linux_dsm_epyc7002/drivers/net/wireless/ath/ath10k/sdio.c
Alagu Sankar 8530b4e7b2 ath10k: sdio: set skb len for all rx packets
Without this, packets larger than 1500 will silently be dropped.
Easily reproduced by sending a ping packet with a size larger
than 1500.

Co-Developed-by: Niklas Cassel <niklas.cassel@linaro.org>
Signed-off-by: Alagu Sankar <alagusankar@silex-india.com>
Signed-off-by: Niklas Cassel <niklas.cassel@linaro.org>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2018-07-02 17:21:46 +03:00

2114 lines
54 KiB
C

/*
* Copyright (c) 2004-2011 Atheros Communications Inc.
* Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc.
* Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/module.h>
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include <linux/mmc/sdio_func.h>
#include <linux/mmc/sdio_ids.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/sd.h>
#include <linux/bitfield.h>
#include "core.h"
#include "bmi.h"
#include "debug.h"
#include "hif.h"
#include "htc.h"
#include "mac.h"
#include "targaddrs.h"
#include "trace.h"
#include "sdio.h"
/* inlined helper functions */
static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio,
size_t len)
{
return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask);
}
static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id)
{
return (enum ath10k_htc_ep_id)pipe_id;
}
static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt)
{
dev_kfree_skb(pkt->skb);
pkt->skb = NULL;
pkt->alloc_len = 0;
pkt->act_len = 0;
pkt->trailer_only = false;
}
static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt,
size_t act_len, size_t full_len,
bool part_of_bundle,
bool last_in_bundle)
{
pkt->skb = dev_alloc_skb(full_len);
if (!pkt->skb)
return -ENOMEM;
pkt->act_len = act_len;
pkt->alloc_len = full_len;
pkt->part_of_bundle = part_of_bundle;
pkt->last_in_bundle = last_in_bundle;
pkt->trailer_only = false;
return 0;
}
static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt)
{
bool trailer_only = false;
struct ath10k_htc_hdr *htc_hdr =
(struct ath10k_htc_hdr *)pkt->skb->data;
u16 len = __le16_to_cpu(htc_hdr->len);
if (len == htc_hdr->trailer_len)
trailer_only = true;
return trailer_only;
}
/* sdio/mmc functions */
static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
unsigned int address,
unsigned char val)
{
*arg = FIELD_PREP(BIT(31), write) |
FIELD_PREP(BIT(27), raw) |
FIELD_PREP(BIT(26), 1) |
FIELD_PREP(GENMASK(25, 9), address) |
FIELD_PREP(BIT(8), 1) |
FIELD_PREP(GENMASK(7, 0), val);
}
static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
unsigned int address,
unsigned char byte)
{
struct mmc_command io_cmd;
memset(&io_cmd, 0, sizeof(io_cmd));
ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
io_cmd.opcode = SD_IO_RW_DIRECT;
io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
return mmc_wait_for_cmd(card->host, &io_cmd, 0);
}
static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card,
unsigned int address,
unsigned char *byte)
{
struct mmc_command io_cmd;
int ret;
memset(&io_cmd, 0, sizeof(io_cmd));
ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0);
io_cmd.opcode = SD_IO_RW_DIRECT;
io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
ret = mmc_wait_for_cmd(card->host, &io_cmd, 0);
if (!ret)
*byte = io_cmd.resp[0];
return ret;
}
static int ath10k_sdio_config(struct ath10k *ar)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct sdio_func *func = ar_sdio->func;
unsigned char byte, asyncintdelay = 2;
int ret;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n");
sdio_claim_host(func);
byte = 0;
ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
SDIO_CCCR_DRIVE_STRENGTH,
&byte);
byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK;
byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK,
ATH10K_SDIO_DRIVE_DTSX_TYPE_D);
ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
SDIO_CCCR_DRIVE_STRENGTH,
byte);
byte = 0;
ret = ath10k_sdio_func0_cmd52_rd_byte(
func->card,
CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR,
&byte);
byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A |
CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C |
CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D);
ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR,
byte);
if (ret) {
ath10k_warn(ar, "failed to enable driver strength: %d\n", ret);
goto out;
}
byte = 0;
ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
CCCR_SDIO_IRQ_MODE_REG_SDIO3,
&byte);
byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3;
ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
CCCR_SDIO_IRQ_MODE_REG_SDIO3,
byte);
if (ret) {
ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n",
ret);
goto out;
}
byte = 0;
ret = ath10k_sdio_func0_cmd52_rd_byte(func->card,
CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS,
&byte);
byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK;
byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay);
ret = ath10k_sdio_func0_cmd52_wr_byte(func->card,
CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS,
byte);
/* give us some time to enable, in ms */
func->enable_timeout = 100;
ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size);
if (ret) {
ath10k_warn(ar, "failed to set sdio block size to %d: %d\n",
ar_sdio->mbox_info.block_size, ret);
goto out;
}
out:
sdio_release_host(func);
return ret;
}
static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct sdio_func *func = ar_sdio->func;
int ret;
sdio_claim_host(func);
sdio_writel(func, val, addr, &ret);
if (ret) {
ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n",
val, addr, ret);
goto out;
}
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n",
addr, val);
out:
sdio_release_host(func);
return ret;
}
static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct sdio_func *func = ar_sdio->func;
__le32 *buf;
int ret;
buf = kzalloc(sizeof(*buf), GFP_KERNEL);
if (!buf)
return -ENOMEM;
*buf = cpu_to_le32(val);
sdio_claim_host(func);
ret = sdio_writesb(func, addr, buf, sizeof(*buf));
if (ret) {
ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n",
val, addr, ret);
goto out;
}
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n",
addr, val);
out:
sdio_release_host(func);
kfree(buf);
return ret;
}
static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct sdio_func *func = ar_sdio->func;
int ret;
sdio_claim_host(func);
*val = sdio_readl(func, addr, &ret);
if (ret) {
ath10k_warn(ar, "failed to read from address 0x%x: %d\n",
addr, ret);
goto out;
}
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n",
addr, *val);
out:
sdio_release_host(func);
return ret;
}
static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct sdio_func *func = ar_sdio->func;
int ret;
sdio_claim_host(func);
ret = sdio_memcpy_fromio(func, buf, addr, len);
if (ret) {
ath10k_warn(ar, "failed to read from address 0x%x: %d\n",
addr, ret);
goto out;
}
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n",
addr, buf, len);
ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len);
out:
sdio_release_host(func);
return ret;
}
static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct sdio_func *func = ar_sdio->func;
int ret;
sdio_claim_host(func);
/* For some reason toio() doesn't have const for the buffer, need
* an ugly hack to workaround that.
*/
ret = sdio_memcpy_toio(func, addr, (void *)buf, len);
if (ret) {
ath10k_warn(ar, "failed to write to address 0x%x: %d\n",
addr, ret);
goto out;
}
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n",
addr, buf, len);
ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len);
out:
sdio_release_host(func);
return ret;
}
static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct sdio_func *func = ar_sdio->func;
int ret;
sdio_claim_host(func);
len = round_down(len, ar_sdio->mbox_info.block_size);
ret = sdio_readsb(func, buf, addr, len);
if (ret) {
ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n",
addr, ret);
goto out;
}
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n",
addr, buf, len);
ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len);
out:
sdio_release_host(func);
return ret;
}
/* HIF mbox functions */
static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar,
struct ath10k_sdio_rx_data *pkt,
u32 *lookaheads,
int *n_lookaheads)
{
struct ath10k_htc *htc = &ar->htc;
struct sk_buff *skb = pkt->skb;
struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data;
bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT;
enum ath10k_htc_ep_id eid;
u16 payload_len;
u8 *trailer;
int ret;
payload_len = le16_to_cpu(htc_hdr->len);
skb->len = payload_len + sizeof(struct ath10k_htc_hdr);
if (trailer_present) {
trailer = skb->data + sizeof(*htc_hdr) +
payload_len - htc_hdr->trailer_len;
eid = pipe_id_to_eid(htc_hdr->eid);
ret = ath10k_htc_process_trailer(htc,
trailer,
htc_hdr->trailer_len,
eid,
lookaheads,
n_lookaheads);
if (ret)
return ret;
if (is_trailer_only_msg(pkt))
pkt->trailer_only = true;
skb_trim(skb, skb->len - htc_hdr->trailer_len);
}
skb_pull(skb, sizeof(*htc_hdr));
return 0;
}
static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar,
u32 lookaheads[],
int *n_lookahead)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct ath10k_htc *htc = &ar->htc;
struct ath10k_sdio_rx_data *pkt;
struct ath10k_htc_ep *ep;
enum ath10k_htc_ep_id id;
int ret, i, *n_lookahead_local;
u32 *lookaheads_local;
int lookahead_idx = 0;
for (i = 0; i < ar_sdio->n_rx_pkts; i++) {
lookaheads_local = lookaheads;
n_lookahead_local = n_lookahead;
id = ((struct ath10k_htc_hdr *)
&lookaheads[lookahead_idx++])->eid;
if (id >= ATH10K_HTC_EP_COUNT) {
ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n",
id);
ret = -ENOMEM;
goto out;
}
ep = &htc->endpoint[id];
if (ep->service_id == 0) {
ath10k_warn(ar, "ep %d is not connected\n", id);
ret = -ENOMEM;
goto out;
}
pkt = &ar_sdio->rx_pkts[i];
if (pkt->part_of_bundle && !pkt->last_in_bundle) {
/* Only read lookahead's from RX trailers
* for the last packet in a bundle.
*/
lookahead_idx--;
lookaheads_local = NULL;
n_lookahead_local = NULL;
}
ret = ath10k_sdio_mbox_rx_process_packet(ar,
pkt,
lookaheads_local,
n_lookahead_local);
if (ret)
goto out;
if (!pkt->trailer_only)
ep->ep_ops.ep_rx_complete(ar_sdio->ar, pkt->skb);
else
kfree_skb(pkt->skb);
/* The RX complete handler now owns the skb...*/
pkt->skb = NULL;
pkt->alloc_len = 0;
}
ret = 0;
out:
/* Free all packets that was not passed on to the RX completion
* handler...
*/
for (; i < ar_sdio->n_rx_pkts; i++)
ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
return ret;
}
static int ath10k_sdio_mbox_alloc_pkt_bundle(struct ath10k *ar,
struct ath10k_sdio_rx_data *rx_pkts,
struct ath10k_htc_hdr *htc_hdr,
size_t full_len, size_t act_len,
size_t *bndl_cnt)
{
int ret, i;
*bndl_cnt = FIELD_GET(ATH10K_HTC_FLAG_BUNDLE_MASK, htc_hdr->flags);
if (*bndl_cnt > HTC_HOST_MAX_MSG_PER_RX_BUNDLE) {
ath10k_warn(ar,
"HTC bundle length %u exceeds maximum %u\n",
le16_to_cpu(htc_hdr->len),
HTC_HOST_MAX_MSG_PER_RX_BUNDLE);
return -ENOMEM;
}
/* Allocate bndl_cnt extra skb's for the bundle.
* The package containing the
* ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included
* in bndl_cnt. The skb for that packet will be
* allocated separately.
*/
for (i = 0; i < *bndl_cnt; i++) {
ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i],
act_len,
full_len,
true,
false);
if (ret)
return ret;
}
return 0;
}
static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar,
u32 lookaheads[], int n_lookaheads)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct ath10k_htc_hdr *htc_hdr;
size_t full_len, act_len;
bool last_in_bundle;
int ret, i;
if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) {
ath10k_warn(ar,
"the total number of pkgs to be fetched (%u) exceeds maximum %u\n",
n_lookaheads,
ATH10K_SDIO_MAX_RX_MSGS);
ret = -ENOMEM;
goto err;
}
for (i = 0; i < n_lookaheads; i++) {
htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i];
last_in_bundle = false;
if (le16_to_cpu(htc_hdr->len) >
ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) {
ath10k_warn(ar,
"payload length %d exceeds max htc length: %zu\n",
le16_to_cpu(htc_hdr->len),
ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH);
ret = -ENOMEM;
goto err;
}
act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr);
full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len);
if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) {
ath10k_warn(ar,
"rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n",
htc_hdr->eid, htc_hdr->flags,
le16_to_cpu(htc_hdr->len));
ret = -EINVAL;
goto err;
}
if (htc_hdr->flags & ATH10K_HTC_FLAG_BUNDLE_MASK) {
/* HTC header indicates that every packet to follow
* has the same padded length so that it can be
* optimally fetched as a full bundle.
*/
size_t bndl_cnt;
ret = ath10k_sdio_mbox_alloc_pkt_bundle(ar,
&ar_sdio->rx_pkts[i],
htc_hdr,
full_len,
act_len,
&bndl_cnt);
n_lookaheads += bndl_cnt;
i += bndl_cnt;
/*Next buffer will be the last in the bundle */
last_in_bundle = true;
}
/* Allocate skb for packet. If the packet had the
* ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled
* packet skb's have been allocated in the previous step.
*/
if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK)
full_len += ATH10K_HIF_MBOX_BLOCK_SIZE;
ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[i],
act_len,
full_len,
last_in_bundle,
last_in_bundle);
}
ar_sdio->n_rx_pkts = i;
return 0;
err:
for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) {
if (!ar_sdio->rx_pkts[i].alloc_len)
break;
ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
}
return ret;
}
static int ath10k_sdio_mbox_rx_packet(struct ath10k *ar,
struct ath10k_sdio_rx_data *pkt)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct sk_buff *skb = pkt->skb;
int ret;
ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr,
skb->data, pkt->alloc_len);
pkt->status = ret;
if (!ret)
skb_put(skb, pkt->act_len);
return ret;
}
static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
int ret, i;
for (i = 0; i < ar_sdio->n_rx_pkts; i++) {
ret = ath10k_sdio_mbox_rx_packet(ar,
&ar_sdio->rx_pkts[i]);
if (ret)
goto err;
}
return 0;
err:
/* Free all packets that was not successfully fetched. */
for (; i < ar_sdio->n_rx_pkts; i++)
ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]);
return ret;
}
/* This is the timeout for mailbox processing done in the sdio irq
* handler. The timeout is deliberately set quite high since SDIO dump logs
* over serial port can/will add a substantial overhead to the processing
* (if enabled).
*/
#define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ)
static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar,
u32 msg_lookahead, bool *done)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS];
int n_lookaheads = 1;
unsigned long timeout;
int ret;
*done = true;
/* Copy the lookahead obtained from the HTC register table into our
* temp array as a start value.
*/
lookaheads[0] = msg_lookahead;
timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ;
do {
/* Try to allocate as many HTC RX packets indicated by
* n_lookaheads.
*/
ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads,
n_lookaheads);
if (ret)
break;
if (ar_sdio->n_rx_pkts >= 2)
/* A recv bundle was detected, force IRQ status
* re-check again.
*/
*done = false;
ret = ath10k_sdio_mbox_rx_fetch(ar);
/* Process fetched packets. This will potentially update
* n_lookaheads depending on if the packets contain lookahead
* reports.
*/
n_lookaheads = 0;
ret = ath10k_sdio_mbox_rx_process_packets(ar,
lookaheads,
&n_lookaheads);
if (!n_lookaheads || ret)
break;
/* For SYNCH processing, if we get here, we are running
* through the loop again due to updated lookaheads. Set
* flag that we should re-check IRQ status registers again
* before leaving IRQ processing, this can net better
* performance in high throughput situations.
*/
*done = false;
} while (time_before(jiffies, timeout));
if (ret && (ret != -ECANCELED))
ath10k_warn(ar, "failed to get pending recv messages: %d\n",
ret);
return ret;
}
static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar)
{
u32 val;
int ret;
/* TODO: Add firmware crash handling */
ath10k_warn(ar, "firmware crashed\n");
/* read counter to clear the interrupt, the debug error interrupt is
* counter 0.
*/
ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val);
if (ret)
ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret);
return ret;
}
static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
u8 counter_int_status;
int ret;
mutex_lock(&irq_data->mtx);
counter_int_status = irq_data->irq_proc_reg->counter_int_status &
irq_data->irq_en_reg->cntr_int_status_en;
/* NOTE: other modules like GMBOX may use the counter interrupt for
* credit flow control on other counters, we only need to check for
* the debug assertion counter interrupt.
*/
if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK)
ret = ath10k_sdio_mbox_proc_dbg_intr(ar);
else
ret = 0;
mutex_unlock(&irq_data->mtx);
return ret;
}
static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
u8 error_int_status;
int ret;
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n");
error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F;
if (!error_int_status) {
ath10k_warn(ar, "invalid error interrupt status: 0x%x\n",
error_int_status);
return -EIO;
}
ath10k_dbg(ar, ATH10K_DBG_SDIO,
"sdio error_int_status 0x%x\n", error_int_status);
if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK,
error_int_status))
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n");
if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK,
error_int_status))
ath10k_warn(ar, "rx underflow interrupt error\n");
if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK,
error_int_status))
ath10k_warn(ar, "tx overflow interrupt error\n");
/* Clear the interrupt */
irq_data->irq_proc_reg->error_int_status &= ~error_int_status;
/* set W1C value to clear the interrupt, this hits the register first */
ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS,
error_int_status);
if (ret) {
ath10k_warn(ar, "unable to write to error int status address: %d\n",
ret);
return ret;
}
return 0;
}
static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
u8 cpu_int_status;
int ret;
mutex_lock(&irq_data->mtx);
cpu_int_status = irq_data->irq_proc_reg->cpu_int_status &
irq_data->irq_en_reg->cpu_int_status_en;
if (!cpu_int_status) {
ath10k_warn(ar, "CPU interrupt status is zero\n");
ret = -EIO;
goto out;
}
/* Clear the interrupt */
irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status;
/* Set up the register transfer buffer to hit the register 4 times,
* this is done to make the access 4-byte aligned to mitigate issues
* with host bus interconnects that restrict bus transfer lengths to
* be a multiple of 4-bytes.
*
* Set W1C value to clear the interrupt, this hits the register first.
*/
ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS,
cpu_int_status);
if (ret) {
ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n",
ret);
goto out;
}
out:
mutex_unlock(&irq_data->mtx);
return ret;
}
static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar,
u8 *host_int_status,
u32 *lookahead)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg;
struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg;
u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1);
int ret;
mutex_lock(&irq_data->mtx);
*lookahead = 0;
*host_int_status = 0;
/* int_status_en is supposed to be non zero, otherwise interrupts
* shouldn't be enabled. There is however a short time frame during
* initialization between the irq register and int_status_en init
* where this can happen.
* We silently ignore this condition.
*/
if (!irq_en_reg->int_status_en) {
ret = 0;
goto out;
}
/* Read the first sizeof(struct ath10k_irq_proc_registers)
* bytes of the HTC register table. This
* will yield us the value of different int status
* registers and the lookahead registers.
*/
ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS,
irq_proc_reg, sizeof(*irq_proc_reg));
if (ret)
goto out;
/* Update only those registers that are enabled */
*host_int_status = irq_proc_reg->host_int_status &
irq_en_reg->int_status_en;
/* Look at mbox status */
if (!(*host_int_status & htc_mbox)) {
*lookahead = 0;
ret = 0;
goto out;
}
/* Mask out pending mbox value, we use look ahead as
* the real flag for mbox processing.
*/
*host_int_status &= ~htc_mbox;
if (irq_proc_reg->rx_lookahead_valid & htc_mbox) {
*lookahead = le32_to_cpu(
irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]);
if (!*lookahead)
ath10k_warn(ar, "sdio mbox lookahead is zero\n");
}
out:
mutex_unlock(&irq_data->mtx);
return ret;
}
static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar,
bool *done)
{
u8 host_int_status;
u32 lookahead;
int ret;
/* NOTE: HIF implementation guarantees that the context of this
* call allows us to perform SYNCHRONOUS I/O, that is we can block,
* sleep or call any API that can block or switch thread/task
* contexts. This is a fully schedulable context.
*/
ret = ath10k_sdio_mbox_read_int_status(ar,
&host_int_status,
&lookahead);
if (ret) {
*done = true;
goto out;
}
if (!host_int_status && !lookahead) {
ret = 0;
*done = true;
goto out;
}
if (lookahead) {
ath10k_dbg(ar, ATH10K_DBG_SDIO,
"sdio pending mailbox msg lookahead 0x%08x\n",
lookahead);
ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar,
lookahead,
done);
if (ret)
goto out;
}
/* now, handle the rest of the interrupts */
ath10k_dbg(ar, ATH10K_DBG_SDIO,
"sdio host_int_status 0x%x\n", host_int_status);
if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) {
/* CPU Interrupt */
ret = ath10k_sdio_mbox_proc_cpu_intr(ar);
if (ret)
goto out;
}
if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) {
/* Error Interrupt */
ret = ath10k_sdio_mbox_proc_err_intr(ar);
if (ret)
goto out;
}
if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status))
/* Counter Interrupt */
ret = ath10k_sdio_mbox_proc_counter_intr(ar);
ret = 0;
out:
/* An optimization to bypass reading the IRQ status registers
* unecessarily which can re-wake the target, if upper layers
* determine that we are in a low-throughput mode, we can rely on
* taking another interrupt rather than re-checking the status
* registers which can re-wake the target.
*
* NOTE : for host interfaces that makes use of detecting pending
* mbox messages at hif can not use this optimization due to
* possible side effects, SPI requires the host to drain all
* messages from the mailbox before exiting the ISR routine.
*/
ath10k_dbg(ar, ATH10K_DBG_SDIO,
"sdio pending irqs done %d status %d",
*done, ret);
return ret;
}
static void ath10k_sdio_set_mbox_info(struct ath10k *ar)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info;
u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev;
mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR;
mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE;
mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1;
mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR;
mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH;
mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR;
dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, device);
dev_id_chiprev = FIELD_GET(QCA_MANUFACTURER_ID_REV_MASK, device);
switch (dev_id_base) {
case QCA_MANUFACTURER_ID_AR6005_BASE:
if (dev_id_chiprev < 4)
mbox_info->ext_info[0].htc_ext_sz =
ATH10K_HIF_MBOX0_EXT_WIDTH;
else
/* from QCA6174 2.0(0x504), the width has been extended
* to 56K
*/
mbox_info->ext_info[0].htc_ext_sz =
ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0;
break;
case QCA_MANUFACTURER_ID_QCA9377_BASE:
mbox_info->ext_info[0].htc_ext_sz =
ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0;
break;
default:
mbox_info->ext_info[0].htc_ext_sz =
ATH10K_HIF_MBOX0_EXT_WIDTH;
}
mbox_info->ext_info[1].htc_ext_addr =
mbox_info->ext_info[0].htc_ext_addr +
mbox_info->ext_info[0].htc_ext_sz +
ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE;
mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH;
}
/* BMI functions */
static int ath10k_sdio_bmi_credits(struct ath10k *ar)
{
u32 addr, cmd_credits;
unsigned long timeout;
int ret;
/* Read the counter register to get the command credits */
addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4;
timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
cmd_credits = 0;
while (time_before(jiffies, timeout) && !cmd_credits) {
/* Hit the credit counter with a 4-byte access, the first byte
* read will hit the counter and cause a decrement, while the
* remaining 3 bytes has no effect. The rationale behind this
* is to make all HIF accesses 4-byte aligned.
*/
ret = ath10k_sdio_read32(ar, addr, &cmd_credits);
if (ret) {
ath10k_warn(ar,
"unable to decrement the command credit count register: %d\n",
ret);
return ret;
}
/* The counter is only 8 bits.
* Ignore anything in the upper 3 bytes
*/
cmd_credits &= 0xFF;
}
if (!cmd_credits) {
ath10k_warn(ar, "bmi communication timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar)
{
unsigned long timeout;
u32 rx_word;
int ret;
timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
rx_word = 0;
while ((time_before(jiffies, timeout)) && !rx_word) {
ret = ath10k_sdio_read32(ar,
MBOX_HOST_INT_STATUS_ADDRESS,
&rx_word);
if (ret) {
ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret);
return ret;
}
/* all we really want is one bit */
rx_word &= 1;
}
if (!rx_word) {
ath10k_warn(ar, "bmi_recv_buf FIFO empty\n");
return -EINVAL;
}
return ret;
}
static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar,
void *req, u32 req_len,
void *resp, u32 *resp_len)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
u32 addr;
int ret;
if (req) {
ret = ath10k_sdio_bmi_credits(ar);
if (ret)
return ret;
addr = ar_sdio->mbox_info.htc_addr;
memcpy(ar_sdio->bmi_buf, req, req_len);
ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len);
if (ret) {
ath10k_warn(ar,
"unable to send the bmi data to the device: %d\n",
ret);
return ret;
}
}
if (!resp || !resp_len)
/* No response expected */
return 0;
/* During normal bootup, small reads may be required.
* Rather than issue an HIF Read and then wait as the Target
* adds successive bytes to the FIFO, we wait here until
* we know that response data is available.
*
* This allows us to cleanly timeout on an unexpected
* Target failure rather than risk problems at the HIF level.
* In particular, this avoids SDIO timeouts and possibly garbage
* data on some host controllers. And on an interconnect
* such as Compact Flash (as well as some SDIO masters) which
* does not provide any indication on data timeout, it avoids
* a potential hang or garbage response.
*
* Synchronization is more difficult for reads larger than the
* size of the MBOX FIFO (128B), because the Target is unable
* to push the 129th byte of data until AFTER the Host posts an
* HIF Read and removes some FIFO data. So for large reads the
* Host proceeds to post an HIF Read BEFORE all the data is
* actually available to read. Fortunately, large BMI reads do
* not occur in practice -- they're supported for debug/development.
*
* So Host/Target BMI synchronization is divided into these cases:
* CASE 1: length < 4
* Should not happen
*
* CASE 2: 4 <= length <= 128
* Wait for first 4 bytes to be in FIFO
* If CONSERVATIVE_BMI_READ is enabled, also wait for
* a BMI command credit, which indicates that the ENTIRE
* response is available in the the FIFO
*
* CASE 3: length > 128
* Wait for the first 4 bytes to be in FIFO
*
* For most uses, a small timeout should be sufficient and we will
* usually see a response quickly; but there may be some unusual
* (debug) cases of BMI_EXECUTE where we want an larger timeout.
* For now, we use an unbounded busy loop while waiting for
* BMI_EXECUTE.
*
* If BMI_EXECUTE ever needs to support longer-latency execution,
* especially in production, this code needs to be enhanced to sleep
* and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently
* a function of Host processor speed.
*/
ret = ath10k_sdio_bmi_get_rx_lookahead(ar);
if (ret)
return ret;
/* We always read from the start of the mbox address */
addr = ar_sdio->mbox_info.htc_addr;
ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len);
if (ret) {
ath10k_warn(ar,
"unable to read the bmi data from the device: %d\n",
ret);
return ret;
}
memcpy(resp, ar_sdio->bmi_buf, *resp_len);
return 0;
}
/* sdio async handling functions */
static struct ath10k_sdio_bus_request
*ath10k_sdio_alloc_busreq(struct ath10k *ar)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct ath10k_sdio_bus_request *bus_req;
spin_lock_bh(&ar_sdio->lock);
if (list_empty(&ar_sdio->bus_req_freeq)) {
bus_req = NULL;
goto out;
}
bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
struct ath10k_sdio_bus_request, list);
list_del(&bus_req->list);
out:
spin_unlock_bh(&ar_sdio->lock);
return bus_req;
}
static void ath10k_sdio_free_bus_req(struct ath10k *ar,
struct ath10k_sdio_bus_request *bus_req)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
memset(bus_req, 0, sizeof(*bus_req));
spin_lock_bh(&ar_sdio->lock);
list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
spin_unlock_bh(&ar_sdio->lock);
}
static void __ath10k_sdio_write_async(struct ath10k *ar,
struct ath10k_sdio_bus_request *req)
{
struct ath10k_htc_ep *ep;
struct sk_buff *skb;
int ret;
skb = req->skb;
ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len);
if (ret)
ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d",
req->address, ret);
if (req->htc_msg) {
ep = &ar->htc.endpoint[req->eid];
ath10k_htc_notify_tx_completion(ep, skb);
} else if (req->comp) {
complete(req->comp);
}
ath10k_sdio_free_bus_req(ar, req);
}
static void ath10k_sdio_write_async_work(struct work_struct *work)
{
struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio,
wr_async_work);
struct ath10k *ar = ar_sdio->ar;
struct ath10k_sdio_bus_request *req, *tmp_req;
spin_lock_bh(&ar_sdio->wr_async_lock);
list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
list_del(&req->list);
spin_unlock_bh(&ar_sdio->wr_async_lock);
__ath10k_sdio_write_async(ar, req);
spin_lock_bh(&ar_sdio->wr_async_lock);
}
spin_unlock_bh(&ar_sdio->wr_async_lock);
}
static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr,
struct sk_buff *skb,
struct completion *comp,
bool htc_msg, enum ath10k_htc_ep_id eid)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct ath10k_sdio_bus_request *bus_req;
/* Allocate a bus request for the message and queue it on the
* SDIO workqueue.
*/
bus_req = ath10k_sdio_alloc_busreq(ar);
if (!bus_req) {
ath10k_warn(ar,
"unable to allocate bus request for async request\n");
return -ENOMEM;
}
bus_req->skb = skb;
bus_req->eid = eid;
bus_req->address = addr;
bus_req->htc_msg = htc_msg;
bus_req->comp = comp;
spin_lock_bh(&ar_sdio->wr_async_lock);
list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
spin_unlock_bh(&ar_sdio->wr_async_lock);
return 0;
}
/* IRQ handler */
static void ath10k_sdio_irq_handler(struct sdio_func *func)
{
struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
struct ath10k *ar = ar_sdio->ar;
unsigned long timeout;
bool done = false;
int ret;
/* Release the host during interrupts so we can pick it back up when
* we process commands.
*/
sdio_release_host(ar_sdio->func);
timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ;
do {
ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done);
if (ret)
break;
} while (time_before(jiffies, timeout) && !done);
ath10k_mac_tx_push_pending(ar);
sdio_claim_host(ar_sdio->func);
if (ret && ret != -ECANCELED)
ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n",
ret);
}
/* sdio HIF functions */
static int ath10k_sdio_hif_disable_intrs(struct ath10k *ar)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
int ret;
mutex_lock(&irq_data->mtx);
memset(regs, 0, sizeof(*regs));
ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
&regs->int_status_en, sizeof(*regs));
if (ret)
ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret);
mutex_unlock(&irq_data->mtx);
return ret;
}
static int ath10k_sdio_hif_power_up(struct ath10k *ar)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct sdio_func *func = ar_sdio->func;
int ret;
if (!ar_sdio->is_disabled)
return 0;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n");
sdio_claim_host(func);
ret = sdio_enable_func(func);
if (ret) {
ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret);
sdio_release_host(func);
return ret;
}
sdio_release_host(func);
/* Wait for hardware to initialise. It should take a lot less than
* 20 ms but let's be conservative here.
*/
msleep(20);
ar_sdio->is_disabled = false;
ret = ath10k_sdio_hif_disable_intrs(ar);
if (ret)
return ret;
return 0;
}
static void ath10k_sdio_hif_power_down(struct ath10k *ar)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
int ret;
if (ar_sdio->is_disabled)
return;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n");
/* Disable the card */
sdio_claim_host(ar_sdio->func);
ret = sdio_disable_func(ar_sdio->func);
sdio_release_host(ar_sdio->func);
if (ret)
ath10k_warn(ar, "unable to disable sdio function: %d\n", ret);
ar_sdio->is_disabled = true;
}
static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
struct ath10k_hif_sg_item *items, int n_items)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
enum ath10k_htc_ep_id eid;
struct sk_buff *skb;
int ret, i;
eid = pipe_id_to_eid(pipe_id);
for (i = 0; i < n_items; i++) {
size_t padded_len;
u32 address;
skb = items[i].transfer_context;
padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio,
skb->len);
skb_trim(skb, padded_len);
/* Write TX data to the end of the mbox address space */
address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] -
skb->len;
ret = ath10k_sdio_prep_async_req(ar, address, skb,
NULL, true, eid);
if (ret)
return ret;
}
queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
return 0;
}
static int ath10k_sdio_hif_enable_intrs(struct ath10k *ar)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
int ret;
mutex_lock(&irq_data->mtx);
/* Enable all but CPU interrupts */
regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) |
FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) |
FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1);
/* NOTE: There are some cases where HIF can do detection of
* pending mbox messages which is disabled now.
*/
regs->int_status_en |=
FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1);
/* Set up the CPU Interrupt status Register */
regs->cpu_int_status_en = 0;
/* Set up the Error Interrupt status Register */
regs->err_int_status_en =
FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) |
FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1);
/* Enable Counter interrupt status register to get fatal errors for
* debugging.
*/
regs->cntr_int_status_en =
FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK,
ATH10K_SDIO_TARGET_DEBUG_INTR_MASK);
ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
&regs->int_status_en, sizeof(*regs));
if (ret)
ath10k_warn(ar,
"failed to update mbox interrupt status register : %d\n",
ret);
mutex_unlock(&irq_data->mtx);
return ret;
}
static int ath10k_sdio_hif_set_mbox_sleep(struct ath10k *ar, bool enable_sleep)
{
u32 val;
int ret;
ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val);
if (ret) {
ath10k_warn(ar, "failed to read fifo/chip control register: %d\n",
ret);
return ret;
}
if (enable_sleep)
val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF;
else
val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON;
ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val);
if (ret) {
ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d",
ret);
return ret;
}
return 0;
}
/* HIF diagnostics */
static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
size_t buf_len)
{
int ret;
/* set window register to start read cycle */
ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address);
if (ret) {
ath10k_warn(ar, "failed to set mbox window read address: %d", ret);
return ret;
}
/* read the data */
ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, buf, buf_len);
if (ret) {
ath10k_warn(ar, "failed to read from mbox window data address: %d\n",
ret);
return ret;
}
return 0;
}
static int ath10k_sdio_hif_diag_read32(struct ath10k *ar, u32 address,
u32 *value)
{
__le32 *val;
int ret;
val = kzalloc(sizeof(*val), GFP_KERNEL);
if (!val)
return -ENOMEM;
ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val));
if (ret)
goto out;
*value = __le32_to_cpu(*val);
out:
kfree(val);
return ret;
}
static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address,
const void *data, int nbytes)
{
int ret;
/* set write data */
ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes);
if (ret) {
ath10k_warn(ar,
"failed to write 0x%p to mbox window data address: %d\n",
data, ret);
return ret;
}
/* set window register, which starts the write cycle */
ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address);
if (ret) {
ath10k_warn(ar, "failed to set mbox window write address: %d", ret);
return ret;
}
return 0;
}
/* HIF start/stop */
static int ath10k_sdio_hif_start(struct ath10k *ar)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
u32 addr, val;
int ret;
/* Sleep 20 ms before HIF interrupts are disabled.
* This will give target plenty of time to process the BMI done
* request before interrupts are disabled.
*/
msleep(20);
ret = ath10k_sdio_hif_disable_intrs(ar);
if (ret)
return ret;
/* eid 0 always uses the lower part of the extended mailbox address
* space (ext_info[0].htc_ext_addr).
*/
ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
sdio_claim_host(ar_sdio->func);
/* Register the isr */
ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler);
if (ret) {
ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret);
sdio_release_host(ar_sdio->func);
return ret;
}
sdio_release_host(ar_sdio->func);
ret = ath10k_sdio_hif_enable_intrs(ar);
if (ret)
ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret);
addr = host_interest_item_address(HI_ITEM(hi_acs_flags));
ret = ath10k_sdio_hif_diag_read32(ar, addr, &val);
if (ret) {
ath10k_warn(ar, "unable to read hi_acs_flags address: %d\n", ret);
return ret;
}
if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) {
ath10k_dbg(ar, ATH10K_DBG_SDIO,
"sdio mailbox swap service enabled\n");
ar_sdio->swap_mbox = true;
}
/* Enable sleep and then disable it again */
ret = ath10k_sdio_hif_set_mbox_sleep(ar, true);
if (ret)
return ret;
/* Wait for 20ms for the written value to take effect */
msleep(20);
ret = ath10k_sdio_hif_set_mbox_sleep(ar, false);
if (ret)
return ret;
return 0;
}
#define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ)
static void ath10k_sdio_irq_disable(struct ath10k *ar)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data;
struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg;
struct sk_buff *skb;
struct completion irqs_disabled_comp;
int ret;
skb = dev_alloc_skb(sizeof(*regs));
if (!skb)
return;
mutex_lock(&irq_data->mtx);
memset(regs, 0, sizeof(*regs)); /* disable all interrupts */
memcpy(skb->data, regs, sizeof(*regs));
skb_put(skb, sizeof(*regs));
mutex_unlock(&irq_data->mtx);
init_completion(&irqs_disabled_comp);
ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS,
skb, &irqs_disabled_comp, false, 0);
if (ret)
goto out;
queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work);
/* Wait for the completion of the IRQ disable request.
* If there is a timeout we will try to disable irq's anyway.
*/
ret = wait_for_completion_timeout(&irqs_disabled_comp,
SDIO_IRQ_DISABLE_TIMEOUT_HZ);
if (!ret)
ath10k_warn(ar, "sdio irq disable request timed out\n");
sdio_claim_host(ar_sdio->func);
ret = sdio_release_irq(ar_sdio->func);
if (ret)
ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret);
sdio_release_host(ar_sdio->func);
out:
kfree_skb(skb);
}
static void ath10k_sdio_hif_stop(struct ath10k *ar)
{
struct ath10k_sdio_bus_request *req, *tmp_req;
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
ath10k_sdio_irq_disable(ar);
cancel_work_sync(&ar_sdio->wr_async_work);
spin_lock_bh(&ar_sdio->wr_async_lock);
/* Free all bus requests that have not been handled */
list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
struct ath10k_htc_ep *ep;
list_del(&req->list);
if (req->htc_msg) {
ep = &ar->htc.endpoint[req->eid];
ath10k_htc_notify_tx_completion(ep, req->skb);
} else if (req->skb) {
kfree_skb(req->skb);
}
ath10k_sdio_free_bus_req(ar, req);
}
spin_unlock_bh(&ar_sdio->wr_async_lock);
}
#ifdef CONFIG_PM
static int ath10k_sdio_hif_suspend(struct ath10k *ar)
{
return -EOPNOTSUPP;
}
static int ath10k_sdio_hif_resume(struct ath10k *ar)
{
switch (ar->state) {
case ATH10K_STATE_OFF:
ath10k_dbg(ar, ATH10K_DBG_SDIO,
"sdio resume configuring sdio\n");
/* need to set sdio settings after power is cut from sdio */
ath10k_sdio_config(ar);
break;
case ATH10K_STATE_ON:
default:
break;
}
return 0;
}
#endif
static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar,
u16 service_id,
u8 *ul_pipe, u8 *dl_pipe)
{
struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar);
struct ath10k_htc *htc = &ar->htc;
u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size;
enum ath10k_htc_ep_id eid;
bool ep_found = false;
int i;
/* For sdio, we are interested in the mapping between eid
* and pipeid rather than service_id to pipe_id.
* First we find out which eid has been allocated to the
* service...
*/
for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) {
if (htc->endpoint[i].service_id == service_id) {
eid = htc->endpoint[i].eid;
ep_found = true;
break;
}
}
if (!ep_found)
return -EINVAL;
/* Then we create the simplest mapping possible between pipeid
* and eid
*/
*ul_pipe = *dl_pipe = (u8)eid;
/* Normally, HTT will use the upper part of the extended
* mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl
* the lower part (ext_info[0].htc_ext_addr).
* If fw wants swapping of mailbox addresses, the opposite is true.
*/
if (ar_sdio->swap_mbox) {
htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr;
htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz;
} else {
htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr;
wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr;
htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz;
wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz;
}
switch (service_id) {
case ATH10K_HTC_SVC_ID_RSVD_CTRL:
/* HTC ctrl ep mbox address has already been setup in
* ath10k_sdio_hif_start
*/
break;
case ATH10K_HTC_SVC_ID_WMI_CONTROL:
ar_sdio->mbox_addr[eid] = wmi_addr;
ar_sdio->mbox_size[eid] = wmi_mbox_size;
ath10k_dbg(ar, ATH10K_DBG_SDIO,
"sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n",
ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]);
break;
case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
ar_sdio->mbox_addr[eid] = htt_addr;
ar_sdio->mbox_size[eid] = htt_mbox_size;
ath10k_dbg(ar, ATH10K_DBG_SDIO,
"sdio htt data mbox_addr 0x%x mbox_size %d\n",
ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]);
break;
default:
ath10k_warn(ar, "unsupported HTC service id: %d\n",
service_id);
return -EINVAL;
}
return 0;
}
static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar,
u8 *ul_pipe, u8 *dl_pipe)
{
ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n");
/* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our
* case) == 0
*/
*ul_pipe = 0;
*dl_pipe = 0;
}
/* This op is currently only used by htc_wait_target if the HTC ready
* message times out. It is not applicable for SDIO since there is nothing
* we can do if the HTC ready message does not arrive in time.
* TODO: Make this op non mandatory by introducing a NULL check in the
* hif op wrapper.
*/
static void ath10k_sdio_hif_send_complete_check(struct ath10k *ar,
u8 pipe, int force)
{
}
static const struct ath10k_hif_ops ath10k_sdio_hif_ops = {
.tx_sg = ath10k_sdio_hif_tx_sg,
.diag_read = ath10k_sdio_hif_diag_read,
.diag_write = ath10k_sdio_hif_diag_write_mem,
.exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg,
.start = ath10k_sdio_hif_start,
.stop = ath10k_sdio_hif_stop,
.map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe,
.get_default_pipe = ath10k_sdio_hif_get_default_pipe,
.send_complete_check = ath10k_sdio_hif_send_complete_check,
.power_up = ath10k_sdio_hif_power_up,
.power_down = ath10k_sdio_hif_power_down,
#ifdef CONFIG_PM
.suspend = ath10k_sdio_hif_suspend,
.resume = ath10k_sdio_hif_resume,
#endif
};
#ifdef CONFIG_PM_SLEEP
/* Empty handlers so that mmc subsystem doesn't remove us entirely during
* suspend. We instead follow cfg80211 suspend/resume handlers.
*/
static int ath10k_sdio_pm_suspend(struct device *device)
{
return 0;
}
static int ath10k_sdio_pm_resume(struct device *device)
{
return 0;
}
static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend,
ath10k_sdio_pm_resume);
#define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops)
#else
#define ATH10K_SDIO_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
static int ath10k_sdio_probe(struct sdio_func *func,
const struct sdio_device_id *id)
{
struct ath10k_sdio *ar_sdio;
struct ath10k *ar;
enum ath10k_hw_rev hw_rev;
u32 chip_id, dev_id_base;
int ret, i;
/* Assumption: All SDIO based chipsets (so far) are QCA6174 based.
* If there will be newer chipsets that does not use the hw reg
* setup as defined in qca6174_regs and qca6174_values, this
* assumption is no longer valid and hw_rev must be setup differently
* depending on chipset.
*/
hw_rev = ATH10K_HW_QCA6174;
ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO,
hw_rev, &ath10k_sdio_hif_ops);
if (!ar) {
dev_err(&func->dev, "failed to allocate core\n");
return -ENOMEM;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
func->num, func->vendor, func->device,
func->max_blksize, func->cur_blksize);
ar_sdio = ath10k_sdio_priv(ar);
ar_sdio->irq_data.irq_proc_reg =
devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs),
GFP_KERNEL);
if (!ar_sdio->irq_data.irq_proc_reg) {
ret = -ENOMEM;
goto err_core_destroy;
}
ar_sdio->irq_data.irq_en_reg =
devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs),
GFP_KERNEL);
if (!ar_sdio->irq_data.irq_en_reg) {
ret = -ENOMEM;
goto err_core_destroy;
}
ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_CMDBUF_SIZE, GFP_KERNEL);
if (!ar_sdio->bmi_buf) {
ret = -ENOMEM;
goto err_core_destroy;
}
ar_sdio->func = func;
sdio_set_drvdata(func, ar_sdio);
ar_sdio->is_disabled = true;
ar_sdio->ar = ar;
spin_lock_init(&ar_sdio->lock);
spin_lock_init(&ar_sdio->wr_async_lock);
mutex_init(&ar_sdio->irq_data.mtx);
INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work);
ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq");
if (!ar_sdio->workqueue) {
ret = -ENOMEM;
goto err_core_destroy;
}
for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++)
ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]);
dev_id_base = FIELD_GET(QCA_MANUFACTURER_ID_BASE, id->device);
switch (dev_id_base) {
case QCA_MANUFACTURER_ID_AR6005_BASE:
case QCA_MANUFACTURER_ID_QCA9377_BASE:
ar->dev_id = QCA9377_1_0_DEVICE_ID;
break;
default:
ret = -ENODEV;
ath10k_err(ar, "unsupported device id %u (0x%x)\n",
dev_id_base, id->device);
goto err_free_wq;
}
ar->id.vendor = id->vendor;
ar->id.device = id->device;
ath10k_sdio_set_mbox_info(ar);
ret = ath10k_sdio_config(ar);
if (ret) {
ath10k_err(ar, "failed to config sdio: %d\n", ret);
goto err_free_wq;
}
/* TODO: don't know yet how to get chip_id with SDIO */
chip_id = 0;
ret = ath10k_core_register(ar, chip_id);
if (ret) {
ath10k_err(ar, "failed to register driver core: %d\n", ret);
goto err_free_wq;
}
/* TODO: remove this once SDIO support is fully implemented */
ath10k_warn(ar, "WARNING: ath10k SDIO support is incomplete, don't expect anything to work!\n");
return 0;
err_free_wq:
destroy_workqueue(ar_sdio->workqueue);
err_core_destroy:
ath10k_core_destroy(ar);
return ret;
}
static void ath10k_sdio_remove(struct sdio_func *func)
{
struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func);
struct ath10k *ar = ar_sdio->ar;
ath10k_dbg(ar, ATH10K_DBG_BOOT,
"sdio removed func %d vendor 0x%x device 0x%x\n",
func->num, func->vendor, func->device);
(void)ath10k_sdio_hif_disable_intrs(ar);
cancel_work_sync(&ar_sdio->wr_async_work);
ath10k_core_unregister(ar);
ath10k_core_destroy(ar);
}
static const struct sdio_device_id ath10k_sdio_devices[] = {
{SDIO_DEVICE(QCA_MANUFACTURER_CODE,
(QCA_SDIO_ID_AR6005_BASE | 0xA))},
{SDIO_DEVICE(QCA_MANUFACTURER_CODE,
(QCA_SDIO_ID_QCA9377_BASE | 0x1))},
{},
};
MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices);
static struct sdio_driver ath10k_sdio_driver = {
.name = "ath10k_sdio",
.id_table = ath10k_sdio_devices,
.probe = ath10k_sdio_probe,
.remove = ath10k_sdio_remove,
.drv.pm = ATH10K_SDIO_PM_OPS,
};
static int __init ath10k_sdio_init(void)
{
int ret;
ret = sdio_register_driver(&ath10k_sdio_driver);
if (ret)
pr_err("sdio driver registration failed: %d\n", ret);
return ret;
}
static void __exit ath10k_sdio_exit(void)
{
sdio_unregister_driver(&ath10k_sdio_driver);
}
module_init(ath10k_sdio_init);
module_exit(ath10k_sdio_exit);
MODULE_AUTHOR("Qualcomm Atheros");
MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices");
MODULE_LICENSE("Dual BSD/GPL");