mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-11 19:46:45 +07:00
f8c2a0871b
This fixes this sparse warning: CHECK drivers/net/wireless/ath/key.c drivers/net/wireless/ath/key.c:110:6: warning: symbol 'ath_hw_set_keycache_entry' was not declared. Should it be static? Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
570 lines
16 KiB
C
570 lines
16 KiB
C
/*
|
|
* Copyright (c) 2009 Atheros Communications Inc.
|
|
* Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <asm/unaligned.h>
|
|
#include <net/mac80211.h>
|
|
|
|
#include "ath.h"
|
|
#include "reg.h"
|
|
#include "debug.h"
|
|
|
|
#define REG_READ (common->ops->read)
|
|
#define REG_WRITE(_ah, _reg, _val) (common->ops->write)(_ah, _val, _reg)
|
|
|
|
#define IEEE80211_WEP_NKID 4 /* number of key ids */
|
|
|
|
/************************/
|
|
/* Key Cache Management */
|
|
/************************/
|
|
|
|
bool ath_hw_keyreset(struct ath_common *common, u16 entry)
|
|
{
|
|
u32 keyType;
|
|
void *ah = common->ah;
|
|
|
|
if (entry >= common->keymax) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"keychache entry %u out of range\n", entry);
|
|
return false;
|
|
}
|
|
|
|
keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
|
|
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
|
|
REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
|
|
|
|
if (keyType == AR_KEYTABLE_TYPE_TKIP) {
|
|
u16 micentry = entry + 64;
|
|
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
|
|
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(ath_hw_keyreset);
|
|
|
|
static bool ath_hw_keysetmac(struct ath_common *common,
|
|
u16 entry, const u8 *mac)
|
|
{
|
|
u32 macHi, macLo;
|
|
u32 unicast_flag = AR_KEYTABLE_VALID;
|
|
void *ah = common->ah;
|
|
|
|
if (entry >= common->keymax) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"keychache entry %u out of range\n", entry);
|
|
return false;
|
|
}
|
|
|
|
if (mac != NULL) {
|
|
/*
|
|
* AR_KEYTABLE_VALID indicates that the address is a unicast
|
|
* address, which must match the transmitter address for
|
|
* decrypting frames.
|
|
* Not setting this bit allows the hardware to use the key
|
|
* for multicast frame decryption.
|
|
*/
|
|
if (mac[0] & 0x01)
|
|
unicast_flag = 0;
|
|
|
|
macHi = (mac[5] << 8) | mac[4];
|
|
macLo = (mac[3] << 24) |
|
|
(mac[2] << 16) |
|
|
(mac[1] << 8) |
|
|
mac[0];
|
|
macLo >>= 1;
|
|
macLo |= (macHi & 1) << 31;
|
|
macHi >>= 1;
|
|
} else {
|
|
macLo = macHi = 0;
|
|
}
|
|
REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
|
|
REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
|
|
const struct ath_keyval *k,
|
|
const u8 *mac)
|
|
{
|
|
void *ah = common->ah;
|
|
u32 key0, key1, key2, key3, key4;
|
|
u32 keyType;
|
|
|
|
if (entry >= common->keymax) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"keycache entry %u out of range\n", entry);
|
|
return false;
|
|
}
|
|
|
|
switch (k->kv_type) {
|
|
case ATH_CIPHER_AES_OCB:
|
|
keyType = AR_KEYTABLE_TYPE_AES;
|
|
break;
|
|
case ATH_CIPHER_AES_CCM:
|
|
if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
|
|
ath_print(common, ATH_DBG_ANY,
|
|
"AES-CCM not supported by this mac rev\n");
|
|
return false;
|
|
}
|
|
keyType = AR_KEYTABLE_TYPE_CCM;
|
|
break;
|
|
case ATH_CIPHER_TKIP:
|
|
keyType = AR_KEYTABLE_TYPE_TKIP;
|
|
if (entry + 64 >= common->keymax) {
|
|
ath_print(common, ATH_DBG_ANY,
|
|
"entry %u inappropriate for TKIP\n", entry);
|
|
return false;
|
|
}
|
|
break;
|
|
case ATH_CIPHER_WEP:
|
|
if (k->kv_len < WLAN_KEY_LEN_WEP40) {
|
|
ath_print(common, ATH_DBG_ANY,
|
|
"WEP key length %u too small\n", k->kv_len);
|
|
return false;
|
|
}
|
|
if (k->kv_len <= WLAN_KEY_LEN_WEP40)
|
|
keyType = AR_KEYTABLE_TYPE_40;
|
|
else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
|
|
keyType = AR_KEYTABLE_TYPE_104;
|
|
else
|
|
keyType = AR_KEYTABLE_TYPE_128;
|
|
break;
|
|
case ATH_CIPHER_CLR:
|
|
keyType = AR_KEYTABLE_TYPE_CLR;
|
|
break;
|
|
default:
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"cipher %u not supported\n", k->kv_type);
|
|
return false;
|
|
}
|
|
|
|
key0 = get_unaligned_le32(k->kv_val + 0);
|
|
key1 = get_unaligned_le16(k->kv_val + 4);
|
|
key2 = get_unaligned_le32(k->kv_val + 6);
|
|
key3 = get_unaligned_le16(k->kv_val + 10);
|
|
key4 = get_unaligned_le32(k->kv_val + 12);
|
|
if (k->kv_len <= WLAN_KEY_LEN_WEP104)
|
|
key4 &= 0xff;
|
|
|
|
/*
|
|
* Note: Key cache registers access special memory area that requires
|
|
* two 32-bit writes to actually update the values in the internal
|
|
* memory. Consequently, the exact order and pairs used here must be
|
|
* maintained.
|
|
*/
|
|
|
|
if (keyType == AR_KEYTABLE_TYPE_TKIP) {
|
|
u16 micentry = entry + 64;
|
|
|
|
/*
|
|
* Write inverted key[47:0] first to avoid Michael MIC errors
|
|
* on frames that could be sent or received at the same time.
|
|
* The correct key will be written in the end once everything
|
|
* else is ready.
|
|
*/
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
|
|
|
|
/* Write key[95:48] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
|
|
|
|
/* Write key[127:96] and key type */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
|
|
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
|
|
|
|
/* Write MAC address for the entry */
|
|
(void) ath_hw_keysetmac(common, entry, mac);
|
|
|
|
if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
|
|
/*
|
|
* TKIP uses two key cache entries:
|
|
* Michael MIC TX/RX keys in the same key cache entry
|
|
* (idx = main index + 64):
|
|
* key0 [31:0] = RX key [31:0]
|
|
* key1 [15:0] = TX key [31:16]
|
|
* key1 [31:16] = reserved
|
|
* key2 [31:0] = RX key [63:32]
|
|
* key3 [15:0] = TX key [15:0]
|
|
* key3 [31:16] = reserved
|
|
* key4 [31:0] = TX key [63:32]
|
|
*/
|
|
u32 mic0, mic1, mic2, mic3, mic4;
|
|
|
|
mic0 = get_unaligned_le32(k->kv_mic + 0);
|
|
mic2 = get_unaligned_le32(k->kv_mic + 4);
|
|
mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
|
|
mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
|
|
mic4 = get_unaligned_le32(k->kv_txmic + 4);
|
|
|
|
/* Write RX[31:0] and TX[31:16] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
|
|
|
|
/* Write RX[63:32] and TX[15:0] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
|
|
|
|
/* Write TX[63:32] and keyType(reserved) */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
|
|
REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
|
|
AR_KEYTABLE_TYPE_CLR);
|
|
|
|
} else {
|
|
/*
|
|
* TKIP uses four key cache entries (two for group
|
|
* keys):
|
|
* Michael MIC TX/RX keys are in different key cache
|
|
* entries (idx = main index + 64 for TX and
|
|
* main index + 32 + 96 for RX):
|
|
* key0 [31:0] = TX/RX MIC key [31:0]
|
|
* key1 [31:0] = reserved
|
|
* key2 [31:0] = TX/RX MIC key [63:32]
|
|
* key3 [31:0] = reserved
|
|
* key4 [31:0] = reserved
|
|
*
|
|
* Upper layer code will call this function separately
|
|
* for TX and RX keys when these registers offsets are
|
|
* used.
|
|
*/
|
|
u32 mic0, mic2;
|
|
|
|
mic0 = get_unaligned_le32(k->kv_mic + 0);
|
|
mic2 = get_unaligned_le32(k->kv_mic + 4);
|
|
|
|
/* Write MIC key[31:0] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
|
|
|
|
/* Write MIC key[63:32] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
|
|
|
|
/* Write TX[63:32] and keyType(reserved) */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
|
|
AR_KEYTABLE_TYPE_CLR);
|
|
}
|
|
|
|
/* MAC address registers are reserved for the MIC entry */
|
|
REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
|
|
REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
|
|
|
|
/*
|
|
* Write the correct (un-inverted) key[47:0] last to enable
|
|
* TKIP now that all other registers are set with correct
|
|
* values.
|
|
*/
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
|
|
} else {
|
|
/* Write key[47:0] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
|
|
|
|
/* Write key[95:48] */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
|
|
|
|
/* Write key[127:96] and key type */
|
|
REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
|
|
REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
|
|
|
|
/* Write MAC address for the entry */
|
|
(void) ath_hw_keysetmac(common, entry, mac);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
|
|
struct ath_keyval *hk, const u8 *addr,
|
|
bool authenticator)
|
|
{
|
|
const u8 *key_rxmic;
|
|
const u8 *key_txmic;
|
|
|
|
key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
|
|
key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
|
|
|
|
if (addr == NULL) {
|
|
/*
|
|
* Group key installation - only two key cache entries are used
|
|
* regardless of splitmic capability since group key is only
|
|
* used either for TX or RX.
|
|
*/
|
|
if (authenticator) {
|
|
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
|
|
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
|
|
} else {
|
|
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
|
|
memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
|
|
}
|
|
return ath_hw_set_keycache_entry(common, keyix, hk, addr);
|
|
}
|
|
if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
|
|
/* TX and RX keys share the same key cache entry. */
|
|
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
|
|
memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
|
|
return ath_hw_set_keycache_entry(common, keyix, hk, addr);
|
|
}
|
|
|
|
/* Separate key cache entries for TX and RX */
|
|
|
|
/* TX key goes at first index, RX key at +32. */
|
|
memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
|
|
if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
|
|
/* TX MIC entry failed. No need to proceed further */
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"Setting TX MIC Key Failed\n");
|
|
return 0;
|
|
}
|
|
|
|
memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
|
|
/* XXX delete tx key on failure? */
|
|
return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
|
|
}
|
|
|
|
static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
|
|
{
|
|
int i;
|
|
|
|
for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
|
|
if (test_bit(i, common->keymap) ||
|
|
test_bit(i + 64, common->keymap))
|
|
continue; /* At least one part of TKIP key allocated */
|
|
if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
|
|
(test_bit(i + 32, common->keymap) ||
|
|
test_bit(i + 64 + 32, common->keymap)))
|
|
continue; /* At least one part of TKIP key allocated */
|
|
|
|
/* Found a free slot for a TKIP key */
|
|
return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int ath_reserve_key_cache_slot(struct ath_common *common,
|
|
u32 cipher)
|
|
{
|
|
int i;
|
|
|
|
if (cipher == WLAN_CIPHER_SUITE_TKIP)
|
|
return ath_reserve_key_cache_slot_tkip(common);
|
|
|
|
/* First, try to find slots that would not be available for TKIP. */
|
|
if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
|
|
for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
|
|
if (!test_bit(i, common->keymap) &&
|
|
(test_bit(i + 32, common->keymap) ||
|
|
test_bit(i + 64, common->keymap) ||
|
|
test_bit(i + 64 + 32, common->keymap)))
|
|
return i;
|
|
if (!test_bit(i + 32, common->keymap) &&
|
|
(test_bit(i, common->keymap) ||
|
|
test_bit(i + 64, common->keymap) ||
|
|
test_bit(i + 64 + 32, common->keymap)))
|
|
return i + 32;
|
|
if (!test_bit(i + 64, common->keymap) &&
|
|
(test_bit(i , common->keymap) ||
|
|
test_bit(i + 32, common->keymap) ||
|
|
test_bit(i + 64 + 32, common->keymap)))
|
|
return i + 64;
|
|
if (!test_bit(i + 64 + 32, common->keymap) &&
|
|
(test_bit(i, common->keymap) ||
|
|
test_bit(i + 32, common->keymap) ||
|
|
test_bit(i + 64, common->keymap)))
|
|
return i + 64 + 32;
|
|
}
|
|
} else {
|
|
for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
|
|
if (!test_bit(i, common->keymap) &&
|
|
test_bit(i + 64, common->keymap))
|
|
return i;
|
|
if (test_bit(i, common->keymap) &&
|
|
!test_bit(i + 64, common->keymap))
|
|
return i + 64;
|
|
}
|
|
}
|
|
|
|
/* No partially used TKIP slots, pick any available slot */
|
|
for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
|
|
/* Do not allow slots that could be needed for TKIP group keys
|
|
* to be used. This limitation could be removed if we know that
|
|
* TKIP will not be used. */
|
|
if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
|
|
continue;
|
|
if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
|
|
if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
|
|
continue;
|
|
if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
|
|
continue;
|
|
}
|
|
|
|
if (!test_bit(i, common->keymap))
|
|
return i; /* Found a free slot for a key */
|
|
}
|
|
|
|
/* No free slot found */
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Configure encryption in the HW.
|
|
*/
|
|
int ath_key_config(struct ath_common *common,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_sta *sta,
|
|
struct ieee80211_key_conf *key)
|
|
{
|
|
struct ath_keyval hk;
|
|
const u8 *mac = NULL;
|
|
u8 gmac[ETH_ALEN];
|
|
int ret = 0;
|
|
int idx;
|
|
|
|
memset(&hk, 0, sizeof(hk));
|
|
|
|
switch (key->cipher) {
|
|
case WLAN_CIPHER_SUITE_WEP40:
|
|
case WLAN_CIPHER_SUITE_WEP104:
|
|
hk.kv_type = ATH_CIPHER_WEP;
|
|
break;
|
|
case WLAN_CIPHER_SUITE_TKIP:
|
|
hk.kv_type = ATH_CIPHER_TKIP;
|
|
break;
|
|
case WLAN_CIPHER_SUITE_CCMP:
|
|
hk.kv_type = ATH_CIPHER_AES_CCM;
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
hk.kv_len = key->keylen;
|
|
memcpy(hk.kv_val, key->key, key->keylen);
|
|
|
|
if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
|
|
switch (vif->type) {
|
|
case NL80211_IFTYPE_AP:
|
|
memcpy(gmac, vif->addr, ETH_ALEN);
|
|
gmac[0] |= 0x01;
|
|
mac = gmac;
|
|
idx = ath_reserve_key_cache_slot(common, key->cipher);
|
|
break;
|
|
case NL80211_IFTYPE_ADHOC:
|
|
if (!sta) {
|
|
idx = key->keyidx;
|
|
break;
|
|
}
|
|
memcpy(gmac, sta->addr, ETH_ALEN);
|
|
gmac[0] |= 0x01;
|
|
mac = gmac;
|
|
idx = ath_reserve_key_cache_slot(common, key->cipher);
|
|
break;
|
|
default:
|
|
idx = key->keyidx;
|
|
break;
|
|
}
|
|
} else if (key->keyidx) {
|
|
if (WARN_ON(!sta))
|
|
return -EOPNOTSUPP;
|
|
mac = sta->addr;
|
|
|
|
if (vif->type != NL80211_IFTYPE_AP) {
|
|
/* Only keyidx 0 should be used with unicast key, but
|
|
* allow this for client mode for now. */
|
|
idx = key->keyidx;
|
|
} else
|
|
return -EIO;
|
|
} else {
|
|
if (WARN_ON(!sta))
|
|
return -EOPNOTSUPP;
|
|
mac = sta->addr;
|
|
|
|
idx = ath_reserve_key_cache_slot(common, key->cipher);
|
|
}
|
|
|
|
if (idx < 0)
|
|
return -ENOSPC; /* no free key cache entries */
|
|
|
|
if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
|
|
ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
|
|
vif->type == NL80211_IFTYPE_AP);
|
|
else
|
|
ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
|
|
|
|
if (!ret)
|
|
return -EIO;
|
|
|
|
set_bit(idx, common->keymap);
|
|
if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
|
|
set_bit(idx + 64, common->keymap);
|
|
set_bit(idx, common->tkip_keymap);
|
|
set_bit(idx + 64, common->tkip_keymap);
|
|
if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
|
|
set_bit(idx + 32, common->keymap);
|
|
set_bit(idx + 64 + 32, common->keymap);
|
|
set_bit(idx + 32, common->tkip_keymap);
|
|
set_bit(idx + 64 + 32, common->tkip_keymap);
|
|
}
|
|
}
|
|
|
|
return idx;
|
|
}
|
|
EXPORT_SYMBOL(ath_key_config);
|
|
|
|
/*
|
|
* Delete Key.
|
|
*/
|
|
void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
|
|
{
|
|
ath_hw_keyreset(common, key->hw_key_idx);
|
|
if (key->hw_key_idx < IEEE80211_WEP_NKID)
|
|
return;
|
|
|
|
clear_bit(key->hw_key_idx, common->keymap);
|
|
if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
|
|
return;
|
|
|
|
clear_bit(key->hw_key_idx + 64, common->keymap);
|
|
|
|
clear_bit(key->hw_key_idx, common->tkip_keymap);
|
|
clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
|
|
|
|
if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
|
|
ath_hw_keyreset(common, key->hw_key_idx + 32);
|
|
clear_bit(key->hw_key_idx + 32, common->keymap);
|
|
clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
|
|
|
|
clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
|
|
clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ath_key_delete);
|