mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 19:29:46 +07:00
0ee931c4e3
GFP_TEMPORARY was introduced by commit e12ba74d8f
("Group short-lived
and reclaimable kernel allocations") along with __GFP_RECLAIMABLE. It's
primary motivation was to allow users to tell that an allocation is
short lived and so the allocator can try to place such allocations close
together and prevent long term fragmentation. As much as this sounds
like a reasonable semantic it becomes much less clear when to use the
highlevel GFP_TEMPORARY allocation flag. How long is temporary? Can the
context holding that memory sleep? Can it take locks? It seems there is
no good answer for those questions.
The current implementation of GFP_TEMPORARY is basically GFP_KERNEL |
__GFP_RECLAIMABLE which in itself is tricky because basically none of
the existing caller provide a way to reclaim the allocated memory. So
this is rather misleading and hard to evaluate for any benefits.
I have checked some random users and none of them has added the flag
with a specific justification. I suspect most of them just copied from
other existing users and others just thought it might be a good idea to
use without any measuring. This suggests that GFP_TEMPORARY just
motivates for cargo cult usage without any reasoning.
I believe that our gfp flags are quite complex already and especially
those with highlevel semantic should be clearly defined to prevent from
confusion and abuse. Therefore I propose dropping GFP_TEMPORARY and
replace all existing users to simply use GFP_KERNEL. Please note that
SLAB users with shrinkers will still get __GFP_RECLAIMABLE heuristic and
so they will be placed properly for memory fragmentation prevention.
I can see reasons we might want some gfp flag to reflect shorterm
allocations but I propose starting from a clear semantic definition and
only then add users with proper justification.
This was been brought up before LSF this year by Matthew [1] and it
turned out that GFP_TEMPORARY really doesn't have a clear semantic. It
seems to be a heuristic without any measured advantage for most (if not
all) its current users. The follow up discussion has revealed that
opinions on what might be temporary allocation differ a lot between
developers. So rather than trying to tweak existing users into a
semantic which they haven't expected I propose to simply remove the flag
and start from scratch if we really need a semantic for short term
allocations.
[1] http://lkml.kernel.org/r/20170118054945.GD18349@bombadil.infradead.org
[akpm@linux-foundation.org: fix typo]
[akpm@linux-foundation.org: coding-style fixes]
[sfr@canb.auug.org.au: drm/i915: fix up]
Link: http://lkml.kernel.org/r/20170816144703.378d4f4d@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170728091904.14627-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
482 lines
12 KiB
C
482 lines
12 KiB
C
/*
|
|
* Copyright © 2016 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include "../i915_selftest.h"
|
|
#include "i915_random.h"
|
|
|
|
#include "mock_gem_device.h"
|
|
#include "mock_engine.h"
|
|
|
|
static int check_rbtree(struct intel_engine_cs *engine,
|
|
const unsigned long *bitmap,
|
|
const struct intel_wait *waiters,
|
|
const int count)
|
|
{
|
|
struct intel_breadcrumbs *b = &engine->breadcrumbs;
|
|
struct rb_node *rb;
|
|
int n;
|
|
|
|
if (&b->irq_wait->node != rb_first(&b->waiters)) {
|
|
pr_err("First waiter does not match first element of wait-tree\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
n = find_first_bit(bitmap, count);
|
|
for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
|
|
struct intel_wait *w = container_of(rb, typeof(*w), node);
|
|
int idx = w - waiters;
|
|
|
|
if (!test_bit(idx, bitmap)) {
|
|
pr_err("waiter[%d, seqno=%d] removed but still in wait-tree\n",
|
|
idx, w->seqno);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (n != idx) {
|
|
pr_err("waiter[%d, seqno=%d] does not match expected next element in tree [%d]\n",
|
|
idx, w->seqno, n);
|
|
return -EINVAL;
|
|
}
|
|
|
|
n = find_next_bit(bitmap, count, n + 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_completion(struct intel_engine_cs *engine,
|
|
const unsigned long *bitmap,
|
|
const struct intel_wait *waiters,
|
|
const int count)
|
|
{
|
|
int n;
|
|
|
|
for (n = 0; n < count; n++) {
|
|
if (intel_wait_complete(&waiters[n]) != !!test_bit(n, bitmap))
|
|
continue;
|
|
|
|
pr_err("waiter[%d, seqno=%d] is %s, but expected %s\n",
|
|
n, waiters[n].seqno,
|
|
intel_wait_complete(&waiters[n]) ? "complete" : "active",
|
|
test_bit(n, bitmap) ? "active" : "complete");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_rbtree_empty(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_breadcrumbs *b = &engine->breadcrumbs;
|
|
|
|
if (b->irq_wait) {
|
|
pr_err("Empty breadcrumbs still has a waiter\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!RB_EMPTY_ROOT(&b->waiters)) {
|
|
pr_err("Empty breadcrumbs, but wait-tree not empty\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igt_random_insert_remove(void *arg)
|
|
{
|
|
const u32 seqno_bias = 0x1000;
|
|
I915_RND_STATE(prng);
|
|
struct intel_engine_cs *engine = arg;
|
|
struct intel_wait *waiters;
|
|
const int count = 4096;
|
|
unsigned int *order;
|
|
unsigned long *bitmap;
|
|
int err = -ENOMEM;
|
|
int n;
|
|
|
|
mock_engine_reset(engine);
|
|
|
|
waiters = kvmalloc_array(count, sizeof(*waiters), GFP_KERNEL);
|
|
if (!waiters)
|
|
goto out_engines;
|
|
|
|
bitmap = kcalloc(DIV_ROUND_UP(count, BITS_PER_LONG), sizeof(*bitmap),
|
|
GFP_KERNEL);
|
|
if (!bitmap)
|
|
goto out_waiters;
|
|
|
|
order = i915_random_order(count, &prng);
|
|
if (!order)
|
|
goto out_bitmap;
|
|
|
|
for (n = 0; n < count; n++)
|
|
intel_wait_init_for_seqno(&waiters[n], seqno_bias + n);
|
|
|
|
err = check_rbtree(engine, bitmap, waiters, count);
|
|
if (err)
|
|
goto out_order;
|
|
|
|
/* Add and remove waiters into the rbtree in random order. At each
|
|
* step, we verify that the rbtree is correctly ordered.
|
|
*/
|
|
for (n = 0; n < count; n++) {
|
|
int i = order[n];
|
|
|
|
intel_engine_add_wait(engine, &waiters[i]);
|
|
__set_bit(i, bitmap);
|
|
|
|
err = check_rbtree(engine, bitmap, waiters, count);
|
|
if (err)
|
|
goto out_order;
|
|
}
|
|
|
|
i915_random_reorder(order, count, &prng);
|
|
for (n = 0; n < count; n++) {
|
|
int i = order[n];
|
|
|
|
intel_engine_remove_wait(engine, &waiters[i]);
|
|
__clear_bit(i, bitmap);
|
|
|
|
err = check_rbtree(engine, bitmap, waiters, count);
|
|
if (err)
|
|
goto out_order;
|
|
}
|
|
|
|
err = check_rbtree_empty(engine);
|
|
out_order:
|
|
kfree(order);
|
|
out_bitmap:
|
|
kfree(bitmap);
|
|
out_waiters:
|
|
kvfree(waiters);
|
|
out_engines:
|
|
mock_engine_flush(engine);
|
|
return err;
|
|
}
|
|
|
|
static int igt_insert_complete(void *arg)
|
|
{
|
|
const u32 seqno_bias = 0x1000;
|
|
struct intel_engine_cs *engine = arg;
|
|
struct intel_wait *waiters;
|
|
const int count = 4096;
|
|
unsigned long *bitmap;
|
|
int err = -ENOMEM;
|
|
int n, m;
|
|
|
|
mock_engine_reset(engine);
|
|
|
|
waiters = kvmalloc_array(count, sizeof(*waiters), GFP_KERNEL);
|
|
if (!waiters)
|
|
goto out_engines;
|
|
|
|
bitmap = kcalloc(DIV_ROUND_UP(count, BITS_PER_LONG), sizeof(*bitmap),
|
|
GFP_KERNEL);
|
|
if (!bitmap)
|
|
goto out_waiters;
|
|
|
|
for (n = 0; n < count; n++) {
|
|
intel_wait_init_for_seqno(&waiters[n], n + seqno_bias);
|
|
intel_engine_add_wait(engine, &waiters[n]);
|
|
__set_bit(n, bitmap);
|
|
}
|
|
err = check_rbtree(engine, bitmap, waiters, count);
|
|
if (err)
|
|
goto out_bitmap;
|
|
|
|
/* On each step, we advance the seqno so that several waiters are then
|
|
* complete (we increase the seqno by increasingly larger values to
|
|
* retire more and more waiters at once). All retired waiters should
|
|
* be woken and removed from the rbtree, and so that we check.
|
|
*/
|
|
for (n = 0; n < count; n = m) {
|
|
int seqno = 2 * n;
|
|
|
|
GEM_BUG_ON(find_first_bit(bitmap, count) != n);
|
|
|
|
if (intel_wait_complete(&waiters[n])) {
|
|
pr_err("waiter[%d, seqno=%d] completed too early\n",
|
|
n, waiters[n].seqno);
|
|
err = -EINVAL;
|
|
goto out_bitmap;
|
|
}
|
|
|
|
/* complete the following waiters */
|
|
mock_seqno_advance(engine, seqno + seqno_bias);
|
|
for (m = n; m <= seqno; m++) {
|
|
if (m == count)
|
|
break;
|
|
|
|
GEM_BUG_ON(!test_bit(m, bitmap));
|
|
__clear_bit(m, bitmap);
|
|
}
|
|
|
|
intel_engine_remove_wait(engine, &waiters[n]);
|
|
RB_CLEAR_NODE(&waiters[n].node);
|
|
|
|
err = check_rbtree(engine, bitmap, waiters, count);
|
|
if (err) {
|
|
pr_err("rbtree corrupt after seqno advance to %d\n",
|
|
seqno + seqno_bias);
|
|
goto out_bitmap;
|
|
}
|
|
|
|
err = check_completion(engine, bitmap, waiters, count);
|
|
if (err) {
|
|
pr_err("completions after seqno advance to %d failed\n",
|
|
seqno + seqno_bias);
|
|
goto out_bitmap;
|
|
}
|
|
}
|
|
|
|
err = check_rbtree_empty(engine);
|
|
out_bitmap:
|
|
kfree(bitmap);
|
|
out_waiters:
|
|
kvfree(waiters);
|
|
out_engines:
|
|
mock_engine_flush(engine);
|
|
return err;
|
|
}
|
|
|
|
struct igt_wakeup {
|
|
struct task_struct *tsk;
|
|
atomic_t *ready, *set, *done;
|
|
struct intel_engine_cs *engine;
|
|
unsigned long flags;
|
|
#define STOP 0
|
|
#define IDLE 1
|
|
wait_queue_head_t *wq;
|
|
u32 seqno;
|
|
};
|
|
|
|
static int wait_atomic(atomic_t *p)
|
|
{
|
|
schedule();
|
|
return 0;
|
|
}
|
|
|
|
static int wait_atomic_timeout(atomic_t *p)
|
|
{
|
|
return schedule_timeout(10 * HZ) ? 0 : -ETIMEDOUT;
|
|
}
|
|
|
|
static bool wait_for_ready(struct igt_wakeup *w)
|
|
{
|
|
DEFINE_WAIT(ready);
|
|
|
|
set_bit(IDLE, &w->flags);
|
|
if (atomic_dec_and_test(w->done))
|
|
wake_up_atomic_t(w->done);
|
|
|
|
if (test_bit(STOP, &w->flags))
|
|
goto out;
|
|
|
|
for (;;) {
|
|
prepare_to_wait(w->wq, &ready, TASK_INTERRUPTIBLE);
|
|
if (atomic_read(w->ready) == 0)
|
|
break;
|
|
|
|
schedule();
|
|
}
|
|
finish_wait(w->wq, &ready);
|
|
|
|
out:
|
|
clear_bit(IDLE, &w->flags);
|
|
if (atomic_dec_and_test(w->set))
|
|
wake_up_atomic_t(w->set);
|
|
|
|
return !test_bit(STOP, &w->flags);
|
|
}
|
|
|
|
static int igt_wakeup_thread(void *arg)
|
|
{
|
|
struct igt_wakeup *w = arg;
|
|
struct intel_wait wait;
|
|
|
|
while (wait_for_ready(w)) {
|
|
GEM_BUG_ON(kthread_should_stop());
|
|
|
|
intel_wait_init_for_seqno(&wait, w->seqno);
|
|
intel_engine_add_wait(w->engine, &wait);
|
|
for (;;) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
if (i915_seqno_passed(intel_engine_get_seqno(w->engine),
|
|
w->seqno))
|
|
break;
|
|
|
|
if (test_bit(STOP, &w->flags)) /* emergency escape */
|
|
break;
|
|
|
|
schedule();
|
|
}
|
|
intel_engine_remove_wait(w->engine, &wait);
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void igt_wake_all_sync(atomic_t *ready,
|
|
atomic_t *set,
|
|
atomic_t *done,
|
|
wait_queue_head_t *wq,
|
|
int count)
|
|
{
|
|
atomic_set(set, count);
|
|
atomic_set(ready, 0);
|
|
wake_up_all(wq);
|
|
|
|
wait_on_atomic_t(set, wait_atomic, TASK_UNINTERRUPTIBLE);
|
|
atomic_set(ready, count);
|
|
atomic_set(done, count);
|
|
}
|
|
|
|
static int igt_wakeup(void *arg)
|
|
{
|
|
I915_RND_STATE(prng);
|
|
const int state = TASK_UNINTERRUPTIBLE;
|
|
struct intel_engine_cs *engine = arg;
|
|
struct igt_wakeup *waiters;
|
|
DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
|
|
const int count = 4096;
|
|
const u32 max_seqno = count / 4;
|
|
atomic_t ready, set, done;
|
|
int err = -ENOMEM;
|
|
int n, step;
|
|
|
|
mock_engine_reset(engine);
|
|
|
|
waiters = kvmalloc_array(count, sizeof(*waiters), GFP_KERNEL);
|
|
if (!waiters)
|
|
goto out_engines;
|
|
|
|
/* Create a large number of threads, each waiting on a random seqno.
|
|
* Multiple waiters will be waiting for the same seqno.
|
|
*/
|
|
atomic_set(&ready, count);
|
|
for (n = 0; n < count; n++) {
|
|
waiters[n].wq = &wq;
|
|
waiters[n].ready = &ready;
|
|
waiters[n].set = &set;
|
|
waiters[n].done = &done;
|
|
waiters[n].engine = engine;
|
|
waiters[n].flags = BIT(IDLE);
|
|
|
|
waiters[n].tsk = kthread_run(igt_wakeup_thread, &waiters[n],
|
|
"i915/igt:%d", n);
|
|
if (IS_ERR(waiters[n].tsk))
|
|
goto out_waiters;
|
|
|
|
get_task_struct(waiters[n].tsk);
|
|
}
|
|
|
|
for (step = 1; step <= max_seqno; step <<= 1) {
|
|
u32 seqno;
|
|
|
|
/* The waiter threads start paused as we assign them a random
|
|
* seqno and reset the engine. Once the engine is reset,
|
|
* we signal that the threads may begin their wait upon their
|
|
* seqno.
|
|
*/
|
|
for (n = 0; n < count; n++) {
|
|
GEM_BUG_ON(!test_bit(IDLE, &waiters[n].flags));
|
|
waiters[n].seqno =
|
|
1 + prandom_u32_state(&prng) % max_seqno;
|
|
}
|
|
mock_seqno_advance(engine, 0);
|
|
igt_wake_all_sync(&ready, &set, &done, &wq, count);
|
|
|
|
/* Simulate the GPU doing chunks of work, with one or more
|
|
* seqno appearing to finish at the same time. A random number
|
|
* of threads will be waiting upon the update and hopefully be
|
|
* woken.
|
|
*/
|
|
for (seqno = 1; seqno <= max_seqno + step; seqno += step) {
|
|
usleep_range(50, 500);
|
|
mock_seqno_advance(engine, seqno);
|
|
}
|
|
GEM_BUG_ON(intel_engine_get_seqno(engine) < 1 + max_seqno);
|
|
|
|
/* With the seqno now beyond any of the waiting threads, they
|
|
* should all be woken, see that they are complete and signal
|
|
* that they are ready for the next test. We wait until all
|
|
* threads are complete and waiting for us (i.e. not a seqno).
|
|
*/
|
|
err = wait_on_atomic_t(&done, wait_atomic_timeout, state);
|
|
if (err) {
|
|
pr_err("Timed out waiting for %d remaining waiters\n",
|
|
atomic_read(&done));
|
|
break;
|
|
}
|
|
|
|
err = check_rbtree_empty(engine);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
out_waiters:
|
|
for (n = 0; n < count; n++) {
|
|
if (IS_ERR(waiters[n].tsk))
|
|
break;
|
|
|
|
set_bit(STOP, &waiters[n].flags);
|
|
}
|
|
mock_seqno_advance(engine, INT_MAX); /* wakeup any broken waiters */
|
|
igt_wake_all_sync(&ready, &set, &done, &wq, n);
|
|
|
|
for (n = 0; n < count; n++) {
|
|
if (IS_ERR(waiters[n].tsk))
|
|
break;
|
|
|
|
kthread_stop(waiters[n].tsk);
|
|
put_task_struct(waiters[n].tsk);
|
|
}
|
|
|
|
kvfree(waiters);
|
|
out_engines:
|
|
mock_engine_flush(engine);
|
|
return err;
|
|
}
|
|
|
|
int intel_breadcrumbs_mock_selftests(void)
|
|
{
|
|
static const struct i915_subtest tests[] = {
|
|
SUBTEST(igt_random_insert_remove),
|
|
SUBTEST(igt_insert_complete),
|
|
SUBTEST(igt_wakeup),
|
|
};
|
|
struct drm_i915_private *i915;
|
|
int err;
|
|
|
|
i915 = mock_gem_device();
|
|
if (!i915)
|
|
return -ENOMEM;
|
|
|
|
err = i915_subtests(tests, i915->engine[RCS]);
|
|
drm_dev_unref(&i915->drm);
|
|
|
|
return err;
|
|
}
|