mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
51c9c08439
Current infrastructure of kprobe uses the unconditional trap instruction to probe a running kernel. Optprobe allows kprobe to replace the trap with a branch instruction to a detour buffer. Detour buffer contains instructions to create an in memory pt_regs. Detour buffer also has a call to optimized_callback() which in turn call the pre_handler(). After the execution of the pre-handler, a call is made for instruction emulation. The NIP is determined in advanced through dummy instruction emulation and a branch instruction is created to the NIP at the end of the trampoline. To address the limitation of branch instruction in POWER architecture, detour buffer slot is allocated from a reserved area. For the time being, 64KB is reserved in memory for this purpose. Instructions which can be emulated using analyse_instr() are the candidates for optimization. Before optimization ensure that the address range between the detour buffer allocated and the instruction being probed is within +/- 32MB. Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
124 lines
3.7 KiB
C
124 lines
3.7 KiB
C
#ifndef _ASM_POWERPC_CODE_PATCHING_H
|
|
#define _ASM_POWERPC_CODE_PATCHING_H
|
|
|
|
/*
|
|
* Copyright 2008, Michael Ellerman, IBM Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <asm/types.h>
|
|
#include <asm/ppc-opcode.h>
|
|
|
|
/* Flags for create_branch:
|
|
* "b" == create_branch(addr, target, 0);
|
|
* "ba" == create_branch(addr, target, BRANCH_ABSOLUTE);
|
|
* "bl" == create_branch(addr, target, BRANCH_SET_LINK);
|
|
* "bla" == create_branch(addr, target, BRANCH_ABSOLUTE | BRANCH_SET_LINK);
|
|
*/
|
|
#define BRANCH_SET_LINK 0x1
|
|
#define BRANCH_ABSOLUTE 0x2
|
|
|
|
bool is_offset_in_branch_range(long offset);
|
|
unsigned int create_branch(const unsigned int *addr,
|
|
unsigned long target, int flags);
|
|
unsigned int create_cond_branch(const unsigned int *addr,
|
|
unsigned long target, int flags);
|
|
int patch_branch(unsigned int *addr, unsigned long target, int flags);
|
|
int patch_instruction(unsigned int *addr, unsigned int instr);
|
|
|
|
int instr_is_relative_branch(unsigned int instr);
|
|
int instr_is_branch_to_addr(const unsigned int *instr, unsigned long addr);
|
|
unsigned long branch_target(const unsigned int *instr);
|
|
unsigned int translate_branch(const unsigned int *dest,
|
|
const unsigned int *src);
|
|
extern bool is_conditional_branch(unsigned int instr);
|
|
#ifdef CONFIG_PPC_BOOK3E_64
|
|
void __patch_exception(int exc, unsigned long addr);
|
|
#define patch_exception(exc, name) do { \
|
|
extern unsigned int name; \
|
|
__patch_exception((exc), (unsigned long)&name); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define OP_RT_RA_MASK 0xffff0000UL
|
|
#define LIS_R2 0x3c020000UL
|
|
#define ADDIS_R2_R12 0x3c4c0000UL
|
|
#define ADDI_R2_R2 0x38420000UL
|
|
|
|
static inline unsigned long ppc_function_entry(void *func)
|
|
{
|
|
#ifdef PPC64_ELF_ABI_v2
|
|
u32 *insn = func;
|
|
|
|
/*
|
|
* A PPC64 ABIv2 function may have a local and a global entry
|
|
* point. We need to use the local entry point when patching
|
|
* functions, so identify and step over the global entry point
|
|
* sequence.
|
|
*
|
|
* The global entry point sequence is always of the form:
|
|
*
|
|
* addis r2,r12,XXXX
|
|
* addi r2,r2,XXXX
|
|
*
|
|
* A linker optimisation may convert the addis to lis:
|
|
*
|
|
* lis r2,XXXX
|
|
* addi r2,r2,XXXX
|
|
*/
|
|
if ((((*insn & OP_RT_RA_MASK) == ADDIS_R2_R12) ||
|
|
((*insn & OP_RT_RA_MASK) == LIS_R2)) &&
|
|
((*(insn+1) & OP_RT_RA_MASK) == ADDI_R2_R2))
|
|
return (unsigned long)(insn + 2);
|
|
else
|
|
return (unsigned long)func;
|
|
#elif defined(PPC64_ELF_ABI_v1)
|
|
/*
|
|
* On PPC64 ABIv1 the function pointer actually points to the
|
|
* function's descriptor. The first entry in the descriptor is the
|
|
* address of the function text.
|
|
*/
|
|
return ((func_descr_t *)func)->entry;
|
|
#else
|
|
return (unsigned long)func;
|
|
#endif
|
|
}
|
|
|
|
static inline unsigned long ppc_global_function_entry(void *func)
|
|
{
|
|
#ifdef PPC64_ELF_ABI_v2
|
|
/* PPC64 ABIv2 the global entry point is at the address */
|
|
return (unsigned long)func;
|
|
#else
|
|
/* All other cases there is no change vs ppc_function_entry() */
|
|
return ppc_function_entry(func);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
/*
|
|
* Some instruction encodings commonly used in dynamic ftracing
|
|
* and function live patching.
|
|
*/
|
|
|
|
/* This must match the definition of STK_GOT in <asm/ppc_asm.h> */
|
|
#ifdef PPC64_ELF_ABI_v2
|
|
#define R2_STACK_OFFSET 24
|
|
#else
|
|
#define R2_STACK_OFFSET 40
|
|
#endif
|
|
|
|
#define PPC_INST_LD_TOC (PPC_INST_LD | ___PPC_RT(__REG_R2) | \
|
|
___PPC_RA(__REG_R1) | R2_STACK_OFFSET)
|
|
|
|
/* usually preceded by a mflr r0 */
|
|
#define PPC_INST_STD_LR (PPC_INST_STD | ___PPC_RS(__REG_R0) | \
|
|
___PPC_RA(__REG_R1) | PPC_LR_STKOFF)
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
#endif /* _ASM_POWERPC_CODE_PATCHING_H */
|