mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 10:06:10 +07:00
e1e6255c31
Two helpers have been added to the core to do all kind of controller side configuration/initialization between the detection phase and the final NAND scan. Implement these hooks so that we can convert the driver to just use nand_scan() instead of the nand_scan_ident() + nand_scan_tail() pair. Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Reviewed-by: Boris Brezillon <boris.brezillon@bootlin.com>
2317 lines
63 KiB
C
2317 lines
63 KiB
C
/*
|
|
* Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
|
|
* Copyright © 2004 Micron Technology Inc.
|
|
* Copyright © 2004 David Brownell
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/platform_device.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/omap-dma.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
|
|
#include <linux/mtd/nand_bch.h>
|
|
#include <linux/platform_data/elm.h>
|
|
|
|
#include <linux/omap-gpmc.h>
|
|
#include <linux/platform_data/mtd-nand-omap2.h>
|
|
|
|
#define DRIVER_NAME "omap2-nand"
|
|
#define OMAP_NAND_TIMEOUT_MS 5000
|
|
|
|
#define NAND_Ecc_P1e (1 << 0)
|
|
#define NAND_Ecc_P2e (1 << 1)
|
|
#define NAND_Ecc_P4e (1 << 2)
|
|
#define NAND_Ecc_P8e (1 << 3)
|
|
#define NAND_Ecc_P16e (1 << 4)
|
|
#define NAND_Ecc_P32e (1 << 5)
|
|
#define NAND_Ecc_P64e (1 << 6)
|
|
#define NAND_Ecc_P128e (1 << 7)
|
|
#define NAND_Ecc_P256e (1 << 8)
|
|
#define NAND_Ecc_P512e (1 << 9)
|
|
#define NAND_Ecc_P1024e (1 << 10)
|
|
#define NAND_Ecc_P2048e (1 << 11)
|
|
|
|
#define NAND_Ecc_P1o (1 << 16)
|
|
#define NAND_Ecc_P2o (1 << 17)
|
|
#define NAND_Ecc_P4o (1 << 18)
|
|
#define NAND_Ecc_P8o (1 << 19)
|
|
#define NAND_Ecc_P16o (1 << 20)
|
|
#define NAND_Ecc_P32o (1 << 21)
|
|
#define NAND_Ecc_P64o (1 << 22)
|
|
#define NAND_Ecc_P128o (1 << 23)
|
|
#define NAND_Ecc_P256o (1 << 24)
|
|
#define NAND_Ecc_P512o (1 << 25)
|
|
#define NAND_Ecc_P1024o (1 << 26)
|
|
#define NAND_Ecc_P2048o (1 << 27)
|
|
|
|
#define TF(value) (value ? 1 : 0)
|
|
|
|
#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
|
|
#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
|
|
#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
|
|
#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
|
|
#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
|
|
#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
|
|
#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
|
|
#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
|
|
|
|
#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
|
|
#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
|
|
#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
|
|
#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
|
|
#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
|
|
#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
|
|
#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
|
|
#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
|
|
|
|
#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
|
|
#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
|
|
#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
|
|
#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
|
|
#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
|
|
#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
|
|
#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
|
|
#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
|
|
|
|
#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
|
|
#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
|
|
#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
|
|
#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
|
|
#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
|
|
#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
|
|
#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
|
|
#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
|
|
|
|
#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
|
|
#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
|
|
|
|
#define PREFETCH_CONFIG1_CS_SHIFT 24
|
|
#define ECC_CONFIG_CS_SHIFT 1
|
|
#define CS_MASK 0x7
|
|
#define ENABLE_PREFETCH (0x1 << 7)
|
|
#define DMA_MPU_MODE_SHIFT 2
|
|
#define ECCSIZE0_SHIFT 12
|
|
#define ECCSIZE1_SHIFT 22
|
|
#define ECC1RESULTSIZE 0x1
|
|
#define ECCCLEAR 0x100
|
|
#define ECC1 0x1
|
|
#define PREFETCH_FIFOTHRESHOLD_MAX 0x40
|
|
#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
|
|
#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
|
|
#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
|
|
#define STATUS_BUFF_EMPTY 0x00000001
|
|
|
|
#define SECTOR_BYTES 512
|
|
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
|
|
#define BCH4_BIT_PAD 4
|
|
|
|
/* GPMC ecc engine settings for read */
|
|
#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
|
|
#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
|
|
#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
|
|
#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
|
|
#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
|
|
|
|
/* GPMC ecc engine settings for write */
|
|
#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
|
|
#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
|
|
#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
|
|
|
|
#define BADBLOCK_MARKER_LENGTH 2
|
|
|
|
static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
|
|
0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
|
|
0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
|
|
0x07, 0x0e};
|
|
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
|
|
0xac, 0x6b, 0xff, 0x99, 0x7b};
|
|
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
|
|
|
|
struct omap_nand_info {
|
|
struct nand_chip nand;
|
|
struct platform_device *pdev;
|
|
|
|
int gpmc_cs;
|
|
bool dev_ready;
|
|
enum nand_io xfer_type;
|
|
int devsize;
|
|
enum omap_ecc ecc_opt;
|
|
struct device_node *elm_of_node;
|
|
|
|
unsigned long phys_base;
|
|
struct completion comp;
|
|
struct dma_chan *dma;
|
|
int gpmc_irq_fifo;
|
|
int gpmc_irq_count;
|
|
enum {
|
|
OMAP_NAND_IO_READ = 0, /* read */
|
|
OMAP_NAND_IO_WRITE, /* write */
|
|
} iomode;
|
|
u_char *buf;
|
|
int buf_len;
|
|
/* Interface to GPMC */
|
|
struct gpmc_nand_regs reg;
|
|
struct gpmc_nand_ops *ops;
|
|
bool flash_bbt;
|
|
/* fields specific for BCHx_HW ECC scheme */
|
|
struct device *elm_dev;
|
|
/* NAND ready gpio */
|
|
struct gpio_desc *ready_gpiod;
|
|
};
|
|
|
|
static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
|
|
{
|
|
return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
|
|
}
|
|
|
|
/**
|
|
* omap_prefetch_enable - configures and starts prefetch transfer
|
|
* @cs: cs (chip select) number
|
|
* @fifo_th: fifo threshold to be used for read/ write
|
|
* @dma_mode: dma mode enable (1) or disable (0)
|
|
* @u32_count: number of bytes to be transferred
|
|
* @is_write: prefetch read(0) or write post(1) mode
|
|
*/
|
|
static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
|
|
unsigned int u32_count, int is_write, struct omap_nand_info *info)
|
|
{
|
|
u32 val;
|
|
|
|
if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
|
|
return -1;
|
|
|
|
if (readl(info->reg.gpmc_prefetch_control))
|
|
return -EBUSY;
|
|
|
|
/* Set the amount of bytes to be prefetched */
|
|
writel(u32_count, info->reg.gpmc_prefetch_config2);
|
|
|
|
/* Set dma/mpu mode, the prefetch read / post write and
|
|
* enable the engine. Set which cs is has requested for.
|
|
*/
|
|
val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
|
|
PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
|
|
(dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
|
|
writel(val, info->reg.gpmc_prefetch_config1);
|
|
|
|
/* Start the prefetch engine */
|
|
writel(0x1, info->reg.gpmc_prefetch_control);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap_prefetch_reset - disables and stops the prefetch engine
|
|
*/
|
|
static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
|
|
{
|
|
u32 config1;
|
|
|
|
/* check if the same module/cs is trying to reset */
|
|
config1 = readl(info->reg.gpmc_prefetch_config1);
|
|
if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
|
|
return -EINVAL;
|
|
|
|
/* Stop the PFPW engine */
|
|
writel(0x0, info->reg.gpmc_prefetch_control);
|
|
|
|
/* Reset/disable the PFPW engine */
|
|
writel(0x0, info->reg.gpmc_prefetch_config1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap_hwcontrol - hardware specific access to control-lines
|
|
* @mtd: MTD device structure
|
|
* @cmd: command to device
|
|
* @ctrl:
|
|
* NAND_NCE: bit 0 -> don't care
|
|
* NAND_CLE: bit 1 -> Command Latch
|
|
* NAND_ALE: bit 2 -> Address Latch
|
|
*
|
|
* NOTE: boards may use different bits for these!!
|
|
*/
|
|
static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
|
|
if (cmd != NAND_CMD_NONE) {
|
|
if (ctrl & NAND_CLE)
|
|
writeb(cmd, info->reg.gpmc_nand_command);
|
|
|
|
else if (ctrl & NAND_ALE)
|
|
writeb(cmd, info->reg.gpmc_nand_address);
|
|
|
|
else /* NAND_NCE */
|
|
writeb(cmd, info->reg.gpmc_nand_data);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_read_buf8 - read data from NAND controller into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
|
|
ioread8_rep(nand->IO_ADDR_R, buf, len);
|
|
}
|
|
|
|
/**
|
|
* omap_write_buf8 - write buffer to NAND controller
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
u_char *p = (u_char *)buf;
|
|
bool status;
|
|
|
|
while (len--) {
|
|
iowrite8(*p++, info->nand.IO_ADDR_W);
|
|
/* wait until buffer is available for write */
|
|
do {
|
|
status = info->ops->nand_writebuffer_empty();
|
|
} while (!status);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_read_buf16 - read data from NAND controller into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *nand = mtd_to_nand(mtd);
|
|
|
|
ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
|
|
}
|
|
|
|
/**
|
|
* omap_write_buf16 - write buffer to NAND controller
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
u16 *p = (u16 *) buf;
|
|
bool status;
|
|
/* FIXME try bursts of writesw() or DMA ... */
|
|
len >>= 1;
|
|
|
|
while (len--) {
|
|
iowrite16(*p++, info->nand.IO_ADDR_W);
|
|
/* wait until buffer is available for write */
|
|
do {
|
|
status = info->ops->nand_writebuffer_empty();
|
|
} while (!status);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_read_buf_pref - read data from NAND controller into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
uint32_t r_count = 0;
|
|
int ret = 0;
|
|
u32 *p = (u32 *)buf;
|
|
|
|
/* take care of subpage reads */
|
|
if (len % 4) {
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
omap_read_buf16(mtd, buf, len % 4);
|
|
else
|
|
omap_read_buf8(mtd, buf, len % 4);
|
|
p = (u32 *) (buf + len % 4);
|
|
len -= len % 4;
|
|
}
|
|
|
|
/* configure and start prefetch transfer */
|
|
ret = omap_prefetch_enable(info->gpmc_cs,
|
|
PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
|
|
if (ret) {
|
|
/* PFPW engine is busy, use cpu copy method */
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
omap_read_buf16(mtd, (u_char *)p, len);
|
|
else
|
|
omap_read_buf8(mtd, (u_char *)p, len);
|
|
} else {
|
|
do {
|
|
r_count = readl(info->reg.gpmc_prefetch_status);
|
|
r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
|
|
r_count = r_count >> 2;
|
|
ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
|
|
p += r_count;
|
|
len -= r_count << 2;
|
|
} while (len);
|
|
/* disable and stop the PFPW engine */
|
|
omap_prefetch_reset(info->gpmc_cs, info);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_write_buf_pref - write buffer to NAND controller
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void omap_write_buf_pref(struct mtd_info *mtd,
|
|
const u_char *buf, int len)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
uint32_t w_count = 0;
|
|
int i = 0, ret = 0;
|
|
u16 *p = (u16 *)buf;
|
|
unsigned long tim, limit;
|
|
u32 val;
|
|
|
|
/* take care of subpage writes */
|
|
if (len % 2 != 0) {
|
|
writeb(*buf, info->nand.IO_ADDR_W);
|
|
p = (u16 *)(buf + 1);
|
|
len--;
|
|
}
|
|
|
|
/* configure and start prefetch transfer */
|
|
ret = omap_prefetch_enable(info->gpmc_cs,
|
|
PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
|
|
if (ret) {
|
|
/* PFPW engine is busy, use cpu copy method */
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
omap_write_buf16(mtd, (u_char *)p, len);
|
|
else
|
|
omap_write_buf8(mtd, (u_char *)p, len);
|
|
} else {
|
|
while (len) {
|
|
w_count = readl(info->reg.gpmc_prefetch_status);
|
|
w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
|
|
w_count = w_count >> 1;
|
|
for (i = 0; (i < w_count) && len; i++, len -= 2)
|
|
iowrite16(*p++, info->nand.IO_ADDR_W);
|
|
}
|
|
/* wait for data to flushed-out before reset the prefetch */
|
|
tim = 0;
|
|
limit = (loops_per_jiffy *
|
|
msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
|
|
do {
|
|
cpu_relax();
|
|
val = readl(info->reg.gpmc_prefetch_status);
|
|
val = PREFETCH_STATUS_COUNT(val);
|
|
} while (val && (tim++ < limit));
|
|
|
|
/* disable and stop the PFPW engine */
|
|
omap_prefetch_reset(info->gpmc_cs, info);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* omap_nand_dma_callback: callback on the completion of dma transfer
|
|
* @data: pointer to completion data structure
|
|
*/
|
|
static void omap_nand_dma_callback(void *data)
|
|
{
|
|
complete((struct completion *) data);
|
|
}
|
|
|
|
/*
|
|
* omap_nand_dma_transfer: configure and start dma transfer
|
|
* @mtd: MTD device structure
|
|
* @addr: virtual address in RAM of source/destination
|
|
* @len: number of data bytes to be transferred
|
|
* @is_write: flag for read/write operation
|
|
*/
|
|
static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
|
|
unsigned int len, int is_write)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
struct dma_async_tx_descriptor *tx;
|
|
enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
|
|
DMA_FROM_DEVICE;
|
|
struct scatterlist sg;
|
|
unsigned long tim, limit;
|
|
unsigned n;
|
|
int ret;
|
|
u32 val;
|
|
|
|
if (!virt_addr_valid(addr))
|
|
goto out_copy;
|
|
|
|
sg_init_one(&sg, addr, len);
|
|
n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
|
|
if (n == 0) {
|
|
dev_err(&info->pdev->dev,
|
|
"Couldn't DMA map a %d byte buffer\n", len);
|
|
goto out_copy;
|
|
}
|
|
|
|
tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
|
|
is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!tx)
|
|
goto out_copy_unmap;
|
|
|
|
tx->callback = omap_nand_dma_callback;
|
|
tx->callback_param = &info->comp;
|
|
dmaengine_submit(tx);
|
|
|
|
init_completion(&info->comp);
|
|
|
|
/* setup and start DMA using dma_addr */
|
|
dma_async_issue_pending(info->dma);
|
|
|
|
/* configure and start prefetch transfer */
|
|
ret = omap_prefetch_enable(info->gpmc_cs,
|
|
PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
|
|
if (ret)
|
|
/* PFPW engine is busy, use cpu copy method */
|
|
goto out_copy_unmap;
|
|
|
|
wait_for_completion(&info->comp);
|
|
tim = 0;
|
|
limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
|
|
|
|
do {
|
|
cpu_relax();
|
|
val = readl(info->reg.gpmc_prefetch_status);
|
|
val = PREFETCH_STATUS_COUNT(val);
|
|
} while (val && (tim++ < limit));
|
|
|
|
/* disable and stop the PFPW engine */
|
|
omap_prefetch_reset(info->gpmc_cs, info);
|
|
|
|
dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
|
|
return 0;
|
|
|
|
out_copy_unmap:
|
|
dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
|
|
out_copy:
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
|
|
: omap_write_buf16(mtd, (u_char *) addr, len);
|
|
else
|
|
is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
|
|
: omap_write_buf8(mtd, (u_char *) addr, len);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap_read_buf_dma_pref - read data from NAND controller into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
if (len <= mtd->oobsize)
|
|
omap_read_buf_pref(mtd, buf, len);
|
|
else
|
|
/* start transfer in DMA mode */
|
|
omap_nand_dma_transfer(mtd, buf, len, 0x0);
|
|
}
|
|
|
|
/**
|
|
* omap_write_buf_dma_pref - write buffer to NAND controller
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void omap_write_buf_dma_pref(struct mtd_info *mtd,
|
|
const u_char *buf, int len)
|
|
{
|
|
if (len <= mtd->oobsize)
|
|
omap_write_buf_pref(mtd, buf, len);
|
|
else
|
|
/* start transfer in DMA mode */
|
|
omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
|
|
}
|
|
|
|
/*
|
|
* omap_nand_irq - GPMC irq handler
|
|
* @this_irq: gpmc irq number
|
|
* @dev: omap_nand_info structure pointer is passed here
|
|
*/
|
|
static irqreturn_t omap_nand_irq(int this_irq, void *dev)
|
|
{
|
|
struct omap_nand_info *info = (struct omap_nand_info *) dev;
|
|
u32 bytes;
|
|
|
|
bytes = readl(info->reg.gpmc_prefetch_status);
|
|
bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
|
|
bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
|
|
if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
|
|
if (this_irq == info->gpmc_irq_count)
|
|
goto done;
|
|
|
|
if (info->buf_len && (info->buf_len < bytes))
|
|
bytes = info->buf_len;
|
|
else if (!info->buf_len)
|
|
bytes = 0;
|
|
iowrite32_rep(info->nand.IO_ADDR_W,
|
|
(u32 *)info->buf, bytes >> 2);
|
|
info->buf = info->buf + bytes;
|
|
info->buf_len -= bytes;
|
|
|
|
} else {
|
|
ioread32_rep(info->nand.IO_ADDR_R,
|
|
(u32 *)info->buf, bytes >> 2);
|
|
info->buf = info->buf + bytes;
|
|
|
|
if (this_irq == info->gpmc_irq_count)
|
|
goto done;
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
done:
|
|
complete(&info->comp);
|
|
|
|
disable_irq_nosync(info->gpmc_irq_fifo);
|
|
disable_irq_nosync(info->gpmc_irq_count);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* omap_read_buf_irq_pref - read data from NAND controller into buffer
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*/
|
|
static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
int ret = 0;
|
|
|
|
if (len <= mtd->oobsize) {
|
|
omap_read_buf_pref(mtd, buf, len);
|
|
return;
|
|
}
|
|
|
|
info->iomode = OMAP_NAND_IO_READ;
|
|
info->buf = buf;
|
|
init_completion(&info->comp);
|
|
|
|
/* configure and start prefetch transfer */
|
|
ret = omap_prefetch_enable(info->gpmc_cs,
|
|
PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
|
|
if (ret)
|
|
/* PFPW engine is busy, use cpu copy method */
|
|
goto out_copy;
|
|
|
|
info->buf_len = len;
|
|
|
|
enable_irq(info->gpmc_irq_count);
|
|
enable_irq(info->gpmc_irq_fifo);
|
|
|
|
/* waiting for read to complete */
|
|
wait_for_completion(&info->comp);
|
|
|
|
/* disable and stop the PFPW engine */
|
|
omap_prefetch_reset(info->gpmc_cs, info);
|
|
return;
|
|
|
|
out_copy:
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
omap_read_buf16(mtd, buf, len);
|
|
else
|
|
omap_read_buf8(mtd, buf, len);
|
|
}
|
|
|
|
/*
|
|
* omap_write_buf_irq_pref - write buffer to NAND controller
|
|
* @mtd: MTD device structure
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*/
|
|
static void omap_write_buf_irq_pref(struct mtd_info *mtd,
|
|
const u_char *buf, int len)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
int ret = 0;
|
|
unsigned long tim, limit;
|
|
u32 val;
|
|
|
|
if (len <= mtd->oobsize) {
|
|
omap_write_buf_pref(mtd, buf, len);
|
|
return;
|
|
}
|
|
|
|
info->iomode = OMAP_NAND_IO_WRITE;
|
|
info->buf = (u_char *) buf;
|
|
init_completion(&info->comp);
|
|
|
|
/* configure and start prefetch transfer : size=24 */
|
|
ret = omap_prefetch_enable(info->gpmc_cs,
|
|
(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
|
|
if (ret)
|
|
/* PFPW engine is busy, use cpu copy method */
|
|
goto out_copy;
|
|
|
|
info->buf_len = len;
|
|
|
|
enable_irq(info->gpmc_irq_count);
|
|
enable_irq(info->gpmc_irq_fifo);
|
|
|
|
/* waiting for write to complete */
|
|
wait_for_completion(&info->comp);
|
|
|
|
/* wait for data to flushed-out before reset the prefetch */
|
|
tim = 0;
|
|
limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
|
|
do {
|
|
val = readl(info->reg.gpmc_prefetch_status);
|
|
val = PREFETCH_STATUS_COUNT(val);
|
|
cpu_relax();
|
|
} while (val && (tim++ < limit));
|
|
|
|
/* disable and stop the PFPW engine */
|
|
omap_prefetch_reset(info->gpmc_cs, info);
|
|
return;
|
|
|
|
out_copy:
|
|
if (info->nand.options & NAND_BUSWIDTH_16)
|
|
omap_write_buf16(mtd, buf, len);
|
|
else
|
|
omap_write_buf8(mtd, buf, len);
|
|
}
|
|
|
|
/**
|
|
* gen_true_ecc - This function will generate true ECC value
|
|
* @ecc_buf: buffer to store ecc code
|
|
*
|
|
* This generated true ECC value can be used when correcting
|
|
* data read from NAND flash memory core
|
|
*/
|
|
static void gen_true_ecc(u8 *ecc_buf)
|
|
{
|
|
u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
|
|
((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
|
|
|
|
ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
|
|
P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
|
|
ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
|
|
P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
|
|
ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
|
|
P1e(tmp) | P2048o(tmp) | P2048e(tmp));
|
|
}
|
|
|
|
/**
|
|
* omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
|
|
* @ecc_data1: ecc code from nand spare area
|
|
* @ecc_data2: ecc code from hardware register obtained from hardware ecc
|
|
* @page_data: page data
|
|
*
|
|
* This function compares two ECC's and indicates if there is an error.
|
|
* If the error can be corrected it will be corrected to the buffer.
|
|
* If there is no error, %0 is returned. If there is an error but it
|
|
* was corrected, %1 is returned. Otherwise, %-1 is returned.
|
|
*/
|
|
static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
|
|
u8 *ecc_data2, /* read from register */
|
|
u8 *page_data)
|
|
{
|
|
uint i;
|
|
u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
|
|
u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
|
|
u8 ecc_bit[24];
|
|
u8 ecc_sum = 0;
|
|
u8 find_bit = 0;
|
|
uint find_byte = 0;
|
|
int isEccFF;
|
|
|
|
isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
|
|
|
|
gen_true_ecc(ecc_data1);
|
|
gen_true_ecc(ecc_data2);
|
|
|
|
for (i = 0; i <= 2; i++) {
|
|
*(ecc_data1 + i) = ~(*(ecc_data1 + i));
|
|
*(ecc_data2 + i) = ~(*(ecc_data2 + i));
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
tmp0_bit[i] = *ecc_data1 % 2;
|
|
*ecc_data1 = *ecc_data1 / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
tmp1_bit[i] = *(ecc_data1 + 1) % 2;
|
|
*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
tmp2_bit[i] = *(ecc_data1 + 2) % 2;
|
|
*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
comp0_bit[i] = *ecc_data2 % 2;
|
|
*ecc_data2 = *ecc_data2 / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
comp1_bit[i] = *(ecc_data2 + 1) % 2;
|
|
*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
|
|
}
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
comp2_bit[i] = *(ecc_data2 + 2) % 2;
|
|
*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
|
|
}
|
|
|
|
for (i = 0; i < 6; i++)
|
|
ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
|
|
|
|
for (i = 0; i < 8; i++)
|
|
ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
|
|
|
|
for (i = 0; i < 8; i++)
|
|
ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
|
|
|
|
ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
|
|
ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
|
|
|
|
for (i = 0; i < 24; i++)
|
|
ecc_sum += ecc_bit[i];
|
|
|
|
switch (ecc_sum) {
|
|
case 0:
|
|
/* Not reached because this function is not called if
|
|
* ECC values are equal
|
|
*/
|
|
return 0;
|
|
|
|
case 1:
|
|
/* Uncorrectable error */
|
|
pr_debug("ECC UNCORRECTED_ERROR 1\n");
|
|
return -EBADMSG;
|
|
|
|
case 11:
|
|
/* UN-Correctable error */
|
|
pr_debug("ECC UNCORRECTED_ERROR B\n");
|
|
return -EBADMSG;
|
|
|
|
case 12:
|
|
/* Correctable error */
|
|
find_byte = (ecc_bit[23] << 8) +
|
|
(ecc_bit[21] << 7) +
|
|
(ecc_bit[19] << 6) +
|
|
(ecc_bit[17] << 5) +
|
|
(ecc_bit[15] << 4) +
|
|
(ecc_bit[13] << 3) +
|
|
(ecc_bit[11] << 2) +
|
|
(ecc_bit[9] << 1) +
|
|
ecc_bit[7];
|
|
|
|
find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
|
|
|
|
pr_debug("Correcting single bit ECC error at offset: "
|
|
"%d, bit: %d\n", find_byte, find_bit);
|
|
|
|
page_data[find_byte] ^= (1 << find_bit);
|
|
|
|
return 1;
|
|
default:
|
|
if (isEccFF) {
|
|
if (ecc_data2[0] == 0 &&
|
|
ecc_data2[1] == 0 &&
|
|
ecc_data2[2] == 0)
|
|
return 0;
|
|
}
|
|
pr_debug("UNCORRECTED_ERROR default\n");
|
|
return -EBADMSG;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* omap_correct_data - Compares the ECC read with HW generated ECC
|
|
* @mtd: MTD device structure
|
|
* @dat: page data
|
|
* @read_ecc: ecc read from nand flash
|
|
* @calc_ecc: ecc read from HW ECC registers
|
|
*
|
|
* Compares the ecc read from nand spare area with ECC registers values
|
|
* and if ECC's mismatched, it will call 'omap_compare_ecc' for error
|
|
* detection and correction. If there are no errors, %0 is returned. If
|
|
* there were errors and all of the errors were corrected, the number of
|
|
* corrected errors is returned. If uncorrectable errors exist, %-1 is
|
|
* returned.
|
|
*/
|
|
static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
int blockCnt = 0, i = 0, ret = 0;
|
|
int stat = 0;
|
|
|
|
/* Ex NAND_ECC_HW12_2048 */
|
|
if ((info->nand.ecc.mode == NAND_ECC_HW) &&
|
|
(info->nand.ecc.size == 2048))
|
|
blockCnt = 4;
|
|
else
|
|
blockCnt = 1;
|
|
|
|
for (i = 0; i < blockCnt; i++) {
|
|
if (memcmp(read_ecc, calc_ecc, 3) != 0) {
|
|
ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
|
|
if (ret < 0)
|
|
return ret;
|
|
/* keep track of the number of corrected errors */
|
|
stat += ret;
|
|
}
|
|
read_ecc += 3;
|
|
calc_ecc += 3;
|
|
dat += 512;
|
|
}
|
|
return stat;
|
|
}
|
|
|
|
/**
|
|
* omap_calcuate_ecc - Generate non-inverted ECC bytes.
|
|
* @mtd: MTD device structure
|
|
* @dat: The pointer to data on which ecc is computed
|
|
* @ecc_code: The ecc_code buffer
|
|
*
|
|
* Using noninverted ECC can be considered ugly since writing a blank
|
|
* page ie. padding will clear the ECC bytes. This is no problem as long
|
|
* nobody is trying to write data on the seemingly unused page. Reading
|
|
* an erased page will produce an ECC mismatch between generated and read
|
|
* ECC bytes that has to be dealt with separately.
|
|
*/
|
|
static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
|
|
u_char *ecc_code)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
u32 val;
|
|
|
|
val = readl(info->reg.gpmc_ecc_config);
|
|
if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
|
|
return -EINVAL;
|
|
|
|
/* read ecc result */
|
|
val = readl(info->reg.gpmc_ecc1_result);
|
|
*ecc_code++ = val; /* P128e, ..., P1e */
|
|
*ecc_code++ = val >> 16; /* P128o, ..., P1o */
|
|
/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
|
|
*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap_enable_hwecc - This function enables the hardware ecc functionality
|
|
* @mtd: MTD device structure
|
|
* @mode: Read/Write mode
|
|
*/
|
|
static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
|
|
u32 val;
|
|
|
|
/* clear ecc and enable bits */
|
|
val = ECCCLEAR | ECC1;
|
|
writel(val, info->reg.gpmc_ecc_control);
|
|
|
|
/* program ecc and result sizes */
|
|
val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
|
|
ECC1RESULTSIZE);
|
|
writel(val, info->reg.gpmc_ecc_size_config);
|
|
|
|
switch (mode) {
|
|
case NAND_ECC_READ:
|
|
case NAND_ECC_WRITE:
|
|
writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
|
|
break;
|
|
case NAND_ECC_READSYN:
|
|
writel(ECCCLEAR, info->reg.gpmc_ecc_control);
|
|
break;
|
|
default:
|
|
dev_info(&info->pdev->dev,
|
|
"error: unrecognized Mode[%d]!\n", mode);
|
|
break;
|
|
}
|
|
|
|
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
|
|
val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
|
|
writel(val, info->reg.gpmc_ecc_config);
|
|
}
|
|
|
|
/**
|
|
* omap_wait - wait until the command is done
|
|
* @mtd: MTD device structure
|
|
* @chip: NAND Chip structure
|
|
*
|
|
* Wait function is called during Program and erase operations and
|
|
* the way it is called from MTD layer, we should wait till the NAND
|
|
* chip is ready after the programming/erase operation has completed.
|
|
*
|
|
* Erase can take up to 400ms and program up to 20ms according to
|
|
* general NAND and SmartMedia specs
|
|
*/
|
|
static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
|
|
{
|
|
struct nand_chip *this = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
unsigned long timeo = jiffies;
|
|
int status, state = this->state;
|
|
|
|
if (state == FL_ERASING)
|
|
timeo += msecs_to_jiffies(400);
|
|
else
|
|
timeo += msecs_to_jiffies(20);
|
|
|
|
writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
|
|
while (time_before(jiffies, timeo)) {
|
|
status = readb(info->reg.gpmc_nand_data);
|
|
if (status & NAND_STATUS_READY)
|
|
break;
|
|
cond_resched();
|
|
}
|
|
|
|
status = readb(info->reg.gpmc_nand_data);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* omap_dev_ready - checks the NAND Ready GPIO line
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Returns true if ready and false if busy.
|
|
*/
|
|
static int omap_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
|
|
return gpiod_get_value(info->ready_gpiod);
|
|
}
|
|
|
|
/**
|
|
* omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
|
|
* @mtd: MTD device structure
|
|
* @mode: Read/Write mode
|
|
*
|
|
* When using BCH with SW correction (i.e. no ELM), sector size is set
|
|
* to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
|
|
* for both reading and writing with:
|
|
* eccsize0 = 0 (no additional protected byte in spare area)
|
|
* eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
|
|
*/
|
|
static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
|
|
{
|
|
unsigned int bch_type;
|
|
unsigned int dev_width, nsectors;
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
enum omap_ecc ecc_opt = info->ecc_opt;
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
u32 val, wr_mode;
|
|
unsigned int ecc_size1, ecc_size0;
|
|
|
|
/* GPMC configurations for calculating ECC */
|
|
switch (ecc_opt) {
|
|
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
|
|
bch_type = 0;
|
|
nsectors = 1;
|
|
wr_mode = BCH_WRAPMODE_6;
|
|
ecc_size0 = BCH_ECC_SIZE0;
|
|
ecc_size1 = BCH_ECC_SIZE1;
|
|
break;
|
|
case OMAP_ECC_BCH4_CODE_HW:
|
|
bch_type = 0;
|
|
nsectors = chip->ecc.steps;
|
|
if (mode == NAND_ECC_READ) {
|
|
wr_mode = BCH_WRAPMODE_1;
|
|
ecc_size0 = BCH4R_ECC_SIZE0;
|
|
ecc_size1 = BCH4R_ECC_SIZE1;
|
|
} else {
|
|
wr_mode = BCH_WRAPMODE_6;
|
|
ecc_size0 = BCH_ECC_SIZE0;
|
|
ecc_size1 = BCH_ECC_SIZE1;
|
|
}
|
|
break;
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
bch_type = 1;
|
|
nsectors = 1;
|
|
wr_mode = BCH_WRAPMODE_6;
|
|
ecc_size0 = BCH_ECC_SIZE0;
|
|
ecc_size1 = BCH_ECC_SIZE1;
|
|
break;
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
bch_type = 1;
|
|
nsectors = chip->ecc.steps;
|
|
if (mode == NAND_ECC_READ) {
|
|
wr_mode = BCH_WRAPMODE_1;
|
|
ecc_size0 = BCH8R_ECC_SIZE0;
|
|
ecc_size1 = BCH8R_ECC_SIZE1;
|
|
} else {
|
|
wr_mode = BCH_WRAPMODE_6;
|
|
ecc_size0 = BCH_ECC_SIZE0;
|
|
ecc_size1 = BCH_ECC_SIZE1;
|
|
}
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
bch_type = 0x2;
|
|
nsectors = chip->ecc.steps;
|
|
if (mode == NAND_ECC_READ) {
|
|
wr_mode = 0x01;
|
|
ecc_size0 = 52; /* ECC bits in nibbles per sector */
|
|
ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
|
|
} else {
|
|
wr_mode = 0x01;
|
|
ecc_size0 = 0; /* extra bits in nibbles per sector */
|
|
ecc_size1 = 52; /* OOB bits in nibbles per sector */
|
|
}
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
writel(ECC1, info->reg.gpmc_ecc_control);
|
|
|
|
/* Configure ecc size for BCH */
|
|
val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
|
|
writel(val, info->reg.gpmc_ecc_size_config);
|
|
|
|
dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
|
|
|
|
/* BCH configuration */
|
|
val = ((1 << 16) | /* enable BCH */
|
|
(bch_type << 12) | /* BCH4/BCH8/BCH16 */
|
|
(wr_mode << 8) | /* wrap mode */
|
|
(dev_width << 7) | /* bus width */
|
|
(((nsectors-1) & 0x7) << 4) | /* number of sectors */
|
|
(info->gpmc_cs << 1) | /* ECC CS */
|
|
(0x1)); /* enable ECC */
|
|
|
|
writel(val, info->reg.gpmc_ecc_config);
|
|
|
|
/* Clear ecc and enable bits */
|
|
writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
|
|
}
|
|
|
|
static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
|
|
static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
|
|
0x97, 0x79, 0xe5, 0x24, 0xb5};
|
|
|
|
/**
|
|
* _omap_calculate_ecc_bch - Generate ECC bytes for one sector
|
|
* @mtd: MTD device structure
|
|
* @dat: The pointer to data on which ecc is computed
|
|
* @ecc_code: The ecc_code buffer
|
|
* @i: The sector number (for a multi sector page)
|
|
*
|
|
* Support calculating of BCH4/8/16 ECC vectors for one sector
|
|
* within a page. Sector number is in @i.
|
|
*/
|
|
static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
|
|
const u_char *dat, u_char *ecc_calc, int i)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
int eccbytes = info->nand.ecc.bytes;
|
|
struct gpmc_nand_regs *gpmc_regs = &info->reg;
|
|
u8 *ecc_code;
|
|
unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
|
|
u32 val;
|
|
int j;
|
|
|
|
ecc_code = ecc_calc;
|
|
switch (info->ecc_opt) {
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
|
|
bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
|
|
bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
|
|
bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
|
|
*ecc_code++ = (bch_val4 & 0xFF);
|
|
*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
|
|
*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
|
|
*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
|
|
*ecc_code++ = (bch_val3 & 0xFF);
|
|
*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
|
|
*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
|
|
*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
|
|
*ecc_code++ = (bch_val2 & 0xFF);
|
|
*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
|
|
*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
|
|
*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
|
|
*ecc_code++ = (bch_val1 & 0xFF);
|
|
break;
|
|
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
|
|
case OMAP_ECC_BCH4_CODE_HW:
|
|
bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
|
|
bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
|
|
*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
|
|
*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
|
|
*ecc_code++ = ((bch_val2 & 0xF) << 4) |
|
|
((bch_val1 >> 28) & 0xF);
|
|
*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
|
|
*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
|
|
*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
|
|
*ecc_code++ = ((bch_val1 & 0xF) << 4);
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
val = readl(gpmc_regs->gpmc_bch_result6[i]);
|
|
ecc_code[0] = ((val >> 8) & 0xFF);
|
|
ecc_code[1] = ((val >> 0) & 0xFF);
|
|
val = readl(gpmc_regs->gpmc_bch_result5[i]);
|
|
ecc_code[2] = ((val >> 24) & 0xFF);
|
|
ecc_code[3] = ((val >> 16) & 0xFF);
|
|
ecc_code[4] = ((val >> 8) & 0xFF);
|
|
ecc_code[5] = ((val >> 0) & 0xFF);
|
|
val = readl(gpmc_regs->gpmc_bch_result4[i]);
|
|
ecc_code[6] = ((val >> 24) & 0xFF);
|
|
ecc_code[7] = ((val >> 16) & 0xFF);
|
|
ecc_code[8] = ((val >> 8) & 0xFF);
|
|
ecc_code[9] = ((val >> 0) & 0xFF);
|
|
val = readl(gpmc_regs->gpmc_bch_result3[i]);
|
|
ecc_code[10] = ((val >> 24) & 0xFF);
|
|
ecc_code[11] = ((val >> 16) & 0xFF);
|
|
ecc_code[12] = ((val >> 8) & 0xFF);
|
|
ecc_code[13] = ((val >> 0) & 0xFF);
|
|
val = readl(gpmc_regs->gpmc_bch_result2[i]);
|
|
ecc_code[14] = ((val >> 24) & 0xFF);
|
|
ecc_code[15] = ((val >> 16) & 0xFF);
|
|
ecc_code[16] = ((val >> 8) & 0xFF);
|
|
ecc_code[17] = ((val >> 0) & 0xFF);
|
|
val = readl(gpmc_regs->gpmc_bch_result1[i]);
|
|
ecc_code[18] = ((val >> 24) & 0xFF);
|
|
ecc_code[19] = ((val >> 16) & 0xFF);
|
|
ecc_code[20] = ((val >> 8) & 0xFF);
|
|
ecc_code[21] = ((val >> 0) & 0xFF);
|
|
val = readl(gpmc_regs->gpmc_bch_result0[i]);
|
|
ecc_code[22] = ((val >> 24) & 0xFF);
|
|
ecc_code[23] = ((val >> 16) & 0xFF);
|
|
ecc_code[24] = ((val >> 8) & 0xFF);
|
|
ecc_code[25] = ((val >> 0) & 0xFF);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* ECC scheme specific syndrome customizations */
|
|
switch (info->ecc_opt) {
|
|
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
|
|
/* Add constant polynomial to remainder, so that
|
|
* ECC of blank pages results in 0x0 on reading back
|
|
*/
|
|
for (j = 0; j < eccbytes; j++)
|
|
ecc_calc[j] ^= bch4_polynomial[j];
|
|
break;
|
|
case OMAP_ECC_BCH4_CODE_HW:
|
|
/* Set 8th ECC byte as 0x0 for ROM compatibility */
|
|
ecc_calc[eccbytes - 1] = 0x0;
|
|
break;
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
/* Add constant polynomial to remainder, so that
|
|
* ECC of blank pages results in 0x0 on reading back
|
|
*/
|
|
for (j = 0; j < eccbytes; j++)
|
|
ecc_calc[j] ^= bch8_polynomial[j];
|
|
break;
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
/* Set 14th ECC byte as 0x0 for ROM compatibility */
|
|
ecc_calc[eccbytes - 1] = 0x0;
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
|
|
* @mtd: MTD device structure
|
|
* @dat: The pointer to data on which ecc is computed
|
|
* @ecc_code: The ecc_code buffer
|
|
*
|
|
* Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
|
|
* when SW based correction is required as ECC is required for one sector
|
|
* at a time.
|
|
*/
|
|
static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd,
|
|
const u_char *dat, u_char *ecc_calc)
|
|
{
|
|
return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
|
|
}
|
|
|
|
/**
|
|
* omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
|
|
* @mtd: MTD device structure
|
|
* @dat: The pointer to data on which ecc is computed
|
|
* @ecc_code: The ecc_code buffer
|
|
*
|
|
* Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
|
|
*/
|
|
static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
|
|
const u_char *dat, u_char *ecc_calc)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
int eccbytes = info->nand.ecc.bytes;
|
|
unsigned long nsectors;
|
|
int i, ret;
|
|
|
|
nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
|
|
for (i = 0; i < nsectors; i++) {
|
|
ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ecc_calc += eccbytes;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* erased_sector_bitflips - count bit flips
|
|
* @data: data sector buffer
|
|
* @oob: oob buffer
|
|
* @info: omap_nand_info
|
|
*
|
|
* Check the bit flips in erased page falls below correctable level.
|
|
* If falls below, report the page as erased with correctable bit
|
|
* flip, else report as uncorrectable page.
|
|
*/
|
|
static int erased_sector_bitflips(u_char *data, u_char *oob,
|
|
struct omap_nand_info *info)
|
|
{
|
|
int flip_bits = 0, i;
|
|
|
|
for (i = 0; i < info->nand.ecc.size; i++) {
|
|
flip_bits += hweight8(~data[i]);
|
|
if (flip_bits > info->nand.ecc.strength)
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
|
|
flip_bits += hweight8(~oob[i]);
|
|
if (flip_bits > info->nand.ecc.strength)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Bit flips falls in correctable level.
|
|
* Fill data area with 0xFF
|
|
*/
|
|
if (flip_bits) {
|
|
memset(data, 0xFF, info->nand.ecc.size);
|
|
memset(oob, 0xFF, info->nand.ecc.bytes);
|
|
}
|
|
|
|
return flip_bits;
|
|
}
|
|
|
|
/**
|
|
* omap_elm_correct_data - corrects page data area in case error reported
|
|
* @mtd: MTD device structure
|
|
* @data: page data
|
|
* @read_ecc: ecc read from nand flash
|
|
* @calc_ecc: ecc read from HW ECC registers
|
|
*
|
|
* Calculated ecc vector reported as zero in case of non-error pages.
|
|
* In case of non-zero ecc vector, first filter out erased-pages, and
|
|
* then process data via ELM to detect bit-flips.
|
|
*/
|
|
static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
|
|
u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
struct nand_ecc_ctrl *ecc = &info->nand.ecc;
|
|
int eccsteps = info->nand.ecc.steps;
|
|
int i , j, stat = 0;
|
|
int eccflag, actual_eccbytes;
|
|
struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
|
|
u_char *ecc_vec = calc_ecc;
|
|
u_char *spare_ecc = read_ecc;
|
|
u_char *erased_ecc_vec;
|
|
u_char *buf;
|
|
int bitflip_count;
|
|
bool is_error_reported = false;
|
|
u32 bit_pos, byte_pos, error_max, pos;
|
|
int err;
|
|
|
|
switch (info->ecc_opt) {
|
|
case OMAP_ECC_BCH4_CODE_HW:
|
|
/* omit 7th ECC byte reserved for ROM code compatibility */
|
|
actual_eccbytes = ecc->bytes - 1;
|
|
erased_ecc_vec = bch4_vector;
|
|
break;
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
/* omit 14th ECC byte reserved for ROM code compatibility */
|
|
actual_eccbytes = ecc->bytes - 1;
|
|
erased_ecc_vec = bch8_vector;
|
|
break;
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
actual_eccbytes = ecc->bytes;
|
|
erased_ecc_vec = bch16_vector;
|
|
break;
|
|
default:
|
|
dev_err(&info->pdev->dev, "invalid driver configuration\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Initialize elm error vector to zero */
|
|
memset(err_vec, 0, sizeof(err_vec));
|
|
|
|
for (i = 0; i < eccsteps ; i++) {
|
|
eccflag = 0; /* initialize eccflag */
|
|
|
|
/*
|
|
* Check any error reported,
|
|
* In case of error, non zero ecc reported.
|
|
*/
|
|
for (j = 0; j < actual_eccbytes; j++) {
|
|
if (calc_ecc[j] != 0) {
|
|
eccflag = 1; /* non zero ecc, error present */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (eccflag == 1) {
|
|
if (memcmp(calc_ecc, erased_ecc_vec,
|
|
actual_eccbytes) == 0) {
|
|
/*
|
|
* calc_ecc[] matches pattern for ECC(all 0xff)
|
|
* so this is definitely an erased-page
|
|
*/
|
|
} else {
|
|
buf = &data[info->nand.ecc.size * i];
|
|
/*
|
|
* count number of 0-bits in read_buf.
|
|
* This check can be removed once a similar
|
|
* check is introduced in generic NAND driver
|
|
*/
|
|
bitflip_count = erased_sector_bitflips(
|
|
buf, read_ecc, info);
|
|
if (bitflip_count) {
|
|
/*
|
|
* number of 0-bits within ECC limits
|
|
* So this may be an erased-page
|
|
*/
|
|
stat += bitflip_count;
|
|
} else {
|
|
/*
|
|
* Too many 0-bits. It may be a
|
|
* - programmed-page, OR
|
|
* - erased-page with many bit-flips
|
|
* So this page requires check by ELM
|
|
*/
|
|
err_vec[i].error_reported = true;
|
|
is_error_reported = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Update the ecc vector */
|
|
calc_ecc += ecc->bytes;
|
|
read_ecc += ecc->bytes;
|
|
}
|
|
|
|
/* Check if any error reported */
|
|
if (!is_error_reported)
|
|
return stat;
|
|
|
|
/* Decode BCH error using ELM module */
|
|
elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
|
|
|
|
err = 0;
|
|
for (i = 0; i < eccsteps; i++) {
|
|
if (err_vec[i].error_uncorrectable) {
|
|
dev_err(&info->pdev->dev,
|
|
"uncorrectable bit-flips found\n");
|
|
err = -EBADMSG;
|
|
} else if (err_vec[i].error_reported) {
|
|
for (j = 0; j < err_vec[i].error_count; j++) {
|
|
switch (info->ecc_opt) {
|
|
case OMAP_ECC_BCH4_CODE_HW:
|
|
/* Add 4 bits to take care of padding */
|
|
pos = err_vec[i].error_loc[j] +
|
|
BCH4_BIT_PAD;
|
|
break;
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
pos = err_vec[i].error_loc[j];
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
error_max = (ecc->size + actual_eccbytes) * 8;
|
|
/* Calculate bit position of error */
|
|
bit_pos = pos % 8;
|
|
|
|
/* Calculate byte position of error */
|
|
byte_pos = (error_max - pos - 1) / 8;
|
|
|
|
if (pos < error_max) {
|
|
if (byte_pos < 512) {
|
|
pr_debug("bitflip@dat[%d]=%x\n",
|
|
byte_pos, data[byte_pos]);
|
|
data[byte_pos] ^= 1 << bit_pos;
|
|
} else {
|
|
pr_debug("bitflip@oob[%d]=%x\n",
|
|
(byte_pos - 512),
|
|
spare_ecc[byte_pos - 512]);
|
|
spare_ecc[byte_pos - 512] ^=
|
|
1 << bit_pos;
|
|
}
|
|
} else {
|
|
dev_err(&info->pdev->dev,
|
|
"invalid bit-flip @ %d:%d\n",
|
|
byte_pos, bit_pos);
|
|
err = -EBADMSG;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Update number of correctable errors */
|
|
stat += err_vec[i].error_count;
|
|
|
|
/* Update page data with sector size */
|
|
data += ecc->size;
|
|
spare_ecc += ecc->bytes;
|
|
}
|
|
|
|
return (err) ? err : stat;
|
|
}
|
|
|
|
/**
|
|
* omap_write_page_bch - BCH ecc based write page function for entire page
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page
|
|
*
|
|
* Custom write page method evolved to support multi sector writing in one shot
|
|
*/
|
|
static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int ret;
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
|
|
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
|
|
/* Enable GPMC ecc engine */
|
|
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
|
|
|
|
/* Write data */
|
|
chip->write_buf(mtd, buf, mtd->writesize);
|
|
|
|
/* Update ecc vector from GPMC result registers */
|
|
omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
|
|
|
|
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Write ecc vector to OOB area */
|
|
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
/**
|
|
* omap_write_subpage_bch - BCH hardware ECC based subpage write
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @offset: column address of subpage within the page
|
|
* @data_len: data length
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*
|
|
* OMAP optimized subpage write method.
|
|
*/
|
|
static int omap_write_subpage_bch(struct mtd_info *mtd,
|
|
struct nand_chip *chip, u32 offset,
|
|
u32 data_len, const u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
u8 *ecc_calc = chip->ecc.calc_buf;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
int ecc_steps = chip->ecc.steps;
|
|
u32 start_step = offset / ecc_size;
|
|
u32 end_step = (offset + data_len - 1) / ecc_size;
|
|
int step, ret = 0;
|
|
|
|
/*
|
|
* Write entire page at one go as it would be optimal
|
|
* as ECC is calculated by hardware.
|
|
* ECC is calculated for all subpages but we choose
|
|
* only what we want.
|
|
*/
|
|
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
|
|
/* Enable GPMC ECC engine */
|
|
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
|
|
|
|
/* Write data */
|
|
chip->write_buf(mtd, buf, mtd->writesize);
|
|
|
|
for (step = 0; step < ecc_steps; step++) {
|
|
/* mask ECC of un-touched subpages by padding 0xFF */
|
|
if (step < start_step || step > end_step)
|
|
memset(ecc_calc, 0xff, ecc_bytes);
|
|
else
|
|
ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
buf += ecc_size;
|
|
ecc_calc += ecc_bytes;
|
|
}
|
|
|
|
/* copy calculated ECC for whole page to chip->buffer->oob */
|
|
/* this include masked-value(0xFF) for unwritten subpages */
|
|
ecc_calc = chip->ecc.calc_buf;
|
|
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* write OOB buffer to NAND device */
|
|
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
/**
|
|
* omap_read_page_bch - BCH ecc based page read function for entire page
|
|
* @mtd: mtd info structure
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
|
|
* used for error correction.
|
|
* Custom method evolved to support ELM error correction & multi sector
|
|
* reading. On reading page data area is read along with OOB data with
|
|
* ecc engine enabled. ecc vector updated after read of OOB data.
|
|
* For non error pages ecc vector reported as zero.
|
|
*/
|
|
static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
uint8_t *ecc_code = chip->ecc.code_buf;
|
|
int stat, ret;
|
|
unsigned int max_bitflips = 0;
|
|
|
|
nand_read_page_op(chip, page, 0, NULL, 0);
|
|
|
|
/* Enable GPMC ecc engine */
|
|
chip->ecc.hwctl(mtd, NAND_ECC_READ);
|
|
|
|
/* Read data */
|
|
chip->read_buf(mtd, buf, mtd->writesize);
|
|
|
|
/* Read oob bytes */
|
|
nand_change_read_column_op(chip,
|
|
mtd->writesize + BADBLOCK_MARKER_LENGTH,
|
|
chip->oob_poi + BADBLOCK_MARKER_LENGTH,
|
|
chip->ecc.total, false);
|
|
|
|
/* Calculate ecc bytes */
|
|
omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
|
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* is_elm_present - checks for presence of ELM module by scanning DT nodes
|
|
* @omap_nand_info: NAND device structure containing platform data
|
|
*/
|
|
static bool is_elm_present(struct omap_nand_info *info,
|
|
struct device_node *elm_node)
|
|
{
|
|
struct platform_device *pdev;
|
|
|
|
/* check whether elm-id is passed via DT */
|
|
if (!elm_node) {
|
|
dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
|
|
return false;
|
|
}
|
|
pdev = of_find_device_by_node(elm_node);
|
|
/* check whether ELM device is registered */
|
|
if (!pdev) {
|
|
dev_err(&info->pdev->dev, "ELM device not found\n");
|
|
return false;
|
|
}
|
|
/* ELM module available, now configure it */
|
|
info->elm_dev = &pdev->dev;
|
|
return true;
|
|
}
|
|
|
|
static bool omap2_nand_ecc_check(struct omap_nand_info *info)
|
|
{
|
|
bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
|
|
|
|
switch (info->ecc_opt) {
|
|
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
ecc_needs_omap_bch = false;
|
|
ecc_needs_bch = true;
|
|
ecc_needs_elm = false;
|
|
break;
|
|
case OMAP_ECC_BCH4_CODE_HW:
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
ecc_needs_omap_bch = true;
|
|
ecc_needs_bch = false;
|
|
ecc_needs_elm = true;
|
|
break;
|
|
default:
|
|
ecc_needs_omap_bch = false;
|
|
ecc_needs_bch = false;
|
|
ecc_needs_elm = false;
|
|
break;
|
|
}
|
|
|
|
if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
|
|
dev_err(&info->pdev->dev,
|
|
"CONFIG_MTD_NAND_ECC_BCH not enabled\n");
|
|
return false;
|
|
}
|
|
if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
|
|
dev_err(&info->pdev->dev,
|
|
"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
|
|
return false;
|
|
}
|
|
if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
|
|
dev_err(&info->pdev->dev, "ELM not available\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static const char * const nand_xfer_types[] = {
|
|
[NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
|
|
[NAND_OMAP_POLLED] = "polled",
|
|
[NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
|
|
[NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
|
|
};
|
|
|
|
static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
|
|
{
|
|
struct device_node *child = dev->of_node;
|
|
int i;
|
|
const char *s;
|
|
u32 cs;
|
|
|
|
if (of_property_read_u32(child, "reg", &cs) < 0) {
|
|
dev_err(dev, "reg not found in DT\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
info->gpmc_cs = cs;
|
|
|
|
/* detect availability of ELM module. Won't be present pre-OMAP4 */
|
|
info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
|
|
if (!info->elm_of_node) {
|
|
info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
|
|
if (!info->elm_of_node)
|
|
dev_dbg(dev, "ti,elm-id not in DT\n");
|
|
}
|
|
|
|
/* select ecc-scheme for NAND */
|
|
if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
|
|
dev_err(dev, "ti,nand-ecc-opt not found\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!strcmp(s, "sw")) {
|
|
info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
|
|
} else if (!strcmp(s, "ham1") ||
|
|
!strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
|
|
info->ecc_opt = OMAP_ECC_HAM1_CODE_HW;
|
|
} else if (!strcmp(s, "bch4")) {
|
|
if (info->elm_of_node)
|
|
info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
|
|
else
|
|
info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
|
|
} else if (!strcmp(s, "bch8")) {
|
|
if (info->elm_of_node)
|
|
info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
|
|
else
|
|
info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
|
|
} else if (!strcmp(s, "bch16")) {
|
|
info->ecc_opt = OMAP_ECC_BCH16_CODE_HW;
|
|
} else {
|
|
dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* select data transfer mode */
|
|
if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
|
|
for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
|
|
if (!strcasecmp(s, nand_xfer_types[i])) {
|
|
info->xfer_type = i;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
struct nand_chip *chip = &info->nand;
|
|
int off = BADBLOCK_MARKER_LENGTH;
|
|
|
|
if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
|
|
!(chip->options & NAND_BUSWIDTH_16))
|
|
off = 1;
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = off;
|
|
oobregion->length = chip->ecc.total;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int omap_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
struct nand_chip *chip = &info->nand;
|
|
int off = BADBLOCK_MARKER_LENGTH;
|
|
|
|
if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
|
|
!(chip->options & NAND_BUSWIDTH_16))
|
|
off = 1;
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
off += chip->ecc.total;
|
|
if (off >= mtd->oobsize)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = off;
|
|
oobregion->length = mtd->oobsize - off;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
|
|
.ecc = omap_ooblayout_ecc,
|
|
.free = omap_ooblayout_free,
|
|
};
|
|
|
|
static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int off = BADBLOCK_MARKER_LENGTH;
|
|
|
|
if (section >= chip->ecc.steps)
|
|
return -ERANGE;
|
|
|
|
/*
|
|
* When SW correction is employed, one OMAP specific marker byte is
|
|
* reserved after each ECC step.
|
|
*/
|
|
oobregion->offset = off + (section * (chip->ecc.bytes + 1));
|
|
oobregion->length = chip->ecc.bytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int off = BADBLOCK_MARKER_LENGTH;
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
/*
|
|
* When SW correction is employed, one OMAP specific marker byte is
|
|
* reserved after each ECC step.
|
|
*/
|
|
off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
|
|
if (off >= mtd->oobsize)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = off;
|
|
oobregion->length = mtd->oobsize - off;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
|
|
.ecc = omap_sw_ooblayout_ecc,
|
|
.free = omap_sw_ooblayout_free,
|
|
};
|
|
|
|
static int omap_nand_attach_chip(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
struct device *dev = &info->pdev->dev;
|
|
int min_oobbytes = BADBLOCK_MARKER_LENGTH;
|
|
int oobbytes_per_step;
|
|
dma_cap_mask_t mask;
|
|
int err;
|
|
|
|
if (chip->bbt_options & NAND_BBT_USE_FLASH)
|
|
chip->bbt_options |= NAND_BBT_NO_OOB;
|
|
else
|
|
chip->options |= NAND_SKIP_BBTSCAN;
|
|
|
|
/* Re-populate low-level callbacks based on xfer modes */
|
|
switch (info->xfer_type) {
|
|
case NAND_OMAP_PREFETCH_POLLED:
|
|
chip->read_buf = omap_read_buf_pref;
|
|
chip->write_buf = omap_write_buf_pref;
|
|
break;
|
|
|
|
case NAND_OMAP_POLLED:
|
|
/* Use nand_base defaults for {read,write}_buf */
|
|
break;
|
|
|
|
case NAND_OMAP_PREFETCH_DMA:
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
info->dma = dma_request_chan(dev, "rxtx");
|
|
|
|
if (IS_ERR(info->dma)) {
|
|
dev_err(dev, "DMA engine request failed\n");
|
|
return PTR_ERR(info->dma);
|
|
} else {
|
|
struct dma_slave_config cfg;
|
|
|
|
memset(&cfg, 0, sizeof(cfg));
|
|
cfg.src_addr = info->phys_base;
|
|
cfg.dst_addr = info->phys_base;
|
|
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
cfg.src_maxburst = 16;
|
|
cfg.dst_maxburst = 16;
|
|
err = dmaengine_slave_config(info->dma, &cfg);
|
|
if (err) {
|
|
dev_err(dev,
|
|
"DMA engine slave config failed: %d\n",
|
|
err);
|
|
return err;
|
|
}
|
|
chip->read_buf = omap_read_buf_dma_pref;
|
|
chip->write_buf = omap_write_buf_dma_pref;
|
|
}
|
|
break;
|
|
|
|
case NAND_OMAP_PREFETCH_IRQ:
|
|
info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
|
|
if (info->gpmc_irq_fifo <= 0) {
|
|
dev_err(dev, "Error getting fifo IRQ\n");
|
|
return -ENODEV;
|
|
}
|
|
err = devm_request_irq(dev, info->gpmc_irq_fifo,
|
|
omap_nand_irq, IRQF_SHARED,
|
|
"gpmc-nand-fifo", info);
|
|
if (err) {
|
|
dev_err(dev, "Requesting IRQ %d, error %d\n",
|
|
info->gpmc_irq_fifo, err);
|
|
info->gpmc_irq_fifo = 0;
|
|
return err;
|
|
}
|
|
|
|
info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
|
|
if (info->gpmc_irq_count <= 0) {
|
|
dev_err(dev, "Error getting IRQ count\n");
|
|
return -ENODEV;
|
|
}
|
|
err = devm_request_irq(dev, info->gpmc_irq_count,
|
|
omap_nand_irq, IRQF_SHARED,
|
|
"gpmc-nand-count", info);
|
|
if (err) {
|
|
dev_err(dev, "Requesting IRQ %d, error %d\n",
|
|
info->gpmc_irq_count, err);
|
|
info->gpmc_irq_count = 0;
|
|
return err;
|
|
}
|
|
|
|
chip->read_buf = omap_read_buf_irq_pref;
|
|
chip->write_buf = omap_write_buf_irq_pref;
|
|
|
|
break;
|
|
|
|
default:
|
|
dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!omap2_nand_ecc_check(info))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Bail out earlier to let NAND_ECC_SOFT code create its own
|
|
* ooblayout instead of using ours.
|
|
*/
|
|
if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
|
|
chip->ecc.mode = NAND_ECC_SOFT;
|
|
chip->ecc.algo = NAND_ECC_HAMMING;
|
|
return 0;
|
|
}
|
|
|
|
/* Populate MTD interface based on ECC scheme */
|
|
switch (info->ecc_opt) {
|
|
case OMAP_ECC_HAM1_CODE_HW:
|
|
dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
chip->ecc.bytes = 3;
|
|
chip->ecc.size = 512;
|
|
chip->ecc.strength = 1;
|
|
chip->ecc.calculate = omap_calculate_ecc;
|
|
chip->ecc.hwctl = omap_enable_hwecc;
|
|
chip->ecc.correct = omap_correct_data;
|
|
mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
|
|
oobbytes_per_step = chip->ecc.bytes;
|
|
|
|
if (!(chip->options & NAND_BUSWIDTH_16))
|
|
min_oobbytes = 1;
|
|
|
|
break;
|
|
|
|
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
|
|
pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
chip->ecc.size = 512;
|
|
chip->ecc.bytes = 7;
|
|
chip->ecc.strength = 4;
|
|
chip->ecc.hwctl = omap_enable_hwecc_bch;
|
|
chip->ecc.correct = nand_bch_correct_data;
|
|
chip->ecc.calculate = omap_calculate_ecc_bch_sw;
|
|
mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
|
|
/* Reserve one byte for the OMAP marker */
|
|
oobbytes_per_step = chip->ecc.bytes + 1;
|
|
/* Software BCH library is used for locating errors */
|
|
chip->ecc.priv = nand_bch_init(mtd);
|
|
if (!chip->ecc.priv) {
|
|
dev_err(dev, "Unable to use BCH library\n");
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
case OMAP_ECC_BCH4_CODE_HW:
|
|
pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
chip->ecc.size = 512;
|
|
/* 14th bit is kept reserved for ROM-code compatibility */
|
|
chip->ecc.bytes = 7 + 1;
|
|
chip->ecc.strength = 4;
|
|
chip->ecc.hwctl = omap_enable_hwecc_bch;
|
|
chip->ecc.correct = omap_elm_correct_data;
|
|
chip->ecc.read_page = omap_read_page_bch;
|
|
chip->ecc.write_page = omap_write_page_bch;
|
|
chip->ecc.write_subpage = omap_write_subpage_bch;
|
|
mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
|
|
oobbytes_per_step = chip->ecc.bytes;
|
|
|
|
err = elm_config(info->elm_dev, BCH4_ECC,
|
|
mtd->writesize / chip->ecc.size,
|
|
chip->ecc.size, chip->ecc.bytes);
|
|
if (err < 0)
|
|
return err;
|
|
break;
|
|
|
|
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
|
pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
chip->ecc.size = 512;
|
|
chip->ecc.bytes = 13;
|
|
chip->ecc.strength = 8;
|
|
chip->ecc.hwctl = omap_enable_hwecc_bch;
|
|
chip->ecc.correct = nand_bch_correct_data;
|
|
chip->ecc.calculate = omap_calculate_ecc_bch_sw;
|
|
mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
|
|
/* Reserve one byte for the OMAP marker */
|
|
oobbytes_per_step = chip->ecc.bytes + 1;
|
|
/* Software BCH library is used for locating errors */
|
|
chip->ecc.priv = nand_bch_init(mtd);
|
|
if (!chip->ecc.priv) {
|
|
dev_err(dev, "unable to use BCH library\n");
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
case OMAP_ECC_BCH8_CODE_HW:
|
|
pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
chip->ecc.size = 512;
|
|
/* 14th bit is kept reserved for ROM-code compatibility */
|
|
chip->ecc.bytes = 13 + 1;
|
|
chip->ecc.strength = 8;
|
|
chip->ecc.hwctl = omap_enable_hwecc_bch;
|
|
chip->ecc.correct = omap_elm_correct_data;
|
|
chip->ecc.read_page = omap_read_page_bch;
|
|
chip->ecc.write_page = omap_write_page_bch;
|
|
chip->ecc.write_subpage = omap_write_subpage_bch;
|
|
mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
|
|
oobbytes_per_step = chip->ecc.bytes;
|
|
|
|
err = elm_config(info->elm_dev, BCH8_ECC,
|
|
mtd->writesize / chip->ecc.size,
|
|
chip->ecc.size, chip->ecc.bytes);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
break;
|
|
|
|
case OMAP_ECC_BCH16_CODE_HW:
|
|
pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
chip->ecc.size = 512;
|
|
chip->ecc.bytes = 26;
|
|
chip->ecc.strength = 16;
|
|
chip->ecc.hwctl = omap_enable_hwecc_bch;
|
|
chip->ecc.correct = omap_elm_correct_data;
|
|
chip->ecc.read_page = omap_read_page_bch;
|
|
chip->ecc.write_page = omap_write_page_bch;
|
|
chip->ecc.write_subpage = omap_write_subpage_bch;
|
|
mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
|
|
oobbytes_per_step = chip->ecc.bytes;
|
|
|
|
err = elm_config(info->elm_dev, BCH16_ECC,
|
|
mtd->writesize / chip->ecc.size,
|
|
chip->ecc.size, chip->ecc.bytes);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
break;
|
|
default:
|
|
dev_err(dev, "Invalid or unsupported ECC scheme\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check if NAND device's OOB is enough to store ECC signatures */
|
|
min_oobbytes += (oobbytes_per_step *
|
|
(mtd->writesize / chip->ecc.size));
|
|
if (mtd->oobsize < min_oobbytes) {
|
|
dev_err(dev,
|
|
"Not enough OOB bytes: required = %d, available=%d\n",
|
|
min_oobbytes, mtd->oobsize);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops omap_nand_controller_ops = {
|
|
.attach_chip = omap_nand_attach_chip,
|
|
};
|
|
|
|
/* Shared among all NAND instances to synchronize access to the ECC Engine */
|
|
static struct nand_controller omap_gpmc_controller = {
|
|
.lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
|
|
.wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
|
|
.ops = &omap_nand_controller_ops,
|
|
};
|
|
|
|
static int omap_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct omap_nand_info *info;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *nand_chip;
|
|
int err;
|
|
struct resource *res;
|
|
struct device *dev = &pdev->dev;
|
|
|
|
info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
|
|
GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
info->pdev = pdev;
|
|
|
|
err = omap_get_dt_info(dev, info);
|
|
if (err)
|
|
return err;
|
|
|
|
info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
|
|
if (!info->ops) {
|
|
dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
nand_chip = &info->nand;
|
|
mtd = nand_to_mtd(nand_chip);
|
|
mtd->dev.parent = &pdev->dev;
|
|
nand_chip->ecc.priv = NULL;
|
|
nand_set_flash_node(nand_chip, dev->of_node);
|
|
|
|
if (!mtd->name) {
|
|
mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
|
|
"omap2-nand.%d", info->gpmc_cs);
|
|
if (!mtd->name) {
|
|
dev_err(&pdev->dev, "Failed to set MTD name\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(nand_chip->IO_ADDR_R))
|
|
return PTR_ERR(nand_chip->IO_ADDR_R);
|
|
|
|
info->phys_base = res->start;
|
|
|
|
nand_chip->controller = &omap_gpmc_controller;
|
|
|
|
nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
|
|
nand_chip->cmd_ctrl = omap_hwcontrol;
|
|
|
|
info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
|
|
GPIOD_IN);
|
|
if (IS_ERR(info->ready_gpiod)) {
|
|
dev_err(dev, "failed to get ready gpio\n");
|
|
return PTR_ERR(info->ready_gpiod);
|
|
}
|
|
|
|
/*
|
|
* If RDY/BSY line is connected to OMAP then use the omap ready
|
|
* function and the generic nand_wait function which reads the status
|
|
* register after monitoring the RDY/BSY line. Otherwise use a standard
|
|
* chip delay which is slightly more than tR (AC Timing) of the NAND
|
|
* device and read status register until you get a failure or success
|
|
*/
|
|
if (info->ready_gpiod) {
|
|
nand_chip->dev_ready = omap_dev_ready;
|
|
nand_chip->chip_delay = 0;
|
|
} else {
|
|
nand_chip->waitfunc = omap_wait;
|
|
nand_chip->chip_delay = 50;
|
|
}
|
|
|
|
if (info->flash_bbt)
|
|
nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
|
|
|
|
/* scan NAND device connected to chip controller */
|
|
nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
|
|
|
|
err = nand_scan(mtd, 1);
|
|
if (err)
|
|
goto return_error;
|
|
|
|
err = mtd_device_register(mtd, NULL, 0);
|
|
if (err)
|
|
goto cleanup_nand;
|
|
|
|
platform_set_drvdata(pdev, mtd);
|
|
|
|
return 0;
|
|
|
|
cleanup_nand:
|
|
nand_cleanup(nand_chip);
|
|
|
|
return_error:
|
|
if (!IS_ERR_OR_NULL(info->dma))
|
|
dma_release_channel(info->dma);
|
|
if (nand_chip->ecc.priv) {
|
|
nand_bch_free(nand_chip->ecc.priv);
|
|
nand_chip->ecc.priv = NULL;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int omap_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct mtd_info *mtd = platform_get_drvdata(pdev);
|
|
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
|
struct omap_nand_info *info = mtd_to_omap(mtd);
|
|
if (nand_chip->ecc.priv) {
|
|
nand_bch_free(nand_chip->ecc.priv);
|
|
nand_chip->ecc.priv = NULL;
|
|
}
|
|
if (info->dma)
|
|
dma_release_channel(info->dma);
|
|
nand_release(mtd);
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id omap_nand_ids[] = {
|
|
{ .compatible = "ti,omap2-nand", },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, omap_nand_ids);
|
|
|
|
static struct platform_driver omap_nand_driver = {
|
|
.probe = omap_nand_probe,
|
|
.remove = omap_nand_remove,
|
|
.driver = {
|
|
.name = DRIVER_NAME,
|
|
.of_match_table = of_match_ptr(omap_nand_ids),
|
|
},
|
|
};
|
|
|
|
module_platform_driver(omap_nand_driver);
|
|
|
|
MODULE_ALIAS("platform:" DRIVER_NAME);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
|