mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 19:00:53 +07:00
db05815b36
This commit adds support for AF_XDP zero-copy RX and TX. We create a dedicated XSK RQ inside the channel, it means that two RQs are running simultaneously: one for non-XSK traffic and the other for XSK traffic. The regular and XSK RQs use a single ID namespace split into two halves: the lower half is regular RQs, and the upper half is XSK RQs. When any zero-copy AF_XDP socket is active, changing the number of channels is not allowed, because it would break to mapping between XSK RQ IDs and channels. XSK requires different page allocation and release routines. Such functions as mlx5e_{alloc,free}_rx_mpwqe and mlx5e_{get,put}_rx_frag are generic enough to be used for both regular and XSK RQs, and they use the mlx5e_page_{alloc,release} wrappers around the real allocation functions. Function pointers are not used to avoid losing the performance with retpolines. Wherever it's certain that the regular (non-XSK) page release function should be used, it's called directly. Only the stats that could be meaningful for XSK are exposed to the userspace. Those that don't take part in the XSK flow are not considered. Note that we don't wait for WQEs on the XSK RQ (unlike the regular RQ), because the newer xdpsock sample doesn't provide any Fill Ring entries at the setup stage. We create a dedicated XSK SQ in the channel. This separation has its advantages: 1. When the UMEM is closed, the XSK SQ can also be closed and stop receiving completions. If an existing SQ was used for XSK, it would continue receiving completions for the packets of the closed socket. If a new UMEM was opened at that point, it would start getting completions that don't belong to it. 2. Calculating statistics separately. When the userspace kicks the TX, the driver triggers a hardware interrupt by posting a NOP to a dedicated XSK ICO (internal control operations) SQ, in order to trigger NAPI on the right CPU core. This XSK ICO SQ is protected by a spinlock, as the userspace application may kick the TX from any core. Store the pointers to the UMEMs in the net device private context, independently from the kernel. This way the driver can distinguish between the zero-copy and non-zero-copy UMEMs. The kernel function xdp_get_umem_from_qid does not care about this difference, but the driver is only interested in zero-copy UMEMs, particularly, on the cleanup it determines whether to close the XSK RQ and SQ or not by looking at the presence of the UMEM. Use state_lock to protect the access to this area of UMEM pointers. LRO isn't compatible with XDP, but there may be active UMEMs while XDP is off. If this is the case, don't allow LRO to ensure XDP can be reenabled at any time. The validation of XSK parameters typically happens when XSK queues open. However, when the interface is down or the XDP program isn't set, it's still possible to have active AF_XDP sockets and even to open new, but the XSK queues will be closed. To cover these cases, perform the validation also in these flows: 1. A new UMEM is registered, but the XSK queues aren't going to be created due to missing XDP program or interface being down. 2. MTU changes while there are UMEMs registered. Having this early check prevents mlx5e_open_channels from failing at a later stage, where recovery is impossible and the application has no chance to handle the error, because it got the successful return value for an MTU change or XSK open operation. The performance testing was performed on a machine with the following configuration: - 24 cores of Intel Xeon E5-2620 v3 @ 2.40 GHz - Mellanox ConnectX-5 Ex with 100 Gbit/s link The results with retpoline disabled, single stream: txonly: 33.3 Mpps (21.5 Mpps with queue and app pinned to the same CPU) rxdrop: 12.2 Mpps l2fwd: 9.4 Mpps The results with retpoline enabled, single stream: txonly: 21.3 Mpps (14.1 Mpps with queue and app pinned to the same CPU) rxdrop: 9.9 Mpps l2fwd: 6.8 Mpps Signed-off-by: Maxim Mikityanskiy <maximmi@mellanox.com> Signed-off-by: Tariq Toukan <tariqt@mellanox.com> Acked-by: Saeed Mahameed <saeedm@mellanox.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.