u.link_addr.ports[i].input_port,
txmsg->reply.u.link_addr.ports[i].peer_device_type,
txmsg->reply.u.link_addr.ports[i].port_number,
txmsg->reply.u.link_addr.ports[i].dpcd_revision,
txmsg->reply.u.link_addr.ports[i].mcs,
txmsg->reply.u.link_addr.ports[i].ddps,
txmsg->reply.u.link_addr.ports[i].legacy_device_plug_status,
txmsg->reply.u.link_addr.ports[i].num_sdp_streams,
txmsg->reply.u.link_addr.ports[i].num_sdp_stream_sinks);
}
drm_dp_check_mstb_guid(mstb, txmsg->reply.u.link_addr.guid);
for (i = 0; i < txmsg->reply.u.link_addr.nports; i++) {
drm_dp_add_port(mstb, mgr->dev, &txmsg->reply.u.link_addr.ports[i]);
}
(*mgr->cbs->hotplug)(mgr);
}
} else {
mstb->link_address_sent = false;
DRM_DEBUG_KMS("link address failed %d\n", ret);
}
kfree(txmsg);
}
static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_branch *mstb,
struct drm_dp_mst_port *port)
{
int len;
struct drm_dp_sideband_msg_tx *txmsg;
int ret;
txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
if (!txmsg)
return -ENOMEM;
txmsg->dst = mstb;
len = build_enum_path_resources(txmsg, port->port_num);
drm_dp_queue_down_tx(mgr, txmsg);
ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
if (ret > 0) {
if (txmsg->reply.reply_type == 1)
DRM_DEBUG_KMS("enum path resources nak received\n");
else {
if (port->port_num != txmsg->reply.u.path_resources.port_number)
DRM_ERROR("got incorrect port in response\n");
DRM_DEBUG_KMS("enum path resources %d: %d %d\n", txmsg->reply.u.path_resources.port_number, txmsg->reply.u.path_resources.full_payload_bw_number,
txmsg->reply.u.path_resources.avail_payload_bw_number);
port->available_pbn = txmsg->reply.u.path_resources.avail_payload_bw_number;
}
}
kfree(txmsg);
return 0;
}
static struct drm_dp_mst_port *drm_dp_get_last_connected_port_to_mstb(struct drm_dp_mst_branch *mstb)
{
if (!mstb->port_parent)
return NULL;
if (mstb->port_parent->mstb != mstb)
return mstb->port_parent;
return drm_dp_get_last_connected_port_to_mstb(mstb->port_parent->parent);
}
static struct drm_dp_mst_branch *drm_dp_get_last_connected_port_and_mstb(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_branch *mstb,
int *port_num)
{
struct drm_dp_mst_branch *rmstb = NULL;
struct drm_dp_mst_port *found_port;
mutex_lock(&mgr->lock);
if (mgr->mst_primary) {
found_port = drm_dp_get_last_connected_port_to_mstb(mstb);
if (found_port) {
rmstb = found_port->parent;
kref_get(&rmstb->kref);
*port_num = found_port->port_num;
}
}
mutex_unlock(&mgr->lock);
return rmstb;
}
static int drm_dp_payload_send_msg(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port,
int id,
int pbn)
{
struct drm_dp_sideband_msg_tx *txmsg;
struct drm_dp_mst_branch *mstb;
int len, ret, port_num;
u8 sinks[DRM_DP_MAX_SDP_STREAMS];
int i;
port = drm_dp_get_validated_port_ref(mgr, port);
if (!port)
return -EINVAL;
port_num = port->port_num;
mstb = drm_dp_get_validated_mstb_ref(mgr, port->parent);
if (!mstb) {
mstb = drm_dp_get_last_connected_port_and_mstb(mgr, port->parent, &port_num);
if (!mstb) {
drm_dp_put_port(port);
return -EINVAL;
}
}
txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
if (!txmsg) {
ret = -ENOMEM;
goto fail_put;
}
for (i = 0; i < port->num_sdp_streams; i++)
sinks[i] = i;
txmsg->dst = mstb;
len = build_allocate_payload(txmsg, port_num,
id,
pbn, port->num_sdp_streams, sinks);
drm_dp_queue_down_tx(mgr, txmsg);
ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
if (ret > 0) {
if (txmsg->reply.reply_type == 1) {
ret = -EINVAL;
} else
ret = 0;
}
kfree(txmsg);
fail_put:
drm_dp_put_mst_branch_device(mstb);
drm_dp_put_port(port);
return ret;
}
static int drm_dp_create_payload_step1(struct drm_dp_mst_topology_mgr *mgr,
int id,
struct drm_dp_payload *payload)
{
int ret;
ret = drm_dp_dpcd_write_payload(mgr, id, payload);
if (ret < 0) {
payload->payload_state = 0;
return ret;
}
payload->payload_state = DP_PAYLOAD_LOCAL;
return 0;
}
static int drm_dp_create_payload_step2(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port,
int id,
struct drm_dp_payload *payload)
{
int ret;
ret = drm_dp_payload_send_msg(mgr, port, id, port->vcpi.pbn);
if (ret < 0)
return ret;
payload->payload_state = DP_PAYLOAD_REMOTE;
return ret;
}
static int drm_dp_destroy_payload_step1(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port,
int id,
struct drm_dp_payload *payload)
{
DRM_DEBUG_KMS("\n");
/* its okay for these to fail */
if (port) {
drm_dp_payload_send_msg(mgr, port, id, 0);
}
drm_dp_dpcd_write_payload(mgr, id, payload);
payload->payload_state = DP_PAYLOAD_DELETE_LOCAL;
return 0;
}
static int drm_dp_destroy_payload_step2(struct drm_dp_mst_topology_mgr *mgr,
int id,
struct drm_dp_payload *payload)
{
payload->payload_state = 0;
return 0;
}
/**
* drm_dp_update_payload_part1() - Execute payload update part 1
* @mgr: manager to use.
*
* This iterates over all proposed virtual channels, and tries to
* allocate space in the link for them. For 0->slots transitions,
* this step just writes the VCPI to the MST device. For slots->0
* transitions, this writes the updated VCPIs and removes the
* remote VC payloads.
*
* after calling this the driver should generate ACT and payload
* packets.
*/
int drm_dp_update_payload_part1(struct drm_dp_mst_topology_mgr *mgr)
{
int i, j;
int cur_slots = 1;
struct drm_dp_payload req_payload;
struct drm_dp_mst_port *port;
mutex_lock(&mgr->payload_lock);
for (i = 0; i < mgr->max_payloads; i++) {
/* solve the current payloads - compare to the hw ones
- update the hw view */
req_payload.start_slot = cur_slots;
if (mgr->proposed_vcpis[i]) {
port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi);
port = drm_dp_get_validated_port_ref(mgr, port);
if (!port) {
mutex_unlock(&mgr->payload_lock);
return -EINVAL;
}
req_payload.num_slots = mgr->proposed_vcpis[i]->num_slots;
req_payload.vcpi = mgr->proposed_vcpis[i]->vcpi;
} else {
port = NULL;
req_payload.num_slots = 0;
}
if (mgr->payloads[i].start_slot != req_payload.start_slot) {
mgr->payloads[i].start_slot = req_payload.start_slot;
}
/* work out what is required to happen with this payload */
if (mgr->payloads[i].num_slots != req_payload.num_slots) {
/* need to push an update for this payload */
if (req_payload.num_slots) {
drm_dp_create_payload_step1(mgr, mgr->proposed_vcpis[i]->vcpi, &req_payload);
mgr->payloads[i].num_slots = req_payload.num_slots;
mgr->payloads[i].vcpi = req_payload.vcpi;
} else if (mgr->payloads[i].num_slots) {
mgr->payloads[i].num_slots = 0;
drm_dp_destroy_payload_step1(mgr, port, mgr->payloads[i].vcpi, &mgr->payloads[i]);
req_payload.payload_state = mgr->payloads[i].payload_state;
mgr->payloads[i].start_slot = 0;
}
mgr->payloads[i].payload_state = req_payload.payload_state;
}
cur_slots += req_payload.num_slots;
if (port)
drm_dp_put_port(port);
}
for (i = 0; i < mgr->max_payloads; i++) {
if (mgr->payloads[i].payload_state == DP_PAYLOAD_DELETE_LOCAL) {
DRM_DEBUG_KMS("removing payload %d\n", i);
for (j = i; j < mgr->max_payloads - 1; j++) {
memcpy(&mgr->payloads[j], &mgr->payloads[j + 1], sizeof(struct drm_dp_payload));
mgr->proposed_vcpis[j] = mgr->proposed_vcpis[j + 1];
if (mgr->proposed_vcpis[j] && mgr->proposed_vcpis[j]->num_slots) {
set_bit(j + 1, &mgr->payload_mask);
} else {
clear_bit(j + 1, &mgr->payload_mask);
}
}
memset(&mgr->payloads[mgr->max_payloads - 1], 0, sizeof(struct drm_dp_payload));
mgr->proposed_vcpis[mgr->max_payloads - 1] = NULL;
clear_bit(mgr->max_payloads, &mgr->payload_mask);
}
}
mutex_unlock(&mgr->payload_lock);
return 0;
}
EXPORT_SYMBOL(drm_dp_update_payload_part1);
/**
* drm_dp_update_payload_part2() - Execute payload update part 2
* @mgr: manager to use.
*
* This iterates over all proposed virtual channels, and tries to
* allocate space in the link for them. For 0->slots transitions,
* this step writes the remote VC payload commands. For slots->0
* this just resets some internal state.
*/
int drm_dp_update_payload_part2(struct drm_dp_mst_topology_mgr *mgr)
{
struct drm_dp_mst_port *port;
int i;
int ret = 0;
mutex_lock(&mgr->payload_lock);
for (i = 0; i < mgr->max_payloads; i++) {
if (!mgr->proposed_vcpis[i])
continue;
port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi);
DRM_DEBUG_KMS("payload %d %d\n", i, mgr->payloads[i].payload_state);
if (mgr->payloads[i].payload_state == DP_PAYLOAD_LOCAL) {
ret = drm_dp_create_payload_step2(mgr, port, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]);
} else if (mgr->payloads[i].payload_state == DP_PAYLOAD_DELETE_LOCAL) {
ret = drm_dp_destroy_payload_step2(mgr, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]);
}
if (ret) {
mutex_unlock(&mgr->payload_lock);
return ret;
}
}
mutex_unlock(&mgr->payload_lock);
return 0;
}
EXPORT_SYMBOL(drm_dp_update_payload_part2);
#if 0 /* unused as of yet */
static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port,
int offset, int size)
{
int len;
struct drm_dp_sideband_msg_tx *txmsg;
txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
if (!txmsg)
return -ENOMEM;
len = build_dpcd_read(txmsg, port->port_num, 0, 8);
txmsg->dst = port->parent;
drm_dp_queue_down_tx(mgr, txmsg);
return 0;
}
#endif
static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port,
int offset, int size, u8 *bytes)
{
int len;
int ret;
struct drm_dp_sideband_msg_tx *txmsg;
struct drm_dp_mst_branch *mstb;
mstb = drm_dp_get_validated_mstb_ref(mgr, port->parent);
if (!mstb)
return -EINVAL;
txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
if (!txmsg) {
ret = -ENOMEM;
goto fail_put;
}
len = build_dpcd_write(txmsg, port->port_num, offset, size, bytes);
txmsg->dst = mstb;
drm_dp_queue_down_tx(mgr, txmsg);
ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
if (ret > 0) {
if (txmsg->reply.reply_type == 1) {
ret = -EINVAL;
} else
ret = 0;
}
kfree(txmsg);
fail_put:
drm_dp_put_mst_branch_device(mstb);
return ret;
}
static int drm_dp_encode_up_ack_reply(struct drm_dp_sideband_msg_tx *msg, u8 req_type)
{
struct drm_dp_sideband_msg_reply_body reply;
reply.reply_type = 0;
reply.req_type = req_type;
drm_dp_encode_sideband_reply(&reply, msg);
return 0;
}
static int drm_dp_send_up_ack_reply(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_branch *mstb,
int req_type, int seqno, bool broadcast)
{
struct drm_dp_sideband_msg_tx *txmsg;
txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
if (!txmsg)
return -ENOMEM;
txmsg->dst = mstb;
txmsg->seqno = seqno;
drm_dp_encode_up_ack_reply(txmsg, req_type);
mutex_lock(&mgr->qlock);
process_single_up_tx_qlock(mgr, txmsg);
mutex_unlock(&mgr->qlock);
kfree(txmsg);
return 0;
}
static bool drm_dp_get_vc_payload_bw(int dp_link_bw,
int dp_link_count,
int *out)
{
switch (dp_link_bw) {
default:
DRM_DEBUG_KMS("invalid link bandwidth in DPCD: %x (link count: %d)\n",
dp_link_bw, dp_link_count);
return false;
case DP_LINK_BW_1_62:
*out = 3 * dp_link_count;
break;
case DP_LINK_BW_2_7:
*out = 5 * dp_link_count;
break;
case DP_LINK_BW_5_4:
*out = 10 * dp_link_count;
break;
}
return true;
}
/**
* drm_dp_mst_topology_mgr_set_mst() - Set the MST state for a topology manager
* @mgr: manager to set state for
* @mst_state: true to enable MST on this connector - false to disable.
*
* This is called by the driver when it detects an MST capable device plugged
* into a DP MST capable port, or when a DP MST capable device is unplugged.
*/
int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool mst_state)
{
int ret = 0;
struct drm_dp_mst_branch *mstb = NULL;
mutex_lock(&mgr->lock);
if (mst_state == mgr->mst_state)
goto out_unlock;
mgr->mst_state = mst_state;
/* set the device into MST mode */
if (mst_state) {
WARN_ON(mgr->mst_primary);
/* get dpcd info */
ret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, mgr->dpcd, DP_RECEIVER_CAP_SIZE);
if (ret != DP_RECEIVER_CAP_SIZE) {
DRM_DEBUG_KMS("failed to read DPCD\n");
goto out_unlock;
}
if (!drm_dp_get_vc_payload_bw(mgr->dpcd[1],
mgr->dpcd[2] & DP_MAX_LANE_COUNT_MASK,
&mgr->pbn_div)) {
ret = -EINVAL;
goto out_unlock;
}
/* add initial branch device at LCT 1 */
mstb = drm_dp_add_mst_branch_device(1, NULL);
if (mstb == NULL) {
ret = -ENOMEM;
goto out_unlock;
}
mstb->mgr = mgr;
/* give this the main reference */
mgr->mst_primary = mstb;
kref_get(&mgr->mst_primary->kref);
ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
DP_MST_EN | DP_UP_REQ_EN | DP_UPSTREAM_IS_SRC);
if (ret < 0) {
goto out_unlock;
}
{
struct drm_dp_payload reset_pay;
reset_pay.start_slot = 0;
reset_pay.num_slots = 0x3f;
drm_dp_dpcd_write_payload(mgr, 0, &reset_pay);
}
queue_work(system_long_wq, &mgr->work);
ret = 0;
} else {
/* disable MST on the device */
mstb = mgr->mst_primary;
mgr->mst_primary = NULL;
/* this can fail if the device is gone */
drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 0);
ret = 0;
memset(mgr->payloads, 0, mgr->max_payloads * sizeof(struct drm_dp_payload));
mgr->payload_mask = 0;
set_bit(0, &mgr->payload_mask);
mgr->vcpi_mask = 0;
}
out_unlock:
mutex_unlock(&mgr->lock);
if (mstb)
drm_dp_put_mst_branch_device(mstb);
return ret;
}
EXPORT_SYMBOL(drm_dp_mst_topology_mgr_set_mst);
/**
* drm_dp_mst_topology_mgr_suspend() - suspend the MST manager
* @mgr: manager to suspend
*
* This function tells the MST device that we can't handle UP messages
* anymore. This should stop it from sending any since we are suspended.
*/
void drm_dp_mst_topology_mgr_suspend(struct drm_dp_mst_topology_mgr *mgr)
{
mutex_lock(&mgr->lock);
drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
DP_MST_EN | DP_UPSTREAM_IS_SRC);
mutex_unlock(&mgr->lock);
flush_work(&mgr->work);
flush_work(&mgr->destroy_connector_work);
}
EXPORT_SYMBOL(drm_dp_mst_topology_mgr_suspend);
/**
* drm_dp_mst_topology_mgr_resume() - resume the MST manager
* @mgr: manager to resume
*
* This will fetch DPCD and see if the device is still there,
* if it is, it will rewrite the MSTM control bits, and return.
*
* if the device fails this returns -1, and the driver should do
* a full MST reprobe, in case we were undocked.
*/
int drm_dp_mst_topology_mgr_resume(struct drm_dp_mst_topology_mgr *mgr)
{
int ret = 0;
mutex_lock(&mgr->lock);
if (mgr->mst_primary) {
int sret;
u8 guid[16];
sret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, mgr->dpcd, DP_RECEIVER_CAP_SIZE);
if (sret != DP_RECEIVER_CAP_SIZE) {
DRM_DEBUG_KMS("dpcd read failed - undocked during suspend?\n");
ret = -1;
goto out_unlock;
}
ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
DP_MST_EN | DP_UP_REQ_EN | DP_UPSTREAM_IS_SRC);
if (ret < 0) {
DRM_DEBUG_KMS("mst write failed - undocked during suspend?\n");
ret = -1;
goto out_unlock;
}
/* Some hubs forget their guids after they resume */
sret = drm_dp_dpcd_read(mgr->aux, DP_GUID, guid, 16);
if (sret != 16) {
DRM_DEBUG_KMS("dpcd read failed - undocked during suspend?\n");
ret = -1;
goto out_unlock;
}
drm_dp_check_mstb_guid(mgr->mst_primary, guid);
ret = 0;
} else
ret = -1;
out_unlock:
mutex_unlock(&mgr->lock);
return ret;
}
EXPORT_SYMBOL(drm_dp_mst_topology_mgr_resume);
static bool drm_dp_get_one_sb_msg(struct drm_dp_mst_topology_mgr *mgr, bool up)
{
int len;
u8 replyblock[32];
int replylen, origlen, curreply;
int ret;
struct drm_dp_sideband_msg_rx *msg;
int basereg = up ? DP_SIDEBAND_MSG_UP_REQ_BASE : DP_SIDEBAND_MSG_DOWN_REP_BASE;
msg = up ? &mgr->up_req_recv : &mgr->down_rep_recv;
len = min(mgr->max_dpcd_transaction_bytes, 16);
ret = drm_dp_dpcd_read(mgr->aux, basereg,
replyblock, len);
if (ret != len) {
DRM_DEBUG_KMS("failed to read DPCD down rep %d %d\n", len, ret);
return false;
}
ret = drm_dp_sideband_msg_build(msg, replyblock, len, true);
if (!ret) {
DRM_DEBUG_KMS("sideband msg build failed %d\n", replyblock[0]);
return false;
}
replylen = msg->curchunk_len + msg->curchunk_hdrlen;
origlen = replylen;
replylen -= len;
curreply = len;
while (replylen > 0) {
len = min3(replylen, mgr->max_dpcd_transaction_bytes, 16);
ret = drm_dp_dpcd_read(mgr->aux, basereg + curreply,
replyblock, len);
if (ret != len) {
DRM_DEBUG_KMS("failed to read a chunk (len %d, ret %d)\n",
len, ret);
return false;
}
ret = drm_dp_sideband_msg_build(msg, replyblock, len, false);
if (!ret) {
DRM_DEBUG_KMS("failed to build sideband msg\n");
return false;
}
curreply += len;
replylen -= len;
}
return true;
}
static int drm_dp_mst_handle_down_rep(struct drm_dp_mst_topology_mgr *mgr)
{
int ret = 0;
if (!drm_dp_get_one_sb_msg(mgr, false)) {
memset(&mgr->down_rep_recv, 0,
sizeof(struct drm_dp_sideband_msg_rx));
return 0;
}
if (mgr->down_rep_recv.have_eomt) {
struct drm_dp_sideband_msg_tx *txmsg;
struct drm_dp_mst_branch *mstb;
int slot = -1;
mstb = drm_dp_get_mst_branch_device(mgr,
mgr->down_rep_recv.initial_hdr.lct,
mgr->down_rep_recv.initial_hdr.rad);
if (!mstb) {
DRM_DEBUG_KMS("Got MST reply from unknown device %d\n", mgr->down_rep_recv.initial_hdr.lct);
memset(&mgr->down_rep_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
return 0;
}
/* find the message */
slot = mgr->down_rep_recv.initial_hdr.seqno;
mutex_lock(&mgr->qlock);
txmsg = mstb->tx_slots[slot];
/* remove from slots */
mutex_unlock(&mgr->qlock);
if (!txmsg) {
DRM_DEBUG_KMS("Got MST reply with no msg %p %d %d %02x %02x\n",
mstb,
mgr->down_rep_recv.initial_hdr.seqno,
mgr->down_rep_recv.initial_hdr.lct,
mgr->down_rep_recv.initial_hdr.rad[0],
mgr->down_rep_recv.msg[0]);
drm_dp_put_mst_branch_device(mstb);
memset(&mgr->down_rep_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
return 0;
}
drm_dp_sideband_parse_reply(&mgr->down_rep_recv, &txmsg->reply);
if (txmsg->reply.reply_type == 1) {
DRM_DEBUG_KMS("Got NAK reply: req 0x%02x, reason 0x%02x, nak data 0x%02x\n", txmsg->reply.req_type, txmsg->reply.u.nak.reason, txmsg->reply.u.nak.nak_data);
}
memset(&mgr->down_rep_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
drm_dp_put_mst_branch_device(mstb);
mutex_lock(&mgr->qlock);
txmsg->state = DRM_DP_SIDEBAND_TX_RX;
mstb->tx_slots[slot] = NULL;
mutex_unlock(&mgr->qlock);
wake_up_all(&mgr->tx_waitq);
}
return ret;
}
static int drm_dp_mst_handle_up_req(struct drm_dp_mst_topology_mgr *mgr)
{
int ret = 0;
if (!drm_dp_get_one_sb_msg(mgr, true)) {
memset(&mgr->up_req_recv, 0,
sizeof(struct drm_dp_sideband_msg_rx));
return 0;
}
if (mgr->up_req_recv.have_eomt) {
struct drm_dp_sideband_msg_req_body msg;
struct drm_dp_mst_branch *mstb = NULL;
bool seqno;
if (!mgr->up_req_recv.initial_hdr.broadcast) {
mstb = drm_dp_get_mst_branch_device(mgr,
mgr->up_req_recv.initial_hdr.lct,
mgr->up_req_recv.initial_hdr.rad);
if (!mstb) {
DRM_DEBUG_KMS("Got MST reply from unknown device %d\n", mgr->up_req_recv.initial_hdr.lct);
memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
return 0;
}
}
seqno = mgr->up_req_recv.initial_hdr.seqno;
drm_dp_sideband_parse_req(&mgr->up_req_recv, &msg);
if (msg.req_type == DP_CONNECTION_STATUS_NOTIFY) {
drm_dp_send_up_ack_reply(mgr, mgr->mst_primary, msg.req_type, seqno, false);
if (!mstb)
mstb = drm_dp_get_mst_branch_device_by_guid(mgr, msg.u.conn_stat.guid);
if (!mstb) {
DRM_DEBUG_KMS("Got MST reply from unknown device %d\n", mgr->up_req_recv.initial_hdr.lct);
memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
return 0;
}
drm_dp_update_port(mstb, &msg.u.conn_stat);
DRM_DEBUG_KMS("Got CSN: pn: %d ldps:%d ddps: %d mcs: %d ip: %d pdt: %d\n", msg.u.conn_stat.port_number, msg.u.conn_stat.legacy_device_plug_status, msg.u.conn_stat.displayport_device_plug_status, msg.u.conn_stat.message_capability_status, msg.u.conn_stat.input_port, msg.u.conn_stat.peer_device_type);
(*mgr->cbs->hotplug)(mgr);
} else if (msg.req_type == DP_RESOURCE_STATUS_NOTIFY) {
drm_dp_send_up_ack_reply(mgr, mgr->mst_primary, msg.req_type, seqno, false);
if (!mstb)
mstb = drm_dp_get_mst_branch_device_by_guid(mgr, msg.u.resource_stat.guid);
if (!mstb) {
DRM_DEBUG_KMS("Got MST reply from unknown device %d\n", mgr->up_req_recv.initial_hdr.lct);
memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
return 0;
}
DRM_DEBUG_KMS("Got RSN: pn: %d avail_pbn %d\n", msg.u.resource_stat.port_number, msg.u.resource_stat.available_pbn);
}
if (mstb)
drm_dp_put_mst_branch_device(mstb);
memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
}
return ret;
}
/**
* drm_dp_mst_hpd_irq() - MST hotplug IRQ notify
* @mgr: manager to notify irq for.
* @esi: 4 bytes from SINK_COUNT_ESI
* @handled: whether the hpd interrupt was consumed or not
*
* This should be called from the driver when it detects a short IRQ,
* along with the value of the DEVICE_SERVICE_IRQ_VECTOR_ESI0. The
* topology manager will process the sideband messages received as a result
* of this.
*/
int drm_dp_mst_hpd_irq(struct drm_dp_mst_topology_mgr *mgr, u8 *esi, bool *handled)
{
int ret = 0;
int sc;
*handled = false;
sc = esi[0] & 0x3f;
if (sc != mgr->sink_count) {
mgr->sink_count = sc;
*handled = true;
}
if (esi[1] & DP_DOWN_REP_MSG_RDY) {
ret = drm_dp_mst_handle_down_rep(mgr);
*handled = true;
}
if (esi[1] & DP_UP_REQ_MSG_RDY) {
ret |= drm_dp_mst_handle_up_req(mgr);
*handled = true;
}
drm_dp_mst_kick_tx(mgr);
return ret;
}
EXPORT_SYMBOL(drm_dp_mst_hpd_irq);
/**
* drm_dp_mst_detect_port() - get connection status for an MST port
* @connector: DRM connector for this port
* @mgr: manager for this port
* @port: unverified pointer to a port
*
* This returns the current connection state for a port. It validates the
* port pointer still exists so the caller doesn't require a reference
*/
enum drm_connector_status drm_dp_mst_detect_port(struct drm_connector *connector,
struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
{
enum drm_connector_status status = connector_status_disconnected;
/* we need to search for the port in the mgr in case its gone */
port = drm_dp_get_validated_port_ref(mgr, port);
if (!port)
return connector_status_disconnected;
if (!port->ddps)
goto out;
switch (port->pdt) {
case DP_PEER_DEVICE_NONE:
case DP_PEER_DEVICE_MST_BRANCHING:
break;
case DP_PEER_DEVICE_SST_SINK:
status = connector_status_connected;
/* for logical ports - cache the EDID */
if (port->port_num >= 8 && !port->cached_edid) {
port->cached_edid = drm_get_edid(connector, &port->aux.ddc);
}
break;
case DP_PEER_DEVICE_DP_LEGACY_CONV:
if (port->ldps)
status = connector_status_connected;
break;
}
out:
drm_dp_put_port(port);
return status;
}
EXPORT_SYMBOL(drm_dp_mst_detect_port);
/**
* drm_dp_mst_port_has_audio() - Check whether port has audio capability or not
* @mgr: manager for this port
* @port: unverified pointer to a port.
*
* This returns whether the port supports audio or not.
*/
bool drm_dp_mst_port_has_audio(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port)
{
bool ret = false;
port = drm_dp_get_validated_port_ref(mgr, port);
if (!port)
return ret;
ret = port->has_audio;
drm_dp_put_port(port);
return ret;
}
EXPORT_SYMBOL(drm_dp_mst_port_has_audio);
/**
* drm_dp_mst_get_edid() - get EDID for an MST port
* @connector: toplevel connector to get EDID for
* @mgr: manager for this port
* @port: unverified pointer to a port.
*
* This returns an EDID for the port connected to a connector,
* It validates the pointer still exists so the caller doesn't require a
* reference.
*/
struct edid *drm_dp_mst_get_edid(struct drm_connector *connector, struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
{
struct edid *edid = NULL;
/* we need to search for the port in the mgr in case its gone */
port = drm_dp_get_validated_port_ref(mgr, port);
if (!port)
return NULL;
if (port->cached_edid)
edid = drm_edid_duplicate(port->cached_edid);
else {
edid = drm_get_edid(connector, &port->aux.ddc);
drm_mode_connector_set_tile_property(connector);
}
port->has_audio = drm_detect_monitor_audio(edid);
drm_dp_put_port(port);
return edid;
}
EXPORT_SYMBOL(drm_dp_mst_get_edid);
/**
* drm_dp_find_vcpi_slots() - find slots for this PBN value
* @mgr: manager to use
* @pbn: payload bandwidth to convert into slots.
*/
int drm_dp_find_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr,
int pbn)
{
int num_slots;
num_slots = DIV_ROUND_UP(pbn, mgr->pbn_div);
/* max. time slots - one slot for MTP header */
if (num_slots > 63)
return -ENOSPC;
return num_slots;
}
EXPORT_SYMBOL(drm_dp_find_vcpi_slots);
static int drm_dp_init_vcpi(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_vcpi *vcpi, int pbn, int slots)
{
int ret;
/* max. time slots - one slot for MTP header */
if (slots > 63)
return -ENOSPC;
vcpi->pbn = pbn;
vcpi->aligned_pbn = slots * mgr->pbn_div;
vcpi->num_slots = slots;
ret = drm_dp_mst_assign_payload_id(mgr, vcpi);
if (ret < 0)
return ret;
return 0;
}
/**
* drm_dp_atomic_find_vcpi_slots() - Find and add vcpi slots to the state
* @state: global atomic state
* @mgr: MST topology manager for the port
* @port: port to find vcpi slots for
* @pbn: bandwidth required for the mode in PBN
*
* RETURNS:
* Total slots in the atomic state assigned for this port or error
*/
int drm_dp_atomic_find_vcpi_slots(struct drm_atomic_state *state,
struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port, int pbn)
{
struct drm_dp_mst_topology_state *topology_state;
int req_slots;
topology_state = drm_atomic_get_mst_topology_state(state, mgr);
if (topology_state == NULL)
return -ENOMEM;
port = drm_dp_get_validated_port_ref(mgr, port);
if (port == NULL)
return -EINVAL;
req_slots = DIV_ROUND_UP(pbn, mgr->pbn_div);
DRM_DEBUG_KMS("vcpi slots req=%d, avail=%d\n",
req_slots, topology_state->avail_slots);
if (req_slots > topology_state->avail_slots) {
drm_dp_put_port(port);
return -ENOSPC;
}
topology_state->avail_slots -= req_slots;
DRM_DEBUG_KMS("vcpi slots avail=%d", topology_state->avail_slots);
drm_dp_put_port(port);
return req_slots;
}
EXPORT_SYMBOL(drm_dp_atomic_find_vcpi_slots);
/**
* drm_dp_atomic_release_vcpi_slots() - Release allocated vcpi slots
* @state: global atomic state
* @mgr: MST topology manager for the port
* @slots: number of vcpi slots to release
*
* RETURNS:
* 0 if @slots were added back to &drm_dp_mst_topology_state->avail_slots or
* negative error code
*/
int drm_dp_atomic_release_vcpi_slots(struct drm_atomic_state *state,
struct drm_dp_mst_topology_mgr *mgr,
int slots)
{
struct drm_dp_mst_topology_state *topology_state;
topology_state = drm_atomic_get_mst_topology_state(state, mgr);
if (topology_state == NULL)
return -ENOMEM;
/* We cannot rely on port->vcpi.num_slots to update
* topology_state->avail_slots as the port may not exist if the parent
* branch device was unplugged. This should be fixed by tracking
* per-port slot allocation in drm_dp_mst_topology_state instead of
* depending on the caller to tell us how many slots to release.
*/
topology_state->avail_slots += slots;
DRM_DEBUG_KMS("vcpi slots released=%d, avail=%d\n",
slots, topology_state->avail_slots);
return 0;
}
EXPORT_SYMBOL(drm_dp_atomic_release_vcpi_slots);
/**
* drm_dp_mst_allocate_vcpi() - Allocate a virtual channel
* @mgr: manager for this port
* @port: port to allocate a virtual channel for.
* @pbn: payload bandwidth number to request
* @slots: returned number of slots for this PBN.
*/
bool drm_dp_mst_allocate_vcpi(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port, int pbn, int slots)
{
int ret;
port = drm_dp_get_validated_port_ref(mgr, port);
if (!port)
return false;
if (slots < 0)
return false;
if (port->vcpi.vcpi > 0) {
DRM_DEBUG_KMS("payload: vcpi %d already allocated for pbn %d - requested pbn %d\n", port->vcpi.vcpi, port->vcpi.pbn, pbn);
if (pbn == port->vcpi.pbn) {
drm_dp_put_port(port);
return true;
}
}
ret = drm_dp_init_vcpi(mgr, &port->vcpi, pbn, slots);
if (ret) {
DRM_DEBUG_KMS("failed to init vcpi slots=%d max=63 ret=%d\n",
DIV_ROUND_UP(pbn, mgr->pbn_div), ret);
goto out;
}
DRM_DEBUG_KMS("initing vcpi for pbn=%d slots=%d\n",
pbn, port->vcpi.num_slots);
drm_dp_put_port(port);
return true;
out:
return false;
}
EXPORT_SYMBOL(drm_dp_mst_allocate_vcpi);
int drm_dp_mst_get_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
{
int slots = 0;
port = drm_dp_get_validated_port_ref(mgr, port);
if (!port)
return slots;
slots = port->vcpi.num_slots;
drm_dp_put_port(port);
return slots;
}
EXPORT_SYMBOL(drm_dp_mst_get_vcpi_slots);
/**
* drm_dp_mst_reset_vcpi_slots() - Reset number of slots to 0 for VCPI
* @mgr: manager for this port
* @port: unverified pointer to a port.
*
* This just resets the number of slots for the ports VCPI for later programming.
*/
void drm_dp_mst_reset_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
{
port = drm_dp_get_validated_port_ref(mgr, port);
if (!port)
return;
port->vcpi.num_slots = 0;
drm_dp_put_port(port);
}
EXPORT_SYMBOL(drm_dp_mst_reset_vcpi_slots);
/**
* drm_dp_mst_deallocate_vcpi() - deallocate a VCPI
* @mgr: manager for this port
* @port: unverified port to deallocate vcpi for
*/
void drm_dp_mst_deallocate_vcpi(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
{
port = drm_dp_get_validated_port_ref(mgr, port);
if (!port)
return;
drm_dp_mst_put_payload_id(mgr, port->vcpi.vcpi);
port->vcpi.num_slots = 0;
port->vcpi.pbn = 0;
port->vcpi.aligned_pbn = 0;
port->vcpi.vcpi = 0;
drm_dp_put_port(port);
}
EXPORT_SYMBOL(drm_dp_mst_deallocate_vcpi);
static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr,
int id, struct drm_dp_payload *payload)
{
u8 payload_alloc[3], status;
int ret;
int retries = 0;
drm_dp_dpcd_writeb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS,
DP_PAYLOAD_TABLE_UPDATED);
payload_alloc[0] = id;
payload_alloc[1] = payload->start_slot;
payload_alloc[2] = payload->num_slots;
ret = drm_dp_dpcd_write(mgr->aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3);
if (ret != 3) {
DRM_DEBUG_KMS("failed to write payload allocation %d\n", ret);
goto fail;
}
retry:
ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
if (ret < 0) {
DRM_DEBUG_KMS("failed to read payload table status %d\n", ret);
goto fail;
}
if (!(status & DP_PAYLOAD_TABLE_UPDATED)) {
retries++;
if (retries < 20) {
usleep_range(10000, 20000);
goto retry;
}
DRM_DEBUG_KMS("status not set after read payload table status %d\n", status);
ret = -EINVAL;
goto fail;
}
ret = 0;
fail:
return ret;
}
/**
* drm_dp_check_act_status() - Check ACT handled status.
* @mgr: manager to use
*
* Check the payload status bits in the DPCD for ACT handled completion.
*/
int drm_dp_check_act_status(struct drm_dp_mst_topology_mgr *mgr)
{
u8 status;
int ret;
int count = 0;
do {
ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
if (ret < 0) {
DRM_DEBUG_KMS("failed to read payload table status %d\n", ret);
goto fail;
}
if (status & DP_PAYLOAD_ACT_HANDLED)
break;
count++;
udelay(100);
} while (count < 30);
if (!(status & DP_PAYLOAD_ACT_HANDLED)) {
DRM_DEBUG_KMS("failed to get ACT bit %d after %d retries\n", status, count);
ret = -EINVAL;
goto fail;
}
return 0;
fail:
return ret;
}
EXPORT_SYMBOL(drm_dp_check_act_status);
/**
* drm_dp_calc_pbn_mode() - Calculate the PBN for a mode.
* @clock: dot clock for the mode
* @bpp: bpp for the mode.
*
* This uses the formula in the spec to calculate the PBN value for a mode.
*/
int drm_dp_calc_pbn_mode(int clock, int bpp)
{
u64 kbps;
s64 peak_kbps;
u32 numerator;
u32 denominator;
kbps = clock * bpp;
/*
* margin 5300ppm + 300ppm ~ 0.6% as per spec, factor is 1.006
* The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on
* common multiplier to render an integer PBN for all link rate/lane
* counts combinations
* calculate
* peak_kbps *= (1006/1000)
* peak_kbps *= (64/54)
* peak_kbps *= 8 convert to bytes
*/
numerator = 64 * 1006;
denominator = 54 * 8 * 1000 * 1000;
kbps *= numerator;
peak_kbps = drm_fixp_from_fraction(kbps, denominator);
return drm_fixp2int_ceil(peak_kbps);
}
EXPORT_SYMBOL(drm_dp_calc_pbn_mode);
static int test_calc_pbn_mode(void)
{
int ret;
ret = drm_dp_calc_pbn_mode(154000, 30);
if (ret != 689) {
DRM_ERROR("PBN calculation test failed - clock %d, bpp %d, expected PBN %d, actual PBN %d.\n",
154000, 30, 689, ret);
return -EINVAL;
}
ret = drm_dp_calc_pbn_mode(234000, 30);
if (ret != 1047) {
DRM_ERROR("PBN calculation test failed - clock %d, bpp %d, expected PBN %d, actual PBN %d.\n",
234000, 30, 1047, ret);
return -EINVAL;
}
ret = drm_dp_calc_pbn_mode(297000, 24);
if (ret != 1063) {
DRM_ERROR("PBN calculation test failed - clock %d, bpp %d, expected PBN %d, actual PBN %d.\n",
297000, 24, 1063, ret);
return -EINVAL;
}
return 0;
}
/* we want to kick the TX after we've ack the up/down IRQs. */
static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr)
{
queue_work(system_long_wq, &mgr->tx_work);
}
static void drm_dp_mst_dump_mstb(struct seq_file *m,
struct drm_dp_mst_branch *mstb)
{
struct drm_dp_mst_port *port;
int tabs = mstb->lct;
char prefix[10];
int i;
for (i = 0; i < tabs; i++)
prefix[i] = '\t';
prefix[i] = '\0';
seq_printf(m, "%smst: %p, %d\n", prefix, mstb, mstb->num_ports);
list_for_each_entry(port, &mstb->ports, next) {
seq_printf(m, "%sport: %d: input: %d: pdt: %d, ddps: %d ldps: %d, sdp: %d/%d, %p, conn: %p\n", prefix, port->port_num, port->input, port->pdt, port->ddps, port->ldps, port->num_sdp_streams, port->num_sdp_stream_sinks, port, port->connector);
if (port->mstb)
drm_dp_mst_dump_mstb(m, port->mstb);
}
}
static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr,
char *buf)
{
int i;
for (i = 0; i < 64; i += 16) {
if (drm_dp_dpcd_read(mgr->aux,
DP_PAYLOAD_TABLE_UPDATE_STATUS + i,
&buf[i], 16) != 16)
return false;
}
return true;
}
static void fetch_monitor_name(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port, char *name,
int namelen)
{
struct edid *mst_edid;
mst_edid = drm_dp_mst_get_edid(port->connector, mgr, port);
drm_edid_get_monitor_name(mst_edid, name, namelen);
}
/**
* drm_dp_mst_dump_topology(): dump topology to seq file.
* @m: seq_file to dump output to
* @mgr: manager to dump current topology for.
*
* helper to dump MST topology to a seq file for debugfs.
*/
void drm_dp_mst_dump_topology(struct seq_file *m,
struct drm_dp_mst_topology_mgr *mgr)
{
int i;
struct drm_dp_mst_port *port;
mutex_lock(&mgr->lock);
if (mgr->mst_primary)
drm_dp_mst_dump_mstb(m, mgr->mst_primary);
/* dump VCPIs */
mutex_unlock(&mgr->lock);
mutex_lock(&mgr->payload_lock);
seq_printf(m, "vcpi: %lx %lx %d\n", mgr->payload_mask, mgr->vcpi_mask,
mgr->max_payloads);
for (i = 0; i < mgr->max_payloads; i++) {
if (mgr->proposed_vcpis[i]) {
char name[14];
port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi);
fetch_monitor_name(mgr, port, name, sizeof(name));
seq_printf(m, "vcpi %d: %d %d %d sink name: %s\n", i,
port->port_num, port->vcpi.vcpi,
port->vcpi.num_slots,
(*name != 0) ? name : "Unknown");
} else
seq_printf(m, "vcpi %d:unused\n", i);
}
for (i = 0; i < mgr->max_payloads; i++) {
seq_printf(m, "payload %d: %d, %d, %d\n",
i,
mgr->payloads[i].payload_state,
mgr->payloads[i].start_slot,
mgr->payloads[i].num_slots);
}
mutex_unlock(&mgr->payload_lock);
mutex_lock(&mgr->lock);
if (mgr->mst_primary) {
u8 buf[64];
int ret;
ret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, buf, DP_RECEIVER_CAP_SIZE);
seq_printf(m, "dpcd: %*ph\n", DP_RECEIVER_CAP_SIZE, buf);
ret = drm_dp_dpcd_read(mgr->aux, DP_FAUX_CAP, buf, 2);
seq_printf(m, "faux/mst: %*ph\n", 2, buf);
ret = drm_dp_dpcd_read(mgr->aux, DP_MSTM_CTRL, buf, 1);
seq_printf(m, "mst ctrl: %*ph\n", 1, buf);
/* dump the standard OUI branch header */
ret = drm_dp_dpcd_read(mgr->aux, DP_BRANCH_OUI, buf, DP_BRANCH_OUI_HEADER_SIZE);
seq_printf(m, "branch oui: %*phN devid: ", 3, buf);
for (i = 0x3; i < 0x8 && buf[i]; i++)
seq_printf(m, "%c", buf[i]);
seq_printf(m, " revision: hw: %x.%x sw: %x.%x\n",
buf[0x9] >> 4, buf[0x9] & 0xf, buf[0xa], buf[0xb]);
if (dump_dp_payload_table(mgr, buf))
seq_printf(m, "payload table: %*ph\n", 63, buf);
}
mutex_unlock(&mgr->lock);
}
EXPORT_SYMBOL(drm_dp_mst_dump_topology);
static void drm_dp_tx_work(struct work_struct *work)
{
struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, tx_work);
mutex_lock(&mgr->qlock);
if (!list_empty(&mgr->tx_msg_downq))
process_single_down_tx_qlock(mgr);
mutex_unlock(&mgr->qlock);
}
static void drm_dp_free_mst_port(struct kref *kref)
{
struct drm_dp_mst_port *port = container_of(kref, struct drm_dp_mst_port, kref);
kref_put(&port->parent->kref, drm_dp_free_mst_branch_device);
kfree(port);
}
static void drm_dp_destroy_connector_work(struct work_struct *work)
{
struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, destroy_connector_work);
struct drm_dp_mst_port *port;
bool send_hotplug = false;
/*
* Not a regular list traverse as we have to drop the destroy
* connector lock before destroying the connector, to avoid AB->BA
* ordering between this lock and the config mutex.
*/
for (;;) {
mutex_lock(&mgr->destroy_connector_lock);
port = list_first_entry_or_null(&mgr->destroy_connector_list, struct drm_dp_mst_port, next);
if (!port) {
mutex_unlock(&mgr->destroy_connector_lock);
break;
}
list_del(&port->next);
mutex_unlock(&mgr->destroy_connector_lock);
kref_init(&port->kref);
INIT_LIST_HEAD(&port->next);
mgr->cbs->destroy_connector(mgr, port->connector);
drm_dp_port_teardown_pdt(port, port->pdt);
port->pdt = DP_PEER_DEVICE_NONE;
if (!port->input && port->vcpi.vcpi > 0) {
drm_dp_mst_reset_vcpi_slots(mgr, port);
drm_dp_update_payload_part1(mgr);
drm_dp_mst_put_payload_id(mgr, port->vcpi.vcpi);
}
kref_put(&port->kref, drm_dp_free_mst_port);
send_hotplug = true;
}
if (send_hotplug)
(*mgr->cbs->hotplug)(mgr);
}
void *drm_dp_mst_duplicate_state(struct drm_atomic_state *state, void *obj)
{
struct drm_dp_mst_topology_mgr *mgr = obj;
struct drm_dp_mst_topology_state *new_mst_state;
if (WARN_ON(!mgr->state))
return NULL;
new_mst_state = kmemdup(mgr->state, sizeof(*new_mst_state), GFP_KERNEL);
if (new_mst_state)
new_mst_state->state = state;
return new_mst_state;
}
void drm_dp_mst_swap_state(void *obj, void **obj_state_ptr)
{
struct drm_dp_mst_topology_mgr *mgr = obj;
struct drm_dp_mst_topology_state **topology_state_ptr;
topology_state_ptr = (struct drm_dp_mst_topology_state **)obj_state_ptr;
mgr->state->state = (*topology_state_ptr)->state;
swap(*topology_state_ptr, mgr->state);
mgr->state->state = NULL;
}
void drm_dp_mst_destroy_state(void *obj_state)
{
kfree(obj_state);
}
static const struct drm_private_state_funcs mst_state_funcs = {
.duplicate_state = drm_dp_mst_duplicate_state,
.swap_state = drm_dp_mst_swap_state,
.destroy_state = drm_dp_mst_destroy_state,
};
/**
* drm_atomic_get_mst_topology_state: get MST topology state
*
* @state: global atomic state
* @mgr: MST topology manager, also the private object in this case
*
* This function wraps drm_atomic_get_priv_obj_state() passing in the MST atomic
* state vtable so that the private object state returned is that of a MST
* topology object. Also, drm_atomic_get_private_obj_state() expects the caller
* to care of the locking, so warn if don't hold the connection_mutex.
*
* RETURNS:
*
* The MST topology state or error pointer.
*/
struct drm_dp_mst_topology_state *drm_atomic_get_mst_topology_state(struct drm_atomic_state *state,
struct drm_dp_mst_topology_mgr *mgr)
{
struct drm_device *dev = mgr->dev;
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
return drm_atomic_get_private_obj_state(state, mgr,
&mst_state_funcs);
}
EXPORT_SYMBOL(drm_atomic_get_mst_topology_state);
/**
* drm_dp_mst_topology_mgr_init - initialise a topology manager
* @mgr: manager struct to initialise
* @dev: device providing this structure - for i2c addition.
* @aux: DP helper aux channel to talk to this device
* @max_dpcd_transaction_bytes: hw specific DPCD transaction limit
* @max_payloads: maximum number of payloads this GPU can source
* @conn_base_id: the connector object ID the MST device is connected to.
*
* Return 0 for success, or negative error code on failure
*/
int drm_dp_mst_topology_mgr_init(struct drm_dp_mst_topology_mgr *mgr,
struct drm_device *dev, struct drm_dp_aux *aux,
int max_dpcd_transaction_bytes,
int max_payloads, int conn_base_id)
{
mutex_init(&mgr->lock);
mutex_init(&mgr->qlock);
mutex_init(&mgr->payload_lock);
mutex_init(&mgr->destroy_connector_lock);
INIT_LIST_HEAD(&mgr->tx_msg_downq);
INIT_LIST_HEAD(&mgr->destroy_connector_list);
INIT_WORK(&mgr->work, drm_dp_mst_link_probe_work);
INIT_WORK(&mgr->tx_work, drm_dp_tx_work);
INIT_WORK(&mgr->destroy_connector_work, drm_dp_destroy_connector_work);
init_waitqueue_head(&mgr->tx_waitq);
mgr->dev = dev;
mgr->aux = aux;
mgr->max_dpcd_transaction_bytes = max_dpcd_transaction_bytes;
mgr->max_payloads = max_payloads;
mgr->conn_base_id = conn_base_id;
if (max_payloads + 1 > sizeof(mgr->payload_mask) * 8 ||
max_payloads + 1 > sizeof(mgr->vcpi_mask) * 8)
return -EINVAL;
mgr->payloads = kcalloc(max_payloads, sizeof(struct drm_dp_payload), GFP_KERNEL);
if (!mgr->payloads)
return -ENOMEM;
mgr->proposed_vcpis = kcalloc(max_payloads, sizeof(struct drm_dp_vcpi *), GFP_KERNEL);
if (!mgr->proposed_vcpis)
return -ENOMEM;
set_bit(0, &mgr->payload_mask);
if (test_calc_pbn_mode() < 0)
DRM_ERROR("MST PBN self-test failed\n");
mgr->state = kzalloc(sizeof(*mgr->state), GFP_KERNEL);
if (mgr->state == NULL)
return -ENOMEM;
mgr->state->mgr = mgr;
/* max. time slots - one slot for MTP header */
mgr->state->avail_slots = 63;
mgr->funcs = &mst_state_funcs;
return 0;
}
EXPORT_SYMBOL(drm_dp_mst_topology_mgr_init);
/**
* drm_dp_mst_topology_mgr_destroy() - destroy topology manager.
* @mgr: manager to destroy
*/
void drm_dp_mst_topology_mgr_destroy(struct drm_dp_mst_topology_mgr *mgr)
{
flush_work(&mgr->work);
flush_work(&mgr->destroy_connector_work);
mutex_lock(&mgr->payload_lock);
kfree(mgr->payloads);
mgr->payloads = NULL;
kfree(mgr->proposed_vcpis);
mgr->proposed_vcpis = NULL;
mutex_unlock(&mgr->payload_lock);
mgr->dev = NULL;
mgr->aux = NULL;
kfree(mgr->state);
mgr->state = NULL;
mgr->funcs = NULL;
}
EXPORT_SYMBOL(drm_dp_mst_topology_mgr_destroy);
/* I2C device */
static int drm_dp_mst_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
int num)
{
struct drm_dp_aux *aux = adapter->algo_data;
struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, aux);
struct drm_dp_mst_branch *mstb;
struct drm_dp_mst_topology_mgr *mgr = port->mgr;
unsigned int i;
bool reading = false;
struct drm_dp_sideband_msg_req_body msg;
struct drm_dp_sideband_msg_tx *txmsg = NULL;
int ret;
mstb = drm_dp_get_validated_mstb_ref(mgr, port->parent);
if (!mstb)
return -EREMOTEIO;
/* construct i2c msg */
/* see if last msg is a read */
if (msgs[num - 1].flags & I2C_M_RD)
reading = true;
if (!reading || (num - 1 > DP_REMOTE_I2C_READ_MAX_TRANSACTIONS)) {
DRM_DEBUG_KMS("Unsupported I2C transaction for MST device\n");
ret = -EIO;
goto out;
}
memset(&msg, 0, sizeof(msg));
msg.req_type = DP_REMOTE_I2C_READ;
msg.u.i2c_read.num_transactions = num - 1;
msg.u.i2c_read.port_number = port->port_num;
for (i = 0; i < num - 1; i++) {
msg.u.i2c_read.transactions[i].i2c_dev_id = msgs[i].addr;
msg.u.i2c_read.transactions[i].num_bytes = msgs[i].len;
msg.u.i2c_read.transactions[i].bytes = msgs[i].buf;
}
msg.u.i2c_read.read_i2c_device_id = msgs[num - 1].addr;
msg.u.i2c_read.num_bytes_read = msgs[num - 1].len;
txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
if (!txmsg) {
ret = -ENOMEM;
goto out;
}
txmsg->dst = mstb;
drm_dp_encode_sideband_req(&msg, txmsg);
drm_dp_queue_down_tx(mgr, txmsg);
ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
if (ret > 0) {
if (txmsg->reply.reply_type == 1) { /* got a NAK back */
ret = -EREMOTEIO;
goto out;
}
if (txmsg->reply.u.remote_i2c_read_ack.num_bytes != msgs[num - 1].len) {
ret = -EIO;
goto out;
}
memcpy(msgs[num - 1].buf, txmsg->reply.u.remote_i2c_read_ack.bytes, msgs[num - 1].len);
ret = num;
}
out:
kfree(txmsg);
drm_dp_put_mst_branch_device(mstb);
return ret;
}
static u32 drm_dp_mst_i2c_functionality(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
I2C_FUNC_SMBUS_READ_BLOCK_DATA |
I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
I2C_FUNC_10BIT_ADDR;
}
static const struct i2c_algorithm drm_dp_mst_i2c_algo = {
.functionality = drm_dp_mst_i2c_functionality,
.master_xfer = drm_dp_mst_i2c_xfer,
};
/**
* drm_dp_mst_register_i2c_bus() - register an I2C adapter for I2C-over-AUX
* @aux: DisplayPort AUX channel
*
* Returns 0 on success or a negative error code on failure.
*/
static int drm_dp_mst_register_i2c_bus(struct drm_dp_aux *aux)
{
aux->ddc.algo = &drm_dp_mst_i2c_algo;
aux->ddc.algo_data = aux;
aux->ddc.retries = 3;
aux->ddc.class = I2C_CLASS_DDC;
aux->ddc.owner = THIS_MODULE;
aux->ddc.dev.parent = aux->dev;
aux->ddc.dev.of_node = aux->dev->of_node;
strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
sizeof(aux->ddc.name));
return i2c_add_adapter(&aux->ddc);
}
/**
* drm_dp_mst_unregister_i2c_bus() - unregister an I2C-over-AUX adapter
* @aux: DisplayPort AUX channel
*/
static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_aux *aux)
{
i2c_del_adapter(&aux->ddc);
}