linux_dsm_epyc7002/arch/x86/xen/xen-asm_32.S
Juergen Gross edcb5cf84f x86/paravirt/xen: Remove xen_patch()
Xen's paravirt patch function xen_patch() does some special casing for
irq_ops functions to apply relocations when those functions can be
patched inline instead of calls.

Unfortunately none of the special case function replacements is small
enough to be patched inline, so the special case never applies.

As xen_patch() will call paravirt_patch_default() in all cases it can
be just dropped. xen-asm.h doesn't seem necessary without xen_patch()
as the only thing left in it would be the definition of XEN_EFLAGS_NMI
used only once. So move that definition and remove xen-asm.h.

Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: boris.ostrovsky@oracle.com
Cc: lguest@lists.ozlabs.org
Cc: rusty@rustcorp.com.au
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20170816173157.8633-2-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-24 09:57:24 +02:00

207 lines
5.9 KiB
ArmAsm

/*
* Asm versions of Xen pv-ops, suitable for direct use.
*
* We only bother with direct forms (ie, vcpu in pda) of the
* operations here; the indirect forms are better handled in C.
*/
#include <asm/thread_info.h>
#include <asm/processor-flags.h>
#include <asm/segment.h>
#include <asm/asm.h>
#include <xen/interface/xen.h>
#include <linux/linkage.h>
/* Pseudo-flag used for virtual NMI, which we don't implement yet */
#define XEN_EFLAGS_NMI 0x80000000
/*
* This is run where a normal iret would be run, with the same stack setup:
* 8: eflags
* 4: cs
* esp-> 0: eip
*
* This attempts to make sure that any pending events are dealt with
* on return to usermode, but there is a small window in which an
* event can happen just before entering usermode. If the nested
* interrupt ends up setting one of the TIF_WORK_MASK pending work
* flags, they will not be tested again before returning to
* usermode. This means that a process can end up with pending work,
* which will be unprocessed until the process enters and leaves the
* kernel again, which could be an unbounded amount of time. This
* means that a pending signal or reschedule event could be
* indefinitely delayed.
*
* The fix is to notice a nested interrupt in the critical window, and
* if one occurs, then fold the nested interrupt into the current
* interrupt stack frame, and re-process it iteratively rather than
* recursively. This means that it will exit via the normal path, and
* all pending work will be dealt with appropriately.
*
* Because the nested interrupt handler needs to deal with the current
* stack state in whatever form its in, we keep things simple by only
* using a single register which is pushed/popped on the stack.
*/
.macro POP_FS
1:
popw %fs
.pushsection .fixup, "ax"
2: movw $0, (%esp)
jmp 1b
.popsection
_ASM_EXTABLE(1b,2b)
.endm
ENTRY(xen_iret)
/* test eflags for special cases */
testl $(X86_EFLAGS_VM | XEN_EFLAGS_NMI), 8(%esp)
jnz hyper_iret
push %eax
ESP_OFFSET=4 # bytes pushed onto stack
/* Store vcpu_info pointer for easy access */
#ifdef CONFIG_SMP
pushw %fs
movl $(__KERNEL_PERCPU), %eax
movl %eax, %fs
movl %fs:xen_vcpu, %eax
POP_FS
#else
movl %ss:xen_vcpu, %eax
#endif
/* check IF state we're restoring */
testb $X86_EFLAGS_IF>>8, 8+1+ESP_OFFSET(%esp)
/*
* Maybe enable events. Once this happens we could get a
* recursive event, so the critical region starts immediately
* afterwards. However, if that happens we don't end up
* resuming the code, so we don't have to be worried about
* being preempted to another CPU.
*/
setz %ss:XEN_vcpu_info_mask(%eax)
xen_iret_start_crit:
/* check for unmasked and pending */
cmpw $0x0001, %ss:XEN_vcpu_info_pending(%eax)
/*
* If there's something pending, mask events again so we can
* jump back into xen_hypervisor_callback. Otherwise do not
* touch XEN_vcpu_info_mask.
*/
jne 1f
movb $1, %ss:XEN_vcpu_info_mask(%eax)
1: popl %eax
/*
* From this point on the registers are restored and the stack
* updated, so we don't need to worry about it if we're
* preempted
*/
iret_restore_end:
/*
* Jump to hypervisor_callback after fixing up the stack.
* Events are masked, so jumping out of the critical region is
* OK.
*/
je xen_hypervisor_callback
1: iret
xen_iret_end_crit:
_ASM_EXTABLE(1b, iret_exc)
hyper_iret:
/* put this out of line since its very rarely used */
jmp hypercall_page + __HYPERVISOR_iret * 32
.globl xen_iret_start_crit, xen_iret_end_crit
/*
* This is called by xen_hypervisor_callback in entry.S when it sees
* that the EIP at the time of interrupt was between
* xen_iret_start_crit and xen_iret_end_crit. We're passed the EIP in
* %eax so we can do a more refined determination of what to do.
*
* The stack format at this point is:
* ----------------
* ss : (ss/esp may be present if we came from usermode)
* esp :
* eflags } outer exception info
* cs }
* eip }
* ---------------- <- edi (copy dest)
* eax : outer eax if it hasn't been restored
* ----------------
* eflags } nested exception info
* cs } (no ss/esp because we're nested
* eip } from the same ring)
* orig_eax }<- esi (copy src)
* - - - - - - - -
* fs }
* es }
* ds } SAVE_ALL state
* eax }
* : :
* ebx }<- esp
* ----------------
*
* In order to deliver the nested exception properly, we need to shift
* everything from the return addr up to the error code so it sits
* just under the outer exception info. This means that when we
* handle the exception, we do it in the context of the outer
* exception rather than starting a new one.
*
* The only caveat is that if the outer eax hasn't been restored yet
* (ie, it's still on stack), we need to insert its value into the
* SAVE_ALL state before going on, since it's usermode state which we
* eventually need to restore.
*/
ENTRY(xen_iret_crit_fixup)
/*
* Paranoia: Make sure we're really coming from kernel space.
* One could imagine a case where userspace jumps into the
* critical range address, but just before the CPU delivers a
* GP, it decides to deliver an interrupt instead. Unlikely?
* Definitely. Easy to avoid? Yes. The Intel documents
* explicitly say that the reported EIP for a bad jump is the
* jump instruction itself, not the destination, but some
* virtual environments get this wrong.
*/
movl PT_CS(%esp), %ecx
andl $SEGMENT_RPL_MASK, %ecx
cmpl $USER_RPL, %ecx
je 2f
lea PT_ORIG_EAX(%esp), %esi
lea PT_EFLAGS(%esp), %edi
/*
* If eip is before iret_restore_end then stack
* hasn't been restored yet.
*/
cmp $iret_restore_end, %eax
jae 1f
movl 0+4(%edi), %eax /* copy EAX (just above top of frame) */
movl %eax, PT_EAX(%esp)
lea ESP_OFFSET(%edi), %edi /* move dest up over saved regs */
/* set up the copy */
1: std
mov $PT_EIP / 4, %ecx /* saved regs up to orig_eax */
rep movsl
cld
lea 4(%edi), %esp /* point esp to new frame */
2: jmp xen_do_upcall