mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 19:19:55 +07:00
57468af326
Convert kgdb_cpulock into a raw_spinlock_t. SPIN_LOCK_UNLOCKED is deprecated and it's replacement DEFINE_SPINLOCK is not suitable for arrays of spinlocks. Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
1097 lines
24 KiB
C
1097 lines
24 KiB
C
/*
|
|
* arch/mips/kernel/gdb-stub.c
|
|
*
|
|
* Originally written by Glenn Engel, Lake Stevens Instrument Division
|
|
*
|
|
* Contributed by HP Systems
|
|
*
|
|
* Modified for SPARC by Stu Grossman, Cygnus Support.
|
|
*
|
|
* Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
|
|
* Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
|
|
*
|
|
* Copyright (C) 1995 Andreas Busse
|
|
*
|
|
* Copyright (C) 2003 MontaVista Software Inc.
|
|
* Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
|
|
*/
|
|
|
|
/*
|
|
* To enable debugger support, two things need to happen. One, a
|
|
* call to set_debug_traps() is necessary in order to allow any breakpoints
|
|
* or error conditions to be properly intercepted and reported to gdb.
|
|
* Two, a breakpoint needs to be generated to begin communication. This
|
|
* is most easily accomplished by a call to breakpoint(). Breakpoint()
|
|
* simulates a breakpoint by executing a BREAK instruction.
|
|
*
|
|
*
|
|
* The following gdb commands are supported:
|
|
*
|
|
* command function Return value
|
|
*
|
|
* g return the value of the CPU registers hex data or ENN
|
|
* G set the value of the CPU registers OK or ENN
|
|
*
|
|
* mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
|
|
* MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
|
|
*
|
|
* c Resume at current address SNN ( signal NN)
|
|
* cAA..AA Continue at address AA..AA SNN
|
|
*
|
|
* s Step one instruction SNN
|
|
* sAA..AA Step one instruction from AA..AA SNN
|
|
*
|
|
* k kill
|
|
*
|
|
* ? What was the last sigval ? SNN (signal NN)
|
|
*
|
|
* bBB..BB Set baud rate to BB..BB OK or BNN, then sets
|
|
* baud rate
|
|
*
|
|
* All commands and responses are sent with a packet which includes a
|
|
* checksum. A packet consists of
|
|
*
|
|
* $<packet info>#<checksum>.
|
|
*
|
|
* where
|
|
* <packet info> :: <characters representing the command or response>
|
|
* <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>>
|
|
*
|
|
* When a packet is received, it is first acknowledged with either '+' or '-'.
|
|
* '+' indicates a successful transfer. '-' indicates a failed transfer.
|
|
*
|
|
* Example:
|
|
*
|
|
* Host: Reply:
|
|
* $m0,10#2a +$00010203040506070809101112131415#42
|
|
*
|
|
*
|
|
* ==============
|
|
* MORE EXAMPLES:
|
|
* ==============
|
|
*
|
|
* For reference -- the following are the steps that one
|
|
* company took (RidgeRun Inc) to get remote gdb debugging
|
|
* going. In this scenario the host machine was a PC and the
|
|
* target platform was a Galileo EVB64120A MIPS evaluation
|
|
* board.
|
|
*
|
|
* Step 1:
|
|
* First download gdb-5.0.tar.gz from the internet.
|
|
* and then build/install the package.
|
|
*
|
|
* Example:
|
|
* $ tar zxf gdb-5.0.tar.gz
|
|
* $ cd gdb-5.0
|
|
* $ ./configure --target=mips-linux-elf
|
|
* $ make
|
|
* $ install
|
|
* $ which mips-linux-elf-gdb
|
|
* /usr/local/bin/mips-linux-elf-gdb
|
|
*
|
|
* Step 2:
|
|
* Configure linux for remote debugging and build it.
|
|
*
|
|
* Example:
|
|
* $ cd ~/linux
|
|
* $ make menuconfig <go to "Kernel Hacking" and turn on remote debugging>
|
|
* $ make
|
|
*
|
|
* Step 3:
|
|
* Download the kernel to the remote target and start
|
|
* the kernel running. It will promptly halt and wait
|
|
* for the host gdb session to connect. It does this
|
|
* since the "Kernel Hacking" option has defined
|
|
* CONFIG_KGDB which in turn enables your calls
|
|
* to:
|
|
* set_debug_traps();
|
|
* breakpoint();
|
|
*
|
|
* Step 4:
|
|
* Start the gdb session on the host.
|
|
*
|
|
* Example:
|
|
* $ mips-linux-elf-gdb vmlinux
|
|
* (gdb) set remotebaud 115200
|
|
* (gdb) target remote /dev/ttyS1
|
|
* ...at this point you are connected to
|
|
* the remote target and can use gdb
|
|
* in the normal fasion. Setting
|
|
* breakpoints, single stepping,
|
|
* printing variables, etc.
|
|
*/
|
|
#include <linux/config.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/console.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/reboot.h>
|
|
|
|
#include <asm/asm.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/system.h>
|
|
#include <asm/gdb-stub.h>
|
|
#include <asm/inst.h>
|
|
|
|
/*
|
|
* external low-level support routines
|
|
*/
|
|
|
|
extern int putDebugChar(char c); /* write a single character */
|
|
extern char getDebugChar(void); /* read and return a single char */
|
|
extern void trap_low(void);
|
|
|
|
/*
|
|
* breakpoint and test functions
|
|
*/
|
|
extern void breakpoint(void);
|
|
extern void breakinst(void);
|
|
extern void async_breakpoint(void);
|
|
extern void async_breakinst(void);
|
|
extern void adel(void);
|
|
|
|
/*
|
|
* local prototypes
|
|
*/
|
|
|
|
static void getpacket(char *buffer);
|
|
static void putpacket(char *buffer);
|
|
static int computeSignal(int tt);
|
|
static int hex(unsigned char ch);
|
|
static int hexToInt(char **ptr, int *intValue);
|
|
static int hexToLong(char **ptr, long *longValue);
|
|
static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault);
|
|
void handle_exception(struct gdb_regs *regs);
|
|
|
|
int kgdb_enabled;
|
|
|
|
/*
|
|
* spin locks for smp case
|
|
*/
|
|
static DEFINE_SPINLOCK(kgdb_lock);
|
|
static raw_spinlock_t kgdb_cpulock[NR_CPUS] = {
|
|
[0 ... NR_CPUS-1] = __RAW_SPIN_LOCK_UNLOCKED;
|
|
};
|
|
|
|
/*
|
|
* BUFMAX defines the maximum number of characters in inbound/outbound buffers
|
|
* at least NUMREGBYTES*2 are needed for register packets
|
|
*/
|
|
#define BUFMAX 2048
|
|
|
|
static char input_buffer[BUFMAX];
|
|
static char output_buffer[BUFMAX];
|
|
static int initialized; /* !0 means we've been initialized */
|
|
static int kgdb_started;
|
|
static const char hexchars[]="0123456789abcdef";
|
|
|
|
/* Used to prevent crashes in memory access. Note that they'll crash anyway if
|
|
we haven't set up fault handlers yet... */
|
|
int kgdb_read_byte(unsigned char *address, unsigned char *dest);
|
|
int kgdb_write_byte(unsigned char val, unsigned char *dest);
|
|
|
|
/*
|
|
* Convert ch from a hex digit to an int
|
|
*/
|
|
static int hex(unsigned char ch)
|
|
{
|
|
if (ch >= 'a' && ch <= 'f')
|
|
return ch-'a'+10;
|
|
if (ch >= '0' && ch <= '9')
|
|
return ch-'0';
|
|
if (ch >= 'A' && ch <= 'F')
|
|
return ch-'A'+10;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* scan for the sequence $<data>#<checksum>
|
|
*/
|
|
static void getpacket(char *buffer)
|
|
{
|
|
unsigned char checksum;
|
|
unsigned char xmitcsum;
|
|
int i;
|
|
int count;
|
|
unsigned char ch;
|
|
|
|
do {
|
|
/*
|
|
* wait around for the start character,
|
|
* ignore all other characters
|
|
*/
|
|
while ((ch = (getDebugChar() & 0x7f)) != '$') ;
|
|
|
|
checksum = 0;
|
|
xmitcsum = -1;
|
|
count = 0;
|
|
|
|
/*
|
|
* now, read until a # or end of buffer is found
|
|
*/
|
|
while (count < BUFMAX) {
|
|
ch = getDebugChar();
|
|
if (ch == '#')
|
|
break;
|
|
checksum = checksum + ch;
|
|
buffer[count] = ch;
|
|
count = count + 1;
|
|
}
|
|
|
|
if (count >= BUFMAX)
|
|
continue;
|
|
|
|
buffer[count] = 0;
|
|
|
|
if (ch == '#') {
|
|
xmitcsum = hex(getDebugChar() & 0x7f) << 4;
|
|
xmitcsum |= hex(getDebugChar() & 0x7f);
|
|
|
|
if (checksum != xmitcsum)
|
|
putDebugChar('-'); /* failed checksum */
|
|
else {
|
|
putDebugChar('+'); /* successful transfer */
|
|
|
|
/*
|
|
* if a sequence char is present,
|
|
* reply the sequence ID
|
|
*/
|
|
if (buffer[2] == ':') {
|
|
putDebugChar(buffer[0]);
|
|
putDebugChar(buffer[1]);
|
|
|
|
/*
|
|
* remove sequence chars from buffer
|
|
*/
|
|
count = strlen(buffer);
|
|
for (i=3; i <= count; i++)
|
|
buffer[i-3] = buffer[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
while (checksum != xmitcsum);
|
|
}
|
|
|
|
/*
|
|
* send the packet in buffer.
|
|
*/
|
|
static void putpacket(char *buffer)
|
|
{
|
|
unsigned char checksum;
|
|
int count;
|
|
unsigned char ch;
|
|
|
|
/*
|
|
* $<packet info>#<checksum>.
|
|
*/
|
|
|
|
do {
|
|
putDebugChar('$');
|
|
checksum = 0;
|
|
count = 0;
|
|
|
|
while ((ch = buffer[count]) != 0) {
|
|
if (!(putDebugChar(ch)))
|
|
return;
|
|
checksum += ch;
|
|
count += 1;
|
|
}
|
|
|
|
putDebugChar('#');
|
|
putDebugChar(hexchars[checksum >> 4]);
|
|
putDebugChar(hexchars[checksum & 0xf]);
|
|
|
|
}
|
|
while ((getDebugChar() & 0x7f) != '+');
|
|
}
|
|
|
|
|
|
/*
|
|
* Convert the memory pointed to by mem into hex, placing result in buf.
|
|
* Return a pointer to the last char put in buf (null), in case of mem fault,
|
|
* return 0.
|
|
* may_fault is non-zero if we are reading from arbitrary memory, but is currently
|
|
* not used.
|
|
*/
|
|
static unsigned char *mem2hex(char *mem, char *buf, int count, int may_fault)
|
|
{
|
|
unsigned char ch;
|
|
|
|
while (count-- > 0) {
|
|
if (kgdb_read_byte(mem++, &ch) != 0)
|
|
return 0;
|
|
*buf++ = hexchars[ch >> 4];
|
|
*buf++ = hexchars[ch & 0xf];
|
|
}
|
|
|
|
*buf = 0;
|
|
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* convert the hex array pointed to by buf into binary to be placed in mem
|
|
* return a pointer to the character AFTER the last byte written
|
|
* may_fault is non-zero if we are reading from arbitrary memory, but is currently
|
|
* not used.
|
|
*/
|
|
static char *hex2mem(char *buf, char *mem, int count, int binary, int may_fault)
|
|
{
|
|
int i;
|
|
unsigned char ch;
|
|
|
|
for (i=0; i<count; i++)
|
|
{
|
|
if (binary) {
|
|
ch = *buf++;
|
|
if (ch == 0x7d)
|
|
ch = 0x20 ^ *buf++;
|
|
}
|
|
else {
|
|
ch = hex(*buf++) << 4;
|
|
ch |= hex(*buf++);
|
|
}
|
|
if (kgdb_write_byte(ch, mem++) != 0)
|
|
return 0;
|
|
}
|
|
|
|
return mem;
|
|
}
|
|
|
|
/*
|
|
* This table contains the mapping between SPARC hardware trap types, and
|
|
* signals, which are primarily what GDB understands. It also indicates
|
|
* which hardware traps we need to commandeer when initializing the stub.
|
|
*/
|
|
static struct hard_trap_info {
|
|
unsigned char tt; /* Trap type code for MIPS R3xxx and R4xxx */
|
|
unsigned char signo; /* Signal that we map this trap into */
|
|
} hard_trap_info[] = {
|
|
{ 6, SIGBUS }, /* instruction bus error */
|
|
{ 7, SIGBUS }, /* data bus error */
|
|
{ 9, SIGTRAP }, /* break */
|
|
{ 10, SIGILL }, /* reserved instruction */
|
|
/* { 11, SIGILL }, */ /* CPU unusable */
|
|
{ 12, SIGFPE }, /* overflow */
|
|
{ 13, SIGTRAP }, /* trap */
|
|
{ 14, SIGSEGV }, /* virtual instruction cache coherency */
|
|
{ 15, SIGFPE }, /* floating point exception */
|
|
{ 23, SIGSEGV }, /* watch */
|
|
{ 31, SIGSEGV }, /* virtual data cache coherency */
|
|
{ 0, 0} /* Must be last */
|
|
};
|
|
|
|
/* Save the normal trap handlers for user-mode traps. */
|
|
void *saved_vectors[32];
|
|
|
|
/*
|
|
* Set up exception handlers for tracing and breakpoints
|
|
*/
|
|
void set_debug_traps(void)
|
|
{
|
|
struct hard_trap_info *ht;
|
|
unsigned long flags;
|
|
unsigned char c;
|
|
|
|
local_irq_save(flags);
|
|
for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
|
|
saved_vectors[ht->tt] = set_except_vector(ht->tt, trap_low);
|
|
|
|
putDebugChar('+'); /* 'hello world' */
|
|
/*
|
|
* In case GDB is started before us, ack any packets
|
|
* (presumably "$?#xx") sitting there.
|
|
*/
|
|
while((c = getDebugChar()) != '$');
|
|
while((c = getDebugChar()) != '#');
|
|
c = getDebugChar(); /* eat first csum byte */
|
|
c = getDebugChar(); /* eat second csum byte */
|
|
putDebugChar('+'); /* ack it */
|
|
|
|
initialized = 1;
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void restore_debug_traps(void)
|
|
{
|
|
struct hard_trap_info *ht;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
|
|
set_except_vector(ht->tt, saved_vectors[ht->tt]);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Convert the MIPS hardware trap type code to a Unix signal number.
|
|
*/
|
|
static int computeSignal(int tt)
|
|
{
|
|
struct hard_trap_info *ht;
|
|
|
|
for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
|
|
if (ht->tt == tt)
|
|
return ht->signo;
|
|
|
|
return SIGHUP; /* default for things we don't know about */
|
|
}
|
|
|
|
/*
|
|
* While we find nice hex chars, build an int.
|
|
* Return number of chars processed.
|
|
*/
|
|
static int hexToInt(char **ptr, int *intValue)
|
|
{
|
|
int numChars = 0;
|
|
int hexValue;
|
|
|
|
*intValue = 0;
|
|
|
|
while (**ptr) {
|
|
hexValue = hex(**ptr);
|
|
if (hexValue < 0)
|
|
break;
|
|
|
|
*intValue = (*intValue << 4) | hexValue;
|
|
numChars ++;
|
|
|
|
(*ptr)++;
|
|
}
|
|
|
|
return (numChars);
|
|
}
|
|
|
|
static int hexToLong(char **ptr, long *longValue)
|
|
{
|
|
int numChars = 0;
|
|
int hexValue;
|
|
|
|
*longValue = 0;
|
|
|
|
while (**ptr) {
|
|
hexValue = hex(**ptr);
|
|
if (hexValue < 0)
|
|
break;
|
|
|
|
*longValue = (*longValue << 4) | hexValue;
|
|
numChars ++;
|
|
|
|
(*ptr)++;
|
|
}
|
|
|
|
return numChars;
|
|
}
|
|
|
|
|
|
#if 0
|
|
/*
|
|
* Print registers (on target console)
|
|
* Used only to debug the stub...
|
|
*/
|
|
void show_gdbregs(struct gdb_regs * regs)
|
|
{
|
|
/*
|
|
* Saved main processor registers
|
|
*/
|
|
printk("$0 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
regs->reg0, regs->reg1, regs->reg2, regs->reg3,
|
|
regs->reg4, regs->reg5, regs->reg6, regs->reg7);
|
|
printk("$8 : %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
regs->reg8, regs->reg9, regs->reg10, regs->reg11,
|
|
regs->reg12, regs->reg13, regs->reg14, regs->reg15);
|
|
printk("$16: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
regs->reg16, regs->reg17, regs->reg18, regs->reg19,
|
|
regs->reg20, regs->reg21, regs->reg22, regs->reg23);
|
|
printk("$24: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
|
|
regs->reg24, regs->reg25, regs->reg26, regs->reg27,
|
|
regs->reg28, regs->reg29, regs->reg30, regs->reg31);
|
|
|
|
/*
|
|
* Saved cp0 registers
|
|
*/
|
|
printk("epc : %08lx\nStatus: %08lx\nCause : %08lx\n",
|
|
regs->cp0_epc, regs->cp0_status, regs->cp0_cause);
|
|
}
|
|
#endif /* dead code */
|
|
|
|
/*
|
|
* We single-step by setting breakpoints. When an exception
|
|
* is handled, we need to restore the instructions hoisted
|
|
* when the breakpoints were set.
|
|
*
|
|
* This is where we save the original instructions.
|
|
*/
|
|
static struct gdb_bp_save {
|
|
unsigned long addr;
|
|
unsigned int val;
|
|
} step_bp[2];
|
|
|
|
#define BP 0x0000000d /* break opcode */
|
|
|
|
/*
|
|
* Set breakpoint instructions for single stepping.
|
|
*/
|
|
static void single_step(struct gdb_regs *regs)
|
|
{
|
|
union mips_instruction insn;
|
|
unsigned long targ;
|
|
int is_branch, is_cond, i;
|
|
|
|
targ = regs->cp0_epc;
|
|
insn.word = *(unsigned int *)targ;
|
|
is_branch = is_cond = 0;
|
|
|
|
switch (insn.i_format.opcode) {
|
|
/*
|
|
* jr and jalr are in r_format format.
|
|
*/
|
|
case spec_op:
|
|
switch (insn.r_format.func) {
|
|
case jalr_op:
|
|
case jr_op:
|
|
targ = *(®s->reg0 + insn.r_format.rs);
|
|
is_branch = 1;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* This group contains:
|
|
* bltz_op, bgez_op, bltzl_op, bgezl_op,
|
|
* bltzal_op, bgezal_op, bltzall_op, bgezall_op.
|
|
*/
|
|
case bcond_op:
|
|
is_branch = is_cond = 1;
|
|
targ += 4 + (insn.i_format.simmediate << 2);
|
|
break;
|
|
|
|
/*
|
|
* These are unconditional and in j_format.
|
|
*/
|
|
case jal_op:
|
|
case j_op:
|
|
is_branch = 1;
|
|
targ += 4;
|
|
targ >>= 28;
|
|
targ <<= 28;
|
|
targ |= (insn.j_format.target << 2);
|
|
break;
|
|
|
|
/*
|
|
* These are conditional.
|
|
*/
|
|
case beq_op:
|
|
case beql_op:
|
|
case bne_op:
|
|
case bnel_op:
|
|
case blez_op:
|
|
case blezl_op:
|
|
case bgtz_op:
|
|
case bgtzl_op:
|
|
case cop0_op:
|
|
case cop1_op:
|
|
case cop2_op:
|
|
case cop1x_op:
|
|
is_branch = is_cond = 1;
|
|
targ += 4 + (insn.i_format.simmediate << 2);
|
|
break;
|
|
}
|
|
|
|
if (is_branch) {
|
|
i = 0;
|
|
if (is_cond && targ != (regs->cp0_epc + 8)) {
|
|
step_bp[i].addr = regs->cp0_epc + 8;
|
|
step_bp[i++].val = *(unsigned *)(regs->cp0_epc + 8);
|
|
*(unsigned *)(regs->cp0_epc + 8) = BP;
|
|
}
|
|
step_bp[i].addr = targ;
|
|
step_bp[i].val = *(unsigned *)targ;
|
|
*(unsigned *)targ = BP;
|
|
} else {
|
|
step_bp[0].addr = regs->cp0_epc + 4;
|
|
step_bp[0].val = *(unsigned *)(regs->cp0_epc + 4);
|
|
*(unsigned *)(regs->cp0_epc + 4) = BP;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If asynchronously interrupted by gdb, then we need to set a breakpoint
|
|
* at the interrupted instruction so that we wind up stopped with a
|
|
* reasonable stack frame.
|
|
*/
|
|
static struct gdb_bp_save async_bp;
|
|
|
|
/*
|
|
* Swap the interrupted EPC with our asynchronous breakpoint routine.
|
|
* This is safer than stuffing the breakpoint in-place, since no cache
|
|
* flushes (or resulting smp_call_functions) are required. The
|
|
* assumption is that only one CPU will be handling asynchronous bp's,
|
|
* and only one can be active at a time.
|
|
*/
|
|
extern spinlock_t smp_call_lock;
|
|
|
|
void set_async_breakpoint(unsigned long *epc)
|
|
{
|
|
/* skip breaking into userland */
|
|
if ((*epc & 0x80000000) == 0)
|
|
return;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* avoid deadlock if someone is make IPC */
|
|
if (spin_is_locked(&smp_call_lock))
|
|
return;
|
|
#endif
|
|
|
|
async_bp.addr = *epc;
|
|
*epc = (unsigned long)async_breakpoint;
|
|
}
|
|
|
|
static void kgdb_wait(void *arg)
|
|
{
|
|
unsigned flags;
|
|
int cpu = smp_processor_id();
|
|
|
|
local_irq_save(flags);
|
|
|
|
__raw_spin_lock(&kgdb_cpulock[cpu]);
|
|
__raw_spin_unlock(&kgdb_cpulock[cpu]);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
|
|
/*
|
|
* This function does all command processing for interfacing to gdb. It
|
|
* returns 1 if you should skip the instruction at the trap address, 0
|
|
* otherwise.
|
|
*/
|
|
void handle_exception (struct gdb_regs *regs)
|
|
{
|
|
int trap; /* Trap type */
|
|
int sigval;
|
|
long addr;
|
|
int length;
|
|
char *ptr;
|
|
unsigned long *stack;
|
|
int i;
|
|
int bflag = 0;
|
|
|
|
kgdb_started = 1;
|
|
|
|
/*
|
|
* acquire the big kgdb spinlock
|
|
*/
|
|
if (!spin_trylock(&kgdb_lock)) {
|
|
/*
|
|
* some other CPU has the lock, we should go back to
|
|
* receive the gdb_wait IPC
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If we're in async_breakpoint(), restore the real EPC from
|
|
* the breakpoint.
|
|
*/
|
|
if (regs->cp0_epc == (unsigned long)async_breakinst) {
|
|
regs->cp0_epc = async_bp.addr;
|
|
async_bp.addr = 0;
|
|
}
|
|
|
|
/*
|
|
* acquire the CPU spinlocks
|
|
*/
|
|
for (i = num_online_cpus()-1; i >= 0; i--)
|
|
if (__raw_spin_trylock(&kgdb_cpulock[i]) == 0)
|
|
panic("kgdb: couldn't get cpulock %d\n", i);
|
|
|
|
/*
|
|
* force other cpus to enter kgdb
|
|
*/
|
|
smp_call_function(kgdb_wait, NULL, 0, 0);
|
|
|
|
/*
|
|
* If we're in breakpoint() increment the PC
|
|
*/
|
|
trap = (regs->cp0_cause & 0x7c) >> 2;
|
|
if (trap == 9 && regs->cp0_epc == (unsigned long)breakinst)
|
|
regs->cp0_epc += 4;
|
|
|
|
/*
|
|
* If we were single_stepping, restore the opcodes hoisted
|
|
* for the breakpoint[s].
|
|
*/
|
|
if (step_bp[0].addr) {
|
|
*(unsigned *)step_bp[0].addr = step_bp[0].val;
|
|
step_bp[0].addr = 0;
|
|
|
|
if (step_bp[1].addr) {
|
|
*(unsigned *)step_bp[1].addr = step_bp[1].val;
|
|
step_bp[1].addr = 0;
|
|
}
|
|
}
|
|
|
|
stack = (long *)regs->reg29; /* stack ptr */
|
|
sigval = computeSignal(trap);
|
|
|
|
/*
|
|
* reply to host that an exception has occurred
|
|
*/
|
|
ptr = output_buffer;
|
|
|
|
/*
|
|
* Send trap type (converted to signal)
|
|
*/
|
|
*ptr++ = 'T';
|
|
*ptr++ = hexchars[sigval >> 4];
|
|
*ptr++ = hexchars[sigval & 0xf];
|
|
|
|
/*
|
|
* Send Error PC
|
|
*/
|
|
*ptr++ = hexchars[REG_EPC >> 4];
|
|
*ptr++ = hexchars[REG_EPC & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((char *)®s->cp0_epc, ptr, sizeof(long), 0);
|
|
*ptr++ = ';';
|
|
|
|
/*
|
|
* Send frame pointer
|
|
*/
|
|
*ptr++ = hexchars[REG_FP >> 4];
|
|
*ptr++ = hexchars[REG_FP & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((char *)®s->reg30, ptr, sizeof(long), 0);
|
|
*ptr++ = ';';
|
|
|
|
/*
|
|
* Send stack pointer
|
|
*/
|
|
*ptr++ = hexchars[REG_SP >> 4];
|
|
*ptr++ = hexchars[REG_SP & 0xf];
|
|
*ptr++ = ':';
|
|
ptr = mem2hex((char *)®s->reg29, ptr, sizeof(long), 0);
|
|
*ptr++ = ';';
|
|
|
|
*ptr++ = 0;
|
|
putpacket(output_buffer); /* send it off... */
|
|
|
|
/*
|
|
* Wait for input from remote GDB
|
|
*/
|
|
while (1) {
|
|
output_buffer[0] = 0;
|
|
getpacket(input_buffer);
|
|
|
|
switch (input_buffer[0])
|
|
{
|
|
case '?':
|
|
output_buffer[0] = 'S';
|
|
output_buffer[1] = hexchars[sigval >> 4];
|
|
output_buffer[2] = hexchars[sigval & 0xf];
|
|
output_buffer[3] = 0;
|
|
break;
|
|
|
|
/*
|
|
* Detach debugger; let CPU run
|
|
*/
|
|
case 'D':
|
|
putpacket(output_buffer);
|
|
goto finish_kgdb;
|
|
break;
|
|
|
|
case 'd':
|
|
/* toggle debug flag */
|
|
break;
|
|
|
|
/*
|
|
* Return the value of the CPU registers
|
|
*/
|
|
case 'g':
|
|
ptr = output_buffer;
|
|
ptr = mem2hex((char *)®s->reg0, ptr, 32*sizeof(long), 0); /* r0...r31 */
|
|
ptr = mem2hex((char *)®s->cp0_status, ptr, 6*sizeof(long), 0); /* cp0 */
|
|
ptr = mem2hex((char *)®s->fpr0, ptr, 32*sizeof(long), 0); /* f0...31 */
|
|
ptr = mem2hex((char *)®s->cp1_fsr, ptr, 2*sizeof(long), 0); /* cp1 */
|
|
ptr = mem2hex((char *)®s->frame_ptr, ptr, 2*sizeof(long), 0); /* frp */
|
|
ptr = mem2hex((char *)®s->cp0_index, ptr, 16*sizeof(long), 0); /* cp0 */
|
|
break;
|
|
|
|
/*
|
|
* set the value of the CPU registers - return OK
|
|
*/
|
|
case 'G':
|
|
{
|
|
ptr = &input_buffer[1];
|
|
hex2mem(ptr, (char *)®s->reg0, 32*sizeof(long), 0, 0);
|
|
ptr += 32*(2*sizeof(long));
|
|
hex2mem(ptr, (char *)®s->cp0_status, 6*sizeof(long), 0, 0);
|
|
ptr += 6*(2*sizeof(long));
|
|
hex2mem(ptr, (char *)®s->fpr0, 32*sizeof(long), 0, 0);
|
|
ptr += 32*(2*sizeof(long));
|
|
hex2mem(ptr, (char *)®s->cp1_fsr, 2*sizeof(long), 0, 0);
|
|
ptr += 2*(2*sizeof(long));
|
|
hex2mem(ptr, (char *)®s->frame_ptr, 2*sizeof(long), 0, 0);
|
|
ptr += 2*(2*sizeof(long));
|
|
hex2mem(ptr, (char *)®s->cp0_index, 16*sizeof(long), 0, 0);
|
|
strcpy(output_buffer,"OK");
|
|
}
|
|
break;
|
|
|
|
/*
|
|
* mAA..AA,LLLL Read LLLL bytes at address AA..AA
|
|
*/
|
|
case 'm':
|
|
ptr = &input_buffer[1];
|
|
|
|
if (hexToLong(&ptr, &addr)
|
|
&& *ptr++ == ','
|
|
&& hexToInt(&ptr, &length)) {
|
|
if (mem2hex((char *)addr, output_buffer, length, 1))
|
|
break;
|
|
strcpy (output_buffer, "E03");
|
|
} else
|
|
strcpy(output_buffer,"E01");
|
|
break;
|
|
|
|
/*
|
|
* XAA..AA,LLLL: Write LLLL escaped binary bytes at address AA.AA
|
|
*/
|
|
case 'X':
|
|
bflag = 1;
|
|
/* fall through */
|
|
|
|
/*
|
|
* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK
|
|
*/
|
|
case 'M':
|
|
ptr = &input_buffer[1];
|
|
|
|
if (hexToLong(&ptr, &addr)
|
|
&& *ptr++ == ','
|
|
&& hexToInt(&ptr, &length)
|
|
&& *ptr++ == ':') {
|
|
if (hex2mem(ptr, (char *)addr, length, bflag, 1))
|
|
strcpy(output_buffer, "OK");
|
|
else
|
|
strcpy(output_buffer, "E03");
|
|
}
|
|
else
|
|
strcpy(output_buffer, "E02");
|
|
break;
|
|
|
|
/*
|
|
* cAA..AA Continue at address AA..AA(optional)
|
|
*/
|
|
case 'c':
|
|
/* try to read optional parameter, pc unchanged if no parm */
|
|
|
|
ptr = &input_buffer[1];
|
|
if (hexToLong(&ptr, &addr))
|
|
regs->cp0_epc = addr;
|
|
|
|
goto exit_kgdb_exception;
|
|
break;
|
|
|
|
/*
|
|
* kill the program; let us try to restart the machine
|
|
* Reset the whole machine.
|
|
*/
|
|
case 'k':
|
|
case 'r':
|
|
machine_restart("kgdb restarts machine");
|
|
break;
|
|
|
|
/*
|
|
* Step to next instruction
|
|
*/
|
|
case 's':
|
|
/*
|
|
* There is no single step insn in the MIPS ISA, so we
|
|
* use breakpoints and continue, instead.
|
|
*/
|
|
single_step(regs);
|
|
goto exit_kgdb_exception;
|
|
/* NOTREACHED */
|
|
break;
|
|
|
|
/*
|
|
* Set baud rate (bBB)
|
|
* FIXME: Needs to be written
|
|
*/
|
|
case 'b':
|
|
{
|
|
#if 0
|
|
int baudrate;
|
|
extern void set_timer_3();
|
|
|
|
ptr = &input_buffer[1];
|
|
if (!hexToInt(&ptr, &baudrate))
|
|
{
|
|
strcpy(output_buffer,"B01");
|
|
break;
|
|
}
|
|
|
|
/* Convert baud rate to uart clock divider */
|
|
|
|
switch (baudrate)
|
|
{
|
|
case 38400:
|
|
baudrate = 16;
|
|
break;
|
|
case 19200:
|
|
baudrate = 33;
|
|
break;
|
|
case 9600:
|
|
baudrate = 65;
|
|
break;
|
|
default:
|
|
baudrate = 0;
|
|
strcpy(output_buffer,"B02");
|
|
goto x1;
|
|
}
|
|
|
|
if (baudrate) {
|
|
putpacket("OK"); /* Ack before changing speed */
|
|
set_timer_3(baudrate); /* Set it */
|
|
}
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
} /* switch */
|
|
|
|
/*
|
|
* reply to the request
|
|
*/
|
|
|
|
putpacket(output_buffer);
|
|
|
|
} /* while */
|
|
|
|
return;
|
|
|
|
finish_kgdb:
|
|
restore_debug_traps();
|
|
|
|
exit_kgdb_exception:
|
|
/* release locks so other CPUs can go */
|
|
for (i = num_online_cpus()-1; i >= 0; i--)
|
|
__raw_spin_unlock(&kgdb_cpulock[i]);
|
|
spin_unlock(&kgdb_lock);
|
|
|
|
__flush_cache_all();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This function will generate a breakpoint exception. It is used at the
|
|
* beginning of a program to sync up with a debugger and can be used
|
|
* otherwise as a quick means to stop program execution and "break" into
|
|
* the debugger.
|
|
*/
|
|
void breakpoint(void)
|
|
{
|
|
if (!initialized)
|
|
return;
|
|
|
|
__asm__ __volatile__(
|
|
".globl breakinst\n\t"
|
|
".set\tnoreorder\n\t"
|
|
"nop\n"
|
|
"breakinst:\tbreak\n\t"
|
|
"nop\n\t"
|
|
".set\treorder"
|
|
);
|
|
}
|
|
|
|
/* Nothing but the break; don't pollute any registers */
|
|
void async_breakpoint(void)
|
|
{
|
|
__asm__ __volatile__(
|
|
".globl async_breakinst\n\t"
|
|
".set\tnoreorder\n\t"
|
|
"nop\n"
|
|
"async_breakinst:\tbreak\n\t"
|
|
"nop\n\t"
|
|
".set\treorder"
|
|
);
|
|
}
|
|
|
|
void adel(void)
|
|
{
|
|
__asm__ __volatile__(
|
|
".globl\tadel\n\t"
|
|
"lui\t$8,0x8000\n\t"
|
|
"lw\t$9,1($8)\n\t"
|
|
);
|
|
}
|
|
|
|
/*
|
|
* malloc is needed by gdb client in "call func()", even a private one
|
|
* will make gdb happy
|
|
*/
|
|
static void * __attribute_used__ malloc(size_t size)
|
|
{
|
|
return kmalloc(size, GFP_ATOMIC);
|
|
}
|
|
|
|
static void __attribute_used__ free (void *where)
|
|
{
|
|
kfree(where);
|
|
}
|
|
|
|
#ifdef CONFIG_GDB_CONSOLE
|
|
|
|
void gdb_putsn(const char *str, int l)
|
|
{
|
|
char outbuf[18];
|
|
|
|
if (!kgdb_started)
|
|
return;
|
|
|
|
outbuf[0]='O';
|
|
|
|
while(l) {
|
|
int i = (l>8)?8:l;
|
|
mem2hex((char *)str, &outbuf[1], i, 0);
|
|
outbuf[(i*2)+1]=0;
|
|
putpacket(outbuf);
|
|
str += i;
|
|
l -= i;
|
|
}
|
|
}
|
|
|
|
static void gdb_console_write(struct console *con, const char *s, unsigned n)
|
|
{
|
|
gdb_putsn(s, n);
|
|
}
|
|
|
|
static struct console gdb_console = {
|
|
.name = "gdb",
|
|
.write = gdb_console_write,
|
|
.flags = CON_PRINTBUFFER,
|
|
.index = -1
|
|
};
|
|
|
|
static int __init register_gdb_console(void)
|
|
{
|
|
register_console(&gdb_console);
|
|
|
|
return 0;
|
|
}
|
|
|
|
console_initcall(register_gdb_console);
|
|
|
|
#endif
|