mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 06:09:17 +07:00
3dbf100b0b
The EL2 vector hardening feature causes KVM to generate vectors for each type of CPU present in the system. The generated sequences already do some of the early guest-exit work (i.e. saving registers). To avoid duplication the generated vectors branch to the original vector just after the preamble. This size is hard coded. Adding new instructions to the HYP vector causes strange side effects, which are difficult to debug as the affected code is patched in at runtime. Add KVM_VECTOR_PREAMBLE to tell kvm_patch_vector_branch() how big the preamble is. The valid_vect macro can then validate this at build time. Reviewed-by: Julien Thierry <julien.thierry@arm.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
216 lines
5.3 KiB
C
216 lines
5.3 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2017 ARM Ltd.
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/random.h>
|
|
#include <linux/memblock.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/kvm_mmu.h>
|
|
|
|
/*
|
|
* The LSB of the random hyp VA tag or 0 if no randomization is used.
|
|
*/
|
|
static u8 tag_lsb;
|
|
/*
|
|
* The random hyp VA tag value with the region bit if hyp randomization is used
|
|
*/
|
|
static u64 tag_val;
|
|
static u64 va_mask;
|
|
|
|
static void compute_layout(void)
|
|
{
|
|
phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
|
|
u64 hyp_va_msb;
|
|
int kva_msb;
|
|
|
|
/* Where is my RAM region? */
|
|
hyp_va_msb = idmap_addr & BIT(VA_BITS - 1);
|
|
hyp_va_msb ^= BIT(VA_BITS - 1);
|
|
|
|
kva_msb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
|
|
(u64)(high_memory - 1));
|
|
|
|
if (kva_msb == (VA_BITS - 1)) {
|
|
/*
|
|
* No space in the address, let's compute the mask so
|
|
* that it covers (VA_BITS - 1) bits, and the region
|
|
* bit. The tag stays set to zero.
|
|
*/
|
|
va_mask = BIT(VA_BITS - 1) - 1;
|
|
va_mask |= hyp_va_msb;
|
|
} else {
|
|
/*
|
|
* We do have some free bits to insert a random tag.
|
|
* Hyp VAs are now created from kernel linear map VAs
|
|
* using the following formula (with V == VA_BITS):
|
|
*
|
|
* 63 ... V | V-1 | V-2 .. tag_lsb | tag_lsb - 1 .. 0
|
|
* ---------------------------------------------------------
|
|
* | 0000000 | hyp_va_msb | random tag | kern linear VA |
|
|
*/
|
|
tag_lsb = kva_msb;
|
|
va_mask = GENMASK_ULL(tag_lsb - 1, 0);
|
|
tag_val = get_random_long() & GENMASK_ULL(VA_BITS - 2, tag_lsb);
|
|
tag_val |= hyp_va_msb;
|
|
tag_val >>= tag_lsb;
|
|
}
|
|
}
|
|
|
|
static u32 compute_instruction(int n, u32 rd, u32 rn)
|
|
{
|
|
u32 insn = AARCH64_BREAK_FAULT;
|
|
|
|
switch (n) {
|
|
case 0:
|
|
insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
rn, rd, va_mask);
|
|
break;
|
|
|
|
case 1:
|
|
/* ROR is a variant of EXTR with Rm = Rn */
|
|
insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
|
|
rn, rn, rd,
|
|
tag_lsb);
|
|
break;
|
|
|
|
case 2:
|
|
insn = aarch64_insn_gen_add_sub_imm(rd, rn,
|
|
tag_val & GENMASK(11, 0),
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_ADSB_ADD);
|
|
break;
|
|
|
|
case 3:
|
|
insn = aarch64_insn_gen_add_sub_imm(rd, rn,
|
|
tag_val & GENMASK(23, 12),
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_ADSB_ADD);
|
|
break;
|
|
|
|
case 4:
|
|
/* ROR is a variant of EXTR with Rm = Rn */
|
|
insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
|
|
rn, rn, rd, 64 - tag_lsb);
|
|
break;
|
|
}
|
|
|
|
return insn;
|
|
}
|
|
|
|
void __init kvm_update_va_mask(struct alt_instr *alt,
|
|
__le32 *origptr, __le32 *updptr, int nr_inst)
|
|
{
|
|
int i;
|
|
|
|
BUG_ON(nr_inst != 5);
|
|
|
|
if (!has_vhe() && !va_mask)
|
|
compute_layout();
|
|
|
|
for (i = 0; i < nr_inst; i++) {
|
|
u32 rd, rn, insn, oinsn;
|
|
|
|
/*
|
|
* VHE doesn't need any address translation, let's NOP
|
|
* everything.
|
|
*
|
|
* Alternatively, if we don't have any spare bits in
|
|
* the address, NOP everything after masking that
|
|
* kernel VA.
|
|
*/
|
|
if (has_vhe() || (!tag_lsb && i > 0)) {
|
|
updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
|
|
continue;
|
|
}
|
|
|
|
oinsn = le32_to_cpu(origptr[i]);
|
|
rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
|
|
rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
|
|
|
|
insn = compute_instruction(i, rd, rn);
|
|
BUG_ON(insn == AARCH64_BREAK_FAULT);
|
|
|
|
updptr[i] = cpu_to_le32(insn);
|
|
}
|
|
}
|
|
|
|
void *__kvm_bp_vect_base;
|
|
int __kvm_harden_el2_vector_slot;
|
|
|
|
void kvm_patch_vector_branch(struct alt_instr *alt,
|
|
__le32 *origptr, __le32 *updptr, int nr_inst)
|
|
{
|
|
u64 addr;
|
|
u32 insn;
|
|
|
|
BUG_ON(nr_inst != 5);
|
|
|
|
if (has_vhe() || !cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
|
|
WARN_ON_ONCE(cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS));
|
|
return;
|
|
}
|
|
|
|
if (!va_mask)
|
|
compute_layout();
|
|
|
|
/*
|
|
* Compute HYP VA by using the same computation as kern_hyp_va()
|
|
*/
|
|
addr = (uintptr_t)kvm_ksym_ref(__kvm_hyp_vector);
|
|
addr &= va_mask;
|
|
addr |= tag_val << tag_lsb;
|
|
|
|
/* Use PC[10:7] to branch to the same vector in KVM */
|
|
addr |= ((u64)origptr & GENMASK_ULL(10, 7));
|
|
|
|
/*
|
|
* Branch over the preamble in order to avoid the initial store on
|
|
* the stack (which we already perform in the hardening vectors).
|
|
*/
|
|
addr += KVM_VECTOR_PREAMBLE;
|
|
|
|
/* stp x0, x1, [sp, #-16]! */
|
|
insn = aarch64_insn_gen_load_store_pair(AARCH64_INSN_REG_0,
|
|
AARCH64_INSN_REG_1,
|
|
AARCH64_INSN_REG_SP,
|
|
-16,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_LDST_STORE_PAIR_PRE_INDEX);
|
|
*updptr++ = cpu_to_le32(insn);
|
|
|
|
/* movz x0, #(addr & 0xffff) */
|
|
insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
|
|
(u16)addr,
|
|
0,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_MOVEWIDE_ZERO);
|
|
*updptr++ = cpu_to_le32(insn);
|
|
|
|
/* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
|
|
insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
|
|
(u16)(addr >> 16),
|
|
16,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_MOVEWIDE_KEEP);
|
|
*updptr++ = cpu_to_le32(insn);
|
|
|
|
/* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
|
|
insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
|
|
(u16)(addr >> 32),
|
|
32,
|
|
AARCH64_INSN_VARIANT_64BIT,
|
|
AARCH64_INSN_MOVEWIDE_KEEP);
|
|
*updptr++ = cpu_to_le32(insn);
|
|
|
|
/* br x0 */
|
|
insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
|
|
AARCH64_INSN_BRANCH_NOLINK);
|
|
*updptr++ = cpu_to_le32(insn);
|
|
}
|