mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-20 07:57:16 +07:00
d1933689aa
Currently, we are allocating space for two pointers, when we actually may need to store three of them (two divisors plus the original clock). Fix this, and change sizeof(type) to sizeof(*var) to keep checkpatch.pl happy. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Emilio López <emilio@elopez.com.ar> Signed-off-by: Mike Turquette <mturquette@linaro.org>
1091 lines
26 KiB
C
1091 lines
26 KiB
C
/*
|
|
* Copyright 2013 Emilio López
|
|
*
|
|
* Emilio López <emilio@elopez.com.ar>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/clk-provider.h>
|
|
#include <linux/clkdev.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
|
|
#include "clk-factors.h"
|
|
|
|
static DEFINE_SPINLOCK(clk_lock);
|
|
|
|
/* Maximum number of parents our clocks have */
|
|
#define SUNXI_MAX_PARENTS 5
|
|
|
|
/**
|
|
* sun4i_osc_clk_setup() - Setup function for gatable oscillator
|
|
*/
|
|
|
|
#define SUNXI_OSC24M_GATE 0
|
|
|
|
static void __init sun4i_osc_clk_setup(struct device_node *node)
|
|
{
|
|
struct clk *clk;
|
|
struct clk_fixed_rate *fixed;
|
|
struct clk_gate *gate;
|
|
const char *clk_name = node->name;
|
|
u32 rate;
|
|
|
|
if (of_property_read_u32(node, "clock-frequency", &rate))
|
|
return;
|
|
|
|
/* allocate fixed-rate and gate clock structs */
|
|
fixed = kzalloc(sizeof(struct clk_fixed_rate), GFP_KERNEL);
|
|
if (!fixed)
|
|
return;
|
|
gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
|
|
if (!gate)
|
|
goto err_free_fixed;
|
|
|
|
/* set up gate and fixed rate properties */
|
|
gate->reg = of_iomap(node, 0);
|
|
gate->bit_idx = SUNXI_OSC24M_GATE;
|
|
gate->lock = &clk_lock;
|
|
fixed->fixed_rate = rate;
|
|
|
|
clk = clk_register_composite(NULL, clk_name,
|
|
NULL, 0,
|
|
NULL, NULL,
|
|
&fixed->hw, &clk_fixed_rate_ops,
|
|
&gate->hw, &clk_gate_ops,
|
|
CLK_IS_ROOT);
|
|
|
|
if (IS_ERR(clk))
|
|
goto err_free_gate;
|
|
|
|
of_clk_add_provider(node, of_clk_src_simple_get, clk);
|
|
clk_register_clkdev(clk, clk_name, NULL);
|
|
|
|
return;
|
|
|
|
err_free_gate:
|
|
kfree(gate);
|
|
err_free_fixed:
|
|
kfree(fixed);
|
|
}
|
|
CLK_OF_DECLARE(sun4i_osc, "allwinner,sun4i-osc-clk", sun4i_osc_clk_setup);
|
|
|
|
|
|
|
|
/**
|
|
* sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
|
|
* PLL1 rate is calculated as follows
|
|
* rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
|
|
* parent_rate is always 24Mhz
|
|
*/
|
|
|
|
static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
u8 div;
|
|
|
|
/* Normalize value to a 6M multiple */
|
|
div = *freq / 6000000;
|
|
*freq = 6000000 * div;
|
|
|
|
/* we were called to round the frequency, we can now return */
|
|
if (n == NULL)
|
|
return;
|
|
|
|
/* m is always zero for pll1 */
|
|
*m = 0;
|
|
|
|
/* k is 1 only on these cases */
|
|
if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
|
|
*k = 1;
|
|
else
|
|
*k = 0;
|
|
|
|
/* p will be 3 for divs under 10 */
|
|
if (div < 10)
|
|
*p = 3;
|
|
|
|
/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
|
|
else if (div < 20 || (div < 32 && (div & 1)))
|
|
*p = 2;
|
|
|
|
/* p will be 1 for even divs under 32, divs under 40 and odd pairs
|
|
* of divs between 40-62 */
|
|
else if (div < 40 || (div < 64 && (div & 2)))
|
|
*p = 1;
|
|
|
|
/* any other entries have p = 0 */
|
|
else
|
|
*p = 0;
|
|
|
|
/* calculate a suitable n based on k and p */
|
|
div <<= *p;
|
|
div /= (*k + 1);
|
|
*n = div / 4;
|
|
}
|
|
|
|
/**
|
|
* sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
|
|
* PLL1 rate is calculated as follows
|
|
* rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
|
|
* parent_rate should always be 24MHz
|
|
*/
|
|
static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
/*
|
|
* We can operate only on MHz, this will make our life easier
|
|
* later.
|
|
*/
|
|
u32 freq_mhz = *freq / 1000000;
|
|
u32 parent_freq_mhz = parent_rate / 1000000;
|
|
|
|
/*
|
|
* Round down the frequency to the closest multiple of either
|
|
* 6 or 16
|
|
*/
|
|
u32 round_freq_6 = round_down(freq_mhz, 6);
|
|
u32 round_freq_16 = round_down(freq_mhz, 16);
|
|
|
|
if (round_freq_6 > round_freq_16)
|
|
freq_mhz = round_freq_6;
|
|
else
|
|
freq_mhz = round_freq_16;
|
|
|
|
*freq = freq_mhz * 1000000;
|
|
|
|
/*
|
|
* If the factors pointer are null, we were just called to
|
|
* round down the frequency.
|
|
* Exit.
|
|
*/
|
|
if (n == NULL)
|
|
return;
|
|
|
|
/* If the frequency is a multiple of 32 MHz, k is always 3 */
|
|
if (!(freq_mhz % 32))
|
|
*k = 3;
|
|
/* If the frequency is a multiple of 9 MHz, k is always 2 */
|
|
else if (!(freq_mhz % 9))
|
|
*k = 2;
|
|
/* If the frequency is a multiple of 8 MHz, k is always 1 */
|
|
else if (!(freq_mhz % 8))
|
|
*k = 1;
|
|
/* Otherwise, we don't use the k factor */
|
|
else
|
|
*k = 0;
|
|
|
|
/*
|
|
* If the frequency is a multiple of 2 but not a multiple of
|
|
* 3, m is 3. This is the first time we use 6 here, yet we
|
|
* will use it on several other places.
|
|
* We use this number because it's the lowest frequency we can
|
|
* generate (with n = 0, k = 0, m = 3), so every other frequency
|
|
* somehow relates to this frequency.
|
|
*/
|
|
if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
|
|
*m = 2;
|
|
/*
|
|
* If the frequency is a multiple of 6MHz, but the factor is
|
|
* odd, m will be 3
|
|
*/
|
|
else if ((freq_mhz / 6) & 1)
|
|
*m = 3;
|
|
/* Otherwise, we end up with m = 1 */
|
|
else
|
|
*m = 1;
|
|
|
|
/* Calculate n thanks to the above factors we already got */
|
|
*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
|
|
|
|
/*
|
|
* If n end up being outbound, and that we can still decrease
|
|
* m, do it.
|
|
*/
|
|
if ((*n + 1) > 31 && (*m + 1) > 1) {
|
|
*n = (*n + 1) / 2 - 1;
|
|
*m = (*m + 1) / 2 - 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sun4i_get_pll5_factors() - calculates n, k factors for PLL5
|
|
* PLL5 rate is calculated as follows
|
|
* rate = parent_rate * n * (k + 1)
|
|
* parent_rate is always 24Mhz
|
|
*/
|
|
|
|
static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
u8 div;
|
|
|
|
/* Normalize value to a parent_rate multiple (24M) */
|
|
div = *freq / parent_rate;
|
|
*freq = parent_rate * div;
|
|
|
|
/* we were called to round the frequency, we can now return */
|
|
if (n == NULL)
|
|
return;
|
|
|
|
if (div < 31)
|
|
*k = 0;
|
|
else if (div / 2 < 31)
|
|
*k = 1;
|
|
else if (div / 3 < 31)
|
|
*k = 2;
|
|
else
|
|
*k = 3;
|
|
|
|
*n = DIV_ROUND_UP(div, (*k+1));
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* sun4i_get_apb1_factors() - calculates m, p factors for APB1
|
|
* APB1 rate is calculated as follows
|
|
* rate = (parent_rate >> p) / (m + 1);
|
|
*/
|
|
|
|
static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
u8 calcm, calcp;
|
|
|
|
if (parent_rate < *freq)
|
|
*freq = parent_rate;
|
|
|
|
parent_rate = (parent_rate + (*freq - 1)) / *freq;
|
|
|
|
/* Invalid rate! */
|
|
if (parent_rate > 32)
|
|
return;
|
|
|
|
if (parent_rate <= 4)
|
|
calcp = 0;
|
|
else if (parent_rate <= 8)
|
|
calcp = 1;
|
|
else if (parent_rate <= 16)
|
|
calcp = 2;
|
|
else
|
|
calcp = 3;
|
|
|
|
calcm = (parent_rate >> calcp) - 1;
|
|
|
|
*freq = (parent_rate >> calcp) / (calcm + 1);
|
|
|
|
/* we were called to round the frequency, we can now return */
|
|
if (n == NULL)
|
|
return;
|
|
|
|
*m = calcm;
|
|
*p = calcp;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
|
|
* MMC rate is calculated as follows
|
|
* rate = (parent_rate >> p) / (m + 1);
|
|
*/
|
|
|
|
static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
u8 div, calcm, calcp;
|
|
|
|
/* These clocks can only divide, so we will never be able to achieve
|
|
* frequencies higher than the parent frequency */
|
|
if (*freq > parent_rate)
|
|
*freq = parent_rate;
|
|
|
|
div = parent_rate / *freq;
|
|
|
|
if (div < 16)
|
|
calcp = 0;
|
|
else if (div / 2 < 16)
|
|
calcp = 1;
|
|
else if (div / 4 < 16)
|
|
calcp = 2;
|
|
else
|
|
calcp = 3;
|
|
|
|
calcm = DIV_ROUND_UP(div, 1 << calcp);
|
|
|
|
*freq = (parent_rate >> calcp) / calcm;
|
|
|
|
/* we were called to round the frequency, we can now return */
|
|
if (n == NULL)
|
|
return;
|
|
|
|
*m = calcm - 1;
|
|
*p = calcp;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
|
|
* CLK_OUT rate is calculated as follows
|
|
* rate = (parent_rate >> p) / (m + 1);
|
|
*/
|
|
|
|
static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
u8 div, calcm, calcp;
|
|
|
|
/* These clocks can only divide, so we will never be able to achieve
|
|
* frequencies higher than the parent frequency */
|
|
if (*freq > parent_rate)
|
|
*freq = parent_rate;
|
|
|
|
div = parent_rate / *freq;
|
|
|
|
if (div < 32)
|
|
calcp = 0;
|
|
else if (div / 2 < 32)
|
|
calcp = 1;
|
|
else if (div / 4 < 32)
|
|
calcp = 2;
|
|
else
|
|
calcp = 3;
|
|
|
|
calcm = DIV_ROUND_UP(div, 1 << calcp);
|
|
|
|
*freq = (parent_rate >> calcp) / calcm;
|
|
|
|
/* we were called to round the frequency, we can now return */
|
|
if (n == NULL)
|
|
return;
|
|
|
|
*m = calcm - 1;
|
|
*p = calcp;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* sunxi_factors_clk_setup() - Setup function for factor clocks
|
|
*/
|
|
|
|
#define SUNXI_FACTORS_MUX_MASK 0x3
|
|
|
|
struct factors_data {
|
|
int enable;
|
|
int mux;
|
|
struct clk_factors_config *table;
|
|
void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
|
|
};
|
|
|
|
static struct clk_factors_config sun4i_pll1_config = {
|
|
.nshift = 8,
|
|
.nwidth = 5,
|
|
.kshift = 4,
|
|
.kwidth = 2,
|
|
.mshift = 0,
|
|
.mwidth = 2,
|
|
.pshift = 16,
|
|
.pwidth = 2,
|
|
};
|
|
|
|
static struct clk_factors_config sun6i_a31_pll1_config = {
|
|
.nshift = 8,
|
|
.nwidth = 5,
|
|
.kshift = 4,
|
|
.kwidth = 2,
|
|
.mshift = 0,
|
|
.mwidth = 2,
|
|
};
|
|
|
|
static struct clk_factors_config sun4i_pll5_config = {
|
|
.nshift = 8,
|
|
.nwidth = 5,
|
|
.kshift = 4,
|
|
.kwidth = 2,
|
|
};
|
|
|
|
static struct clk_factors_config sun4i_apb1_config = {
|
|
.mshift = 0,
|
|
.mwidth = 5,
|
|
.pshift = 16,
|
|
.pwidth = 2,
|
|
};
|
|
|
|
/* user manual says "n" but it's really "p" */
|
|
static struct clk_factors_config sun4i_mod0_config = {
|
|
.mshift = 0,
|
|
.mwidth = 4,
|
|
.pshift = 16,
|
|
.pwidth = 2,
|
|
};
|
|
|
|
/* user manual says "n" but it's really "p" */
|
|
static struct clk_factors_config sun7i_a20_out_config = {
|
|
.mshift = 8,
|
|
.mwidth = 5,
|
|
.pshift = 20,
|
|
.pwidth = 2,
|
|
};
|
|
|
|
static const struct factors_data sun4i_pll1_data __initconst = {
|
|
.enable = 31,
|
|
.table = &sun4i_pll1_config,
|
|
.getter = sun4i_get_pll1_factors,
|
|
};
|
|
|
|
static const struct factors_data sun6i_a31_pll1_data __initconst = {
|
|
.enable = 31,
|
|
.table = &sun6i_a31_pll1_config,
|
|
.getter = sun6i_a31_get_pll1_factors,
|
|
};
|
|
|
|
static const struct factors_data sun4i_pll5_data __initconst = {
|
|
.enable = 31,
|
|
.table = &sun4i_pll5_config,
|
|
.getter = sun4i_get_pll5_factors,
|
|
};
|
|
|
|
static const struct factors_data sun4i_apb1_data __initconst = {
|
|
.table = &sun4i_apb1_config,
|
|
.getter = sun4i_get_apb1_factors,
|
|
};
|
|
|
|
static const struct factors_data sun4i_mod0_data __initconst = {
|
|
.enable = 31,
|
|
.mux = 24,
|
|
.table = &sun4i_mod0_config,
|
|
.getter = sun4i_get_mod0_factors,
|
|
};
|
|
|
|
static const struct factors_data sun7i_a20_out_data __initconst = {
|
|
.enable = 31,
|
|
.mux = 24,
|
|
.table = &sun7i_a20_out_config,
|
|
.getter = sun7i_a20_get_out_factors,
|
|
};
|
|
|
|
static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
|
|
const struct factors_data *data)
|
|
{
|
|
struct clk *clk;
|
|
struct clk_factors *factors;
|
|
struct clk_gate *gate = NULL;
|
|
struct clk_mux *mux = NULL;
|
|
struct clk_hw *gate_hw = NULL;
|
|
struct clk_hw *mux_hw = NULL;
|
|
const char *clk_name = node->name;
|
|
const char *parents[SUNXI_MAX_PARENTS];
|
|
void *reg;
|
|
int i = 0;
|
|
|
|
reg = of_iomap(node, 0);
|
|
|
|
/* if we have a mux, we will have >1 parents */
|
|
while (i < SUNXI_MAX_PARENTS &&
|
|
(parents[i] = of_clk_get_parent_name(node, i)) != NULL)
|
|
i++;
|
|
|
|
/* Nodes should be providing the name via clock-output-names
|
|
* but originally our dts didn't, and so we used node->name.
|
|
* The new, better nodes look like clk@deadbeef, so we pull the
|
|
* name just in this case */
|
|
if (!strcmp("clk", clk_name)) {
|
|
of_property_read_string_index(node, "clock-output-names",
|
|
0, &clk_name);
|
|
}
|
|
|
|
factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
|
|
if (!factors)
|
|
return NULL;
|
|
|
|
/* Add a gate if this factor clock can be gated */
|
|
if (data->enable) {
|
|
gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
|
|
if (!gate) {
|
|
kfree(factors);
|
|
return NULL;
|
|
}
|
|
|
|
/* set up gate properties */
|
|
gate->reg = reg;
|
|
gate->bit_idx = data->enable;
|
|
gate->lock = &clk_lock;
|
|
gate_hw = &gate->hw;
|
|
}
|
|
|
|
/* Add a mux if this factor clock can be muxed */
|
|
if (data->mux) {
|
|
mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
|
|
if (!mux) {
|
|
kfree(factors);
|
|
kfree(gate);
|
|
return NULL;
|
|
}
|
|
|
|
/* set up gate properties */
|
|
mux->reg = reg;
|
|
mux->shift = data->mux;
|
|
mux->mask = SUNXI_FACTORS_MUX_MASK;
|
|
mux->lock = &clk_lock;
|
|
mux_hw = &mux->hw;
|
|
}
|
|
|
|
/* set up factors properties */
|
|
factors->reg = reg;
|
|
factors->config = data->table;
|
|
factors->get_factors = data->getter;
|
|
factors->lock = &clk_lock;
|
|
|
|
clk = clk_register_composite(NULL, clk_name,
|
|
parents, i,
|
|
mux_hw, &clk_mux_ops,
|
|
&factors->hw, &clk_factors_ops,
|
|
gate_hw, &clk_gate_ops, 0);
|
|
|
|
if (!IS_ERR(clk)) {
|
|
of_clk_add_provider(node, of_clk_src_simple_get, clk);
|
|
clk_register_clkdev(clk, clk_name, NULL);
|
|
}
|
|
|
|
return clk;
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* sunxi_mux_clk_setup() - Setup function for muxes
|
|
*/
|
|
|
|
#define SUNXI_MUX_GATE_WIDTH 2
|
|
|
|
struct mux_data {
|
|
u8 shift;
|
|
};
|
|
|
|
static const struct mux_data sun4i_cpu_mux_data __initconst = {
|
|
.shift = 16,
|
|
};
|
|
|
|
static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
|
|
.shift = 12,
|
|
};
|
|
|
|
static const struct mux_data sun4i_apb1_mux_data __initconst = {
|
|
.shift = 24,
|
|
};
|
|
|
|
static void __init sunxi_mux_clk_setup(struct device_node *node,
|
|
struct mux_data *data)
|
|
{
|
|
struct clk *clk;
|
|
const char *clk_name = node->name;
|
|
const char *parents[SUNXI_MAX_PARENTS];
|
|
void *reg;
|
|
int i = 0;
|
|
|
|
reg = of_iomap(node, 0);
|
|
|
|
while (i < SUNXI_MAX_PARENTS &&
|
|
(parents[i] = of_clk_get_parent_name(node, i)) != NULL)
|
|
i++;
|
|
|
|
clk = clk_register_mux(NULL, clk_name, parents, i,
|
|
CLK_SET_RATE_NO_REPARENT, reg,
|
|
data->shift, SUNXI_MUX_GATE_WIDTH,
|
|
0, &clk_lock);
|
|
|
|
if (clk) {
|
|
of_clk_add_provider(node, of_clk_src_simple_get, clk);
|
|
clk_register_clkdev(clk, clk_name, NULL);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* sunxi_divider_clk_setup() - Setup function for simple divider clocks
|
|
*/
|
|
|
|
struct div_data {
|
|
u8 shift;
|
|
u8 pow;
|
|
u8 width;
|
|
};
|
|
|
|
static const struct div_data sun4i_axi_data __initconst = {
|
|
.shift = 0,
|
|
.pow = 0,
|
|
.width = 2,
|
|
};
|
|
|
|
static const struct div_data sun4i_ahb_data __initconst = {
|
|
.shift = 4,
|
|
.pow = 1,
|
|
.width = 2,
|
|
};
|
|
|
|
static const struct div_data sun4i_apb0_data __initconst = {
|
|
.shift = 8,
|
|
.pow = 1,
|
|
.width = 2,
|
|
};
|
|
|
|
static const struct div_data sun6i_a31_apb2_div_data __initconst = {
|
|
.shift = 0,
|
|
.pow = 0,
|
|
.width = 4,
|
|
};
|
|
|
|
static void __init sunxi_divider_clk_setup(struct device_node *node,
|
|
struct div_data *data)
|
|
{
|
|
struct clk *clk;
|
|
const char *clk_name = node->name;
|
|
const char *clk_parent;
|
|
void *reg;
|
|
|
|
reg = of_iomap(node, 0);
|
|
|
|
clk_parent = of_clk_get_parent_name(node, 0);
|
|
|
|
clk = clk_register_divider(NULL, clk_name, clk_parent, 0,
|
|
reg, data->shift, data->width,
|
|
data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
|
|
&clk_lock);
|
|
if (clk) {
|
|
of_clk_add_provider(node, of_clk_src_simple_get, clk);
|
|
clk_register_clkdev(clk, clk_name, NULL);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
|
|
*/
|
|
|
|
#define SUNXI_GATES_MAX_SIZE 64
|
|
|
|
struct gates_data {
|
|
DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
|
|
};
|
|
|
|
static const struct gates_data sun4i_axi_gates_data __initconst = {
|
|
.mask = {1},
|
|
};
|
|
|
|
static const struct gates_data sun4i_ahb_gates_data __initconst = {
|
|
.mask = {0x7F77FFF, 0x14FB3F},
|
|
};
|
|
|
|
static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
|
|
.mask = {0x147667e7, 0x185915},
|
|
};
|
|
|
|
static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
|
|
.mask = {0x107067e7, 0x185111},
|
|
};
|
|
|
|
static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
|
|
.mask = {0xEDFE7F62, 0x794F931},
|
|
};
|
|
|
|
static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
|
|
.mask = { 0x12f77fff, 0x16ff3f },
|
|
};
|
|
|
|
static const struct gates_data sun4i_apb0_gates_data __initconst = {
|
|
.mask = {0x4EF},
|
|
};
|
|
|
|
static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
|
|
.mask = {0x469},
|
|
};
|
|
|
|
static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
|
|
.mask = {0x61},
|
|
};
|
|
|
|
static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
|
|
.mask = { 0x4ff },
|
|
};
|
|
|
|
static const struct gates_data sun4i_apb1_gates_data __initconst = {
|
|
.mask = {0xFF00F7},
|
|
};
|
|
|
|
static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
|
|
.mask = {0xf0007},
|
|
};
|
|
|
|
static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
|
|
.mask = {0xa0007},
|
|
};
|
|
|
|
static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
|
|
.mask = {0x3031},
|
|
};
|
|
|
|
static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
|
|
.mask = {0x3F000F},
|
|
};
|
|
|
|
static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
|
|
.mask = { 0xff80ff },
|
|
};
|
|
|
|
static void __init sunxi_gates_clk_setup(struct device_node *node,
|
|
struct gates_data *data)
|
|
{
|
|
struct clk_onecell_data *clk_data;
|
|
const char *clk_parent;
|
|
const char *clk_name;
|
|
void *reg;
|
|
int qty;
|
|
int i = 0;
|
|
int j = 0;
|
|
int ignore;
|
|
|
|
reg = of_iomap(node, 0);
|
|
|
|
clk_parent = of_clk_get_parent_name(node, 0);
|
|
|
|
/* Worst-case size approximation and memory allocation */
|
|
qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
|
|
clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
|
|
if (!clk_data)
|
|
return;
|
|
clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
|
|
if (!clk_data->clks) {
|
|
kfree(clk_data);
|
|
return;
|
|
}
|
|
|
|
for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
|
|
of_property_read_string_index(node, "clock-output-names",
|
|
j, &clk_name);
|
|
|
|
/* No driver claims this clock, but it should remain gated */
|
|
ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0;
|
|
|
|
clk_data->clks[i] = clk_register_gate(NULL, clk_name,
|
|
clk_parent, ignore,
|
|
reg + 4 * (i/32), i % 32,
|
|
0, &clk_lock);
|
|
WARN_ON(IS_ERR(clk_data->clks[i]));
|
|
|
|
j++;
|
|
}
|
|
|
|
/* Adjust to the real max */
|
|
clk_data->clk_num = i;
|
|
|
|
of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* sunxi_divs_clk_setup() helper data
|
|
*/
|
|
|
|
#define SUNXI_DIVS_MAX_QTY 2
|
|
#define SUNXI_DIVISOR_WIDTH 2
|
|
|
|
struct divs_data {
|
|
const struct factors_data *factors; /* data for the factor clock */
|
|
struct {
|
|
u8 fixed; /* is it a fixed divisor? if not... */
|
|
struct clk_div_table *table; /* is it a table based divisor? */
|
|
u8 shift; /* otherwise it's a normal divisor with this shift */
|
|
u8 pow; /* is it power-of-two based? */
|
|
u8 gate; /* is it independently gateable? */
|
|
} div[SUNXI_DIVS_MAX_QTY];
|
|
};
|
|
|
|
static struct clk_div_table pll6_sata_tbl[] = {
|
|
{ .val = 0, .div = 6, },
|
|
{ .val = 1, .div = 12, },
|
|
{ .val = 2, .div = 18, },
|
|
{ .val = 3, .div = 24, },
|
|
{ } /* sentinel */
|
|
};
|
|
|
|
static const struct divs_data pll5_divs_data __initconst = {
|
|
.factors = &sun4i_pll5_data,
|
|
.div = {
|
|
{ .shift = 0, .pow = 0, }, /* M, DDR */
|
|
{ .shift = 16, .pow = 1, }, /* P, other */
|
|
}
|
|
};
|
|
|
|
static const struct divs_data pll6_divs_data __initconst = {
|
|
.factors = &sun4i_pll5_data,
|
|
.div = {
|
|
{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
|
|
{ .fixed = 2 }, /* P, other */
|
|
}
|
|
};
|
|
|
|
/**
|
|
* sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
|
|
*
|
|
* These clocks look something like this
|
|
* ________________________
|
|
* | ___divisor 1---|----> to consumer
|
|
* parent >--| pll___/___divisor 2---|----> to consumer
|
|
* | \_______________|____> to consumer
|
|
* |________________________|
|
|
*/
|
|
|
|
static void __init sunxi_divs_clk_setup(struct device_node *node,
|
|
struct divs_data *data)
|
|
{
|
|
struct clk_onecell_data *clk_data;
|
|
const char *parent = node->name;
|
|
const char *clk_name;
|
|
struct clk **clks, *pclk;
|
|
struct clk_hw *gate_hw, *rate_hw;
|
|
const struct clk_ops *rate_ops;
|
|
struct clk_gate *gate = NULL;
|
|
struct clk_fixed_factor *fix_factor;
|
|
struct clk_divider *divider;
|
|
void *reg;
|
|
int i = 0;
|
|
int flags, clkflags;
|
|
|
|
/* Set up factor clock that we will be dividing */
|
|
pclk = sunxi_factors_clk_setup(node, data->factors);
|
|
|
|
reg = of_iomap(node, 0);
|
|
|
|
clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
|
|
if (!clk_data)
|
|
return;
|
|
|
|
clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
|
|
if (!clks)
|
|
goto free_clkdata;
|
|
|
|
clk_data->clks = clks;
|
|
|
|
/* It's not a good idea to have automatic reparenting changing
|
|
* our RAM clock! */
|
|
clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
|
|
|
|
for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
|
|
if (of_property_read_string_index(node, "clock-output-names",
|
|
i, &clk_name) != 0)
|
|
break;
|
|
|
|
gate_hw = NULL;
|
|
rate_hw = NULL;
|
|
rate_ops = NULL;
|
|
|
|
/* If this leaf clock can be gated, create a gate */
|
|
if (data->div[i].gate) {
|
|
gate = kzalloc(sizeof(*gate), GFP_KERNEL);
|
|
if (!gate)
|
|
goto free_clks;
|
|
|
|
gate->reg = reg;
|
|
gate->bit_idx = data->div[i].gate;
|
|
gate->lock = &clk_lock;
|
|
|
|
gate_hw = &gate->hw;
|
|
}
|
|
|
|
/* Leaves can be fixed or configurable divisors */
|
|
if (data->div[i].fixed) {
|
|
fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
|
|
if (!fix_factor)
|
|
goto free_gate;
|
|
|
|
fix_factor->mult = 1;
|
|
fix_factor->div = data->div[i].fixed;
|
|
|
|
rate_hw = &fix_factor->hw;
|
|
rate_ops = &clk_fixed_factor_ops;
|
|
} else {
|
|
divider = kzalloc(sizeof(*divider), GFP_KERNEL);
|
|
if (!divider)
|
|
goto free_gate;
|
|
|
|
flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
|
|
|
|
divider->reg = reg;
|
|
divider->shift = data->div[i].shift;
|
|
divider->width = SUNXI_DIVISOR_WIDTH;
|
|
divider->flags = flags;
|
|
divider->lock = &clk_lock;
|
|
divider->table = data->div[i].table;
|
|
|
|
rate_hw = ÷r->hw;
|
|
rate_ops = &clk_divider_ops;
|
|
}
|
|
|
|
/* Wrap the (potential) gate and the divisor on a composite
|
|
* clock to unify them */
|
|
clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
|
|
NULL, NULL,
|
|
rate_hw, rate_ops,
|
|
gate_hw, &clk_gate_ops,
|
|
clkflags);
|
|
|
|
WARN_ON(IS_ERR(clk_data->clks[i]));
|
|
clk_register_clkdev(clks[i], clk_name, NULL);
|
|
}
|
|
|
|
/* The last clock available on the getter is the parent */
|
|
clks[i++] = pclk;
|
|
|
|
/* Adjust to the real max */
|
|
clk_data->clk_num = i;
|
|
|
|
of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
|
|
|
|
return;
|
|
|
|
free_gate:
|
|
kfree(gate);
|
|
free_clks:
|
|
kfree(clks);
|
|
free_clkdata:
|
|
kfree(clk_data);
|
|
}
|
|
|
|
|
|
|
|
/* Matches for factors clocks */
|
|
static const struct of_device_id clk_factors_match[] __initconst = {
|
|
{.compatible = "allwinner,sun4i-pll1-clk", .data = &sun4i_pll1_data,},
|
|
{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
|
|
{.compatible = "allwinner,sun4i-apb1-clk", .data = &sun4i_apb1_data,},
|
|
{.compatible = "allwinner,sun4i-mod0-clk", .data = &sun4i_mod0_data,},
|
|
{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
|
|
{}
|
|
};
|
|
|
|
/* Matches for divider clocks */
|
|
static const struct of_device_id clk_div_match[] __initconst = {
|
|
{.compatible = "allwinner,sun4i-axi-clk", .data = &sun4i_axi_data,},
|
|
{.compatible = "allwinner,sun4i-ahb-clk", .data = &sun4i_ahb_data,},
|
|
{.compatible = "allwinner,sun4i-apb0-clk", .data = &sun4i_apb0_data,},
|
|
{.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
|
|
{}
|
|
};
|
|
|
|
/* Matches for divided outputs */
|
|
static const struct of_device_id clk_divs_match[] __initconst = {
|
|
{.compatible = "allwinner,sun4i-pll5-clk", .data = &pll5_divs_data,},
|
|
{.compatible = "allwinner,sun4i-pll6-clk", .data = &pll6_divs_data,},
|
|
{}
|
|
};
|
|
|
|
/* Matches for mux clocks */
|
|
static const struct of_device_id clk_mux_match[] __initconst = {
|
|
{.compatible = "allwinner,sun4i-cpu-clk", .data = &sun4i_cpu_mux_data,},
|
|
{.compatible = "allwinner,sun4i-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
|
|
{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
|
|
{}
|
|
};
|
|
|
|
/* Matches for gate clocks */
|
|
static const struct of_device_id clk_gates_match[] __initconst = {
|
|
{.compatible = "allwinner,sun4i-axi-gates-clk", .data = &sun4i_axi_gates_data,},
|
|
{.compatible = "allwinner,sun4i-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
|
|
{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
|
|
{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
|
|
{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
|
|
{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
|
|
{.compatible = "allwinner,sun4i-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
|
|
{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
|
|
{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
|
|
{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
|
|
{.compatible = "allwinner,sun4i-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
|
|
{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
|
|
{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
|
|
{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
|
|
{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
|
|
{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
|
|
{}
|
|
};
|
|
|
|
static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
|
|
void *function)
|
|
{
|
|
struct device_node *np;
|
|
const struct div_data *data;
|
|
const struct of_device_id *match;
|
|
void (*setup_function)(struct device_node *, const void *) = function;
|
|
|
|
for_each_matching_node(np, clk_match) {
|
|
match = of_match_node(clk_match, np);
|
|
data = match->data;
|
|
setup_function(np, data);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* System clock protection
|
|
*
|
|
* By enabling these critical clocks, we prevent their accidental gating
|
|
* by the framework
|
|
*/
|
|
static void __init sunxi_clock_protect(void)
|
|
{
|
|
struct clk *clk;
|
|
|
|
/* memory bus clock - sun5i+ */
|
|
clk = clk_get(NULL, "mbus");
|
|
if (!IS_ERR(clk)) {
|
|
clk_prepare_enable(clk);
|
|
clk_put(clk);
|
|
}
|
|
|
|
/* DDR clock - sun4i+ */
|
|
clk = clk_get(NULL, "pll5_ddr");
|
|
if (!IS_ERR(clk)) {
|
|
clk_prepare_enable(clk);
|
|
clk_put(clk);
|
|
}
|
|
}
|
|
|
|
static void __init sunxi_init_clocks(void)
|
|
{
|
|
/* Register factor clocks */
|
|
of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
|
|
|
|
/* Register divider clocks */
|
|
of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
|
|
|
|
/* Register divided output clocks */
|
|
of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
|
|
|
|
/* Register mux clocks */
|
|
of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
|
|
|
|
/* Register gate clocks */
|
|
of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
|
|
|
|
/* Enable core system clocks */
|
|
sunxi_clock_protect();
|
|
}
|
|
CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sunxi_init_clocks);
|
|
CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sunxi_init_clocks);
|
|
CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sunxi_init_clocks);
|
|
CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sunxi_init_clocks);
|
|
CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sunxi_init_clocks);
|