linux_dsm_epyc7002/drivers/ssb/driver_chipcommon.c
Linus Torvalds cebfa85eb8 Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
Pull MIPS updates from Ralf Baechle:
 "The MIPS bits for 3.8.  This also includes a bunch fixes that were
  sitting in the linux-mips.org git tree for a long time.  This pull
  request contains updates to several OCTEON drivers and the board
  support code for BCM47XX, BCM63XX, XLP, XLR, XLS, lantiq, Loongson1B,
  updates to the SSB bus support, MIPS kexec code and adds support for
  kdump.

  When pulling this, there are two expected merge conflicts in
  include/linux/bcma/bcma_driver_chipcommon.h which are trivial to
  resolve, just remove the conflict markers and keep both alternatives."

* 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus: (90 commits)
  MIPS: PMC-Sierra Yosemite: Remove support.
  VIDEO: Newport Fix console crashes
  MIPS: wrppmc: Fix build of PCI code.
  MIPS: IP22/IP28: Fix build of EISA code.
  MIPS: RB532: Fix build of prom code.
  MIPS: PowerTV: Fix build.
  MIPS: IP27: Correct fucked grammar in ops-bridge.c
  MIPS: Highmem: Fix build error if CONFIG_DEBUG_HIGHMEM is disabled
  MIPS: Fix potencial corruption
  MIPS: Fix for warning from FPU emulation code
  MIPS: Handle COP3 Unusable exception as COP1X for FP emulation
  MIPS: Fix poweroff failure when HOTPLUG_CPU configured.
  MIPS: MT: Fix build with CONFIG_UIDGID_STRICT_TYPE_CHECKS=y
  MIPS: Remove unused smvp.h
  MIPS/EDAC: Improve OCTEON EDAC support.
  MIPS: OCTEON: Add definitions for OCTEON memory contoller registers.
  MIPS: OCTEON: Add OCTEON family definitions to octeon-model.h
  ata: pata_octeon_cf: Use correct byte order for DMA in when built little-endian.
  MIPS/OCTEON/ata: Convert pata_octeon_cf.c to use device tree.
  MIPS: Remove usage of CEVT_R4K_LIB config option.
  ...
2012-12-14 14:27:45 -08:00

698 lines
18 KiB
C

/*
* Sonics Silicon Backplane
* Broadcom ChipCommon core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <m@bues.ch>
* Copyright 2012, Hauke Mehrtens <hauke@hauke-m.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/export.h>
#include <linux/pci.h>
#include <linux/bcm47xx_wdt.h>
#include "ssb_private.h"
/* Clock sources */
enum ssb_clksrc {
/* PCI clock */
SSB_CHIPCO_CLKSRC_PCI,
/* Crystal slow clock oscillator */
SSB_CHIPCO_CLKSRC_XTALOS,
/* Low power oscillator */
SSB_CHIPCO_CLKSRC_LOPWROS,
};
static inline u32 chipco_write32_masked(struct ssb_chipcommon *cc, u16 offset,
u32 mask, u32 value)
{
value &= mask;
value |= chipco_read32(cc, offset) & ~mask;
chipco_write32(cc, offset, value);
return value;
}
void ssb_chipco_set_clockmode(struct ssb_chipcommon *cc,
enum ssb_clkmode mode)
{
struct ssb_device *ccdev = cc->dev;
struct ssb_bus *bus;
u32 tmp;
if (!ccdev)
return;
bus = ccdev->bus;
/* We support SLOW only on 6..9 */
if (ccdev->id.revision >= 10 && mode == SSB_CLKMODE_SLOW)
mode = SSB_CLKMODE_DYNAMIC;
if (cc->capabilities & SSB_CHIPCO_CAP_PMU)
return; /* PMU controls clockmode, separated function needed */
SSB_WARN_ON(ccdev->id.revision >= 20);
/* chipcommon cores prior to rev6 don't support dynamic clock control */
if (ccdev->id.revision < 6)
return;
/* ChipCommon cores rev10+ need testing */
if (ccdev->id.revision >= 10)
return;
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
switch (mode) {
case SSB_CLKMODE_SLOW: /* For revs 6..9 only */
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp |= SSB_CHIPCO_SLOWCLKCTL_FSLOW;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
break;
case SSB_CLKMODE_FAST:
if (ccdev->id.revision < 10) {
ssb_pci_xtal(bus, SSB_GPIO_XTAL, 1); /* Force crystal on */
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_FSLOW;
tmp |= SSB_CHIPCO_SLOWCLKCTL_IPLL;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
} else {
chipco_write32(cc, SSB_CHIPCO_SYSCLKCTL,
(chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL) |
SSB_CHIPCO_SYSCLKCTL_FORCEHT));
/* udelay(150); TODO: not available in early init */
}
break;
case SSB_CLKMODE_DYNAMIC:
if (ccdev->id.revision < 10) {
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_FSLOW;
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_IPLL;
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_ENXTAL;
if ((tmp & SSB_CHIPCO_SLOWCLKCTL_SRC) !=
SSB_CHIPCO_SLOWCLKCTL_SRC_XTAL)
tmp |= SSB_CHIPCO_SLOWCLKCTL_ENXTAL;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
/* For dynamic control, we have to release our xtal_pu
* "force on" */
if (tmp & SSB_CHIPCO_SLOWCLKCTL_ENXTAL)
ssb_pci_xtal(bus, SSB_GPIO_XTAL, 0);
} else {
chipco_write32(cc, SSB_CHIPCO_SYSCLKCTL,
(chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL) &
~SSB_CHIPCO_SYSCLKCTL_FORCEHT));
}
break;
default:
SSB_WARN_ON(1);
}
}
/* Get the Slow Clock Source */
static enum ssb_clksrc chipco_pctl_get_slowclksrc(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
u32 uninitialized_var(tmp);
if (cc->dev->id.revision < 6) {
if (bus->bustype == SSB_BUSTYPE_SSB ||
bus->bustype == SSB_BUSTYPE_PCMCIA)
return SSB_CHIPCO_CLKSRC_XTALOS;
if (bus->bustype == SSB_BUSTYPE_PCI) {
pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &tmp);
if (tmp & 0x10)
return SSB_CHIPCO_CLKSRC_PCI;
return SSB_CHIPCO_CLKSRC_XTALOS;
}
}
if (cc->dev->id.revision < 10) {
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= 0x7;
if (tmp == 0)
return SSB_CHIPCO_CLKSRC_LOPWROS;
if (tmp == 1)
return SSB_CHIPCO_CLKSRC_XTALOS;
if (tmp == 2)
return SSB_CHIPCO_CLKSRC_PCI;
}
return SSB_CHIPCO_CLKSRC_XTALOS;
}
/* Get maximum or minimum (depending on get_max flag) slowclock frequency. */
static int chipco_pctl_clockfreqlimit(struct ssb_chipcommon *cc, int get_max)
{
int uninitialized_var(limit);
enum ssb_clksrc clocksrc;
int divisor = 1;
u32 tmp;
clocksrc = chipco_pctl_get_slowclksrc(cc);
if (cc->dev->id.revision < 6) {
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_PCI:
divisor = 64;
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
divisor = 32;
break;
default:
SSB_WARN_ON(1);
}
} else if (cc->dev->id.revision < 10) {
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_LOPWROS:
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
case SSB_CHIPCO_CLKSRC_PCI:
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
divisor = (tmp >> 16) + 1;
divisor *= 4;
break;
}
} else {
tmp = chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL);
divisor = (tmp >> 16) + 1;
divisor *= 4;
}
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_LOPWROS:
if (get_max)
limit = 43000;
else
limit = 25000;
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
if (get_max)
limit = 20200000;
else
limit = 19800000;
break;
case SSB_CHIPCO_CLKSRC_PCI:
if (get_max)
limit = 34000000;
else
limit = 25000000;
break;
}
limit /= divisor;
return limit;
}
static void chipco_powercontrol_init(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
if (bus->chip_id == 0x4321) {
if (bus->chip_rev == 0)
chipco_write32(cc, SSB_CHIPCO_CHIPCTL, 0x3A4);
else if (bus->chip_rev == 1)
chipco_write32(cc, SSB_CHIPCO_CHIPCTL, 0xA4);
}
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
if (cc->dev->id.revision >= 10) {
/* Set Idle Power clock rate to 1Mhz */
chipco_write32(cc, SSB_CHIPCO_SYSCLKCTL,
(chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL) &
0x0000FFFF) | 0x00040000);
} else {
int maxfreq;
maxfreq = chipco_pctl_clockfreqlimit(cc, 1);
chipco_write32(cc, SSB_CHIPCO_PLLONDELAY,
(maxfreq * 150 + 999999) / 1000000);
chipco_write32(cc, SSB_CHIPCO_FREFSELDELAY,
(maxfreq * 15 + 999999) / 1000000);
}
}
/* http://bcm-v4.sipsolutions.net/802.11/PmuFastPwrupDelay */
static u16 pmu_fast_powerup_delay(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
switch (bus->chip_id) {
case 0x4312:
case 0x4322:
case 0x4328:
return 7000;
case 0x4325:
/* TODO: */
default:
return 15000;
}
}
/* http://bcm-v4.sipsolutions.net/802.11/ClkctlFastPwrupDelay */
static void calc_fast_powerup_delay(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
int minfreq;
unsigned int tmp;
u32 pll_on_delay;
if (bus->bustype != SSB_BUSTYPE_PCI)
return;
if (cc->capabilities & SSB_CHIPCO_CAP_PMU) {
cc->fast_pwrup_delay = pmu_fast_powerup_delay(cc);
return;
}
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
minfreq = chipco_pctl_clockfreqlimit(cc, 0);
pll_on_delay = chipco_read32(cc, SSB_CHIPCO_PLLONDELAY);
tmp = (((pll_on_delay + 2) * 1000000) + (minfreq - 1)) / minfreq;
SSB_WARN_ON(tmp & ~0xFFFF);
cc->fast_pwrup_delay = tmp;
}
static u32 ssb_chipco_alp_clock(struct ssb_chipcommon *cc)
{
if (cc->capabilities & SSB_CHIPCO_CAP_PMU)
return ssb_pmu_get_alp_clock(cc);
return 20000000;
}
static u32 ssb_chipco_watchdog_get_max_timer(struct ssb_chipcommon *cc)
{
u32 nb;
if (cc->capabilities & SSB_CHIPCO_CAP_PMU) {
if (cc->dev->id.revision < 26)
nb = 16;
else
nb = (cc->dev->id.revision >= 37) ? 32 : 24;
} else {
nb = 28;
}
if (nb == 32)
return 0xffffffff;
else
return (1 << nb) - 1;
}
u32 ssb_chipco_watchdog_timer_set_wdt(struct bcm47xx_wdt *wdt, u32 ticks)
{
struct ssb_chipcommon *cc = bcm47xx_wdt_get_drvdata(wdt);
if (cc->dev->bus->bustype != SSB_BUSTYPE_SSB)
return 0;
return ssb_chipco_watchdog_timer_set(cc, ticks);
}
u32 ssb_chipco_watchdog_timer_set_ms(struct bcm47xx_wdt *wdt, u32 ms)
{
struct ssb_chipcommon *cc = bcm47xx_wdt_get_drvdata(wdt);
u32 ticks;
if (cc->dev->bus->bustype != SSB_BUSTYPE_SSB)
return 0;
ticks = ssb_chipco_watchdog_timer_set(cc, cc->ticks_per_ms * ms);
return ticks / cc->ticks_per_ms;
}
static int ssb_chipco_watchdog_ticks_per_ms(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
if (cc->capabilities & SSB_CHIPCO_CAP_PMU) {
/* based on 32KHz ILP clock */
return 32;
} else {
if (cc->dev->id.revision < 18)
return ssb_clockspeed(bus) / 1000;
else
return ssb_chipco_alp_clock(cc) / 1000;
}
}
void ssb_chipcommon_init(struct ssb_chipcommon *cc)
{
if (!cc->dev)
return; /* We don't have a ChipCommon */
spin_lock_init(&cc->gpio_lock);
if (cc->dev->id.revision >= 11)
cc->status = chipco_read32(cc, SSB_CHIPCO_CHIPSTAT);
ssb_dprintk(KERN_INFO PFX "chipcommon status is 0x%x\n", cc->status);
if (cc->dev->id.revision >= 20) {
chipco_write32(cc, SSB_CHIPCO_GPIOPULLUP, 0);
chipco_write32(cc, SSB_CHIPCO_GPIOPULLDOWN, 0);
}
ssb_pmu_init(cc);
chipco_powercontrol_init(cc);
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_FAST);
calc_fast_powerup_delay(cc);
if (cc->dev->bus->bustype == SSB_BUSTYPE_SSB) {
cc->ticks_per_ms = ssb_chipco_watchdog_ticks_per_ms(cc);
cc->max_timer_ms = ssb_chipco_watchdog_get_max_timer(cc) / cc->ticks_per_ms;
}
}
void ssb_chipco_suspend(struct ssb_chipcommon *cc)
{
if (!cc->dev)
return;
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
}
void ssb_chipco_resume(struct ssb_chipcommon *cc)
{
if (!cc->dev)
return;
chipco_powercontrol_init(cc);
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_FAST);
}
/* Get the processor clock */
void ssb_chipco_get_clockcpu(struct ssb_chipcommon *cc,
u32 *plltype, u32 *n, u32 *m)
{
*n = chipco_read32(cc, SSB_CHIPCO_CLOCK_N);
*plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
switch (*plltype) {
case SSB_PLLTYPE_2:
case SSB_PLLTYPE_4:
case SSB_PLLTYPE_6:
case SSB_PLLTYPE_7:
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_MIPS);
break;
case SSB_PLLTYPE_3:
/* 5350 uses m2 to control mips */
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_M2);
break;
default:
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_SB);
break;
}
}
/* Get the bus clock */
void ssb_chipco_get_clockcontrol(struct ssb_chipcommon *cc,
u32 *plltype, u32 *n, u32 *m)
{
*n = chipco_read32(cc, SSB_CHIPCO_CLOCK_N);
*plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
switch (*plltype) {
case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_MIPS);
break;
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
if (cc->dev->bus->chip_id != 0x5365) {
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_M2);
break;
}
/* Fallthough */
default:
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_SB);
}
}
void ssb_chipco_timing_init(struct ssb_chipcommon *cc,
unsigned long ns)
{
struct ssb_device *dev = cc->dev;
struct ssb_bus *bus = dev->bus;
u32 tmp;
/* set register for external IO to control LED. */
chipco_write32(cc, SSB_CHIPCO_PROG_CFG, 0x11);
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT; /* Waitcount-3 = 10ns */
tmp |= DIV_ROUND_UP(40, ns) << SSB_PROG_WCNT_1_SHIFT; /* Waitcount-1 = 40ns */
tmp |= DIV_ROUND_UP(240, ns); /* Waitcount-0 = 240ns */
chipco_write32(cc, SSB_CHIPCO_PROG_WAITCNT, tmp); /* 0x01020a0c for a 100Mhz clock */
/* Set timing for the flash */
tmp = DIV_ROUND_UP(10, ns) << SSB_FLASH_WCNT_3_SHIFT; /* Waitcount-3 = 10nS */
tmp |= DIV_ROUND_UP(10, ns) << SSB_FLASH_WCNT_1_SHIFT; /* Waitcount-1 = 10nS */
tmp |= DIV_ROUND_UP(120, ns); /* Waitcount-0 = 120nS */
if ((bus->chip_id == 0x5365) ||
(dev->id.revision < 9))
chipco_write32(cc, SSB_CHIPCO_FLASH_WAITCNT, tmp);
if ((bus->chip_id == 0x5365) ||
(dev->id.revision < 9) ||
((bus->chip_id == 0x5350) && (bus->chip_rev == 0)))
chipco_write32(cc, SSB_CHIPCO_PCMCIA_MEMWAIT, tmp);
if (bus->chip_id == 0x5350) {
/* Enable EXTIF */
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT; /* Waitcount-3 = 10ns */
tmp |= DIV_ROUND_UP(20, ns) << SSB_PROG_WCNT_2_SHIFT; /* Waitcount-2 = 20ns */
tmp |= DIV_ROUND_UP(100, ns) << SSB_PROG_WCNT_1_SHIFT; /* Waitcount-1 = 100ns */
tmp |= DIV_ROUND_UP(120, ns); /* Waitcount-0 = 120ns */
chipco_write32(cc, SSB_CHIPCO_PROG_WAITCNT, tmp); /* 0x01020a0c for a 100Mhz clock */
}
}
/* Set chip watchdog reset timer to fire in 'ticks' backplane cycles */
u32 ssb_chipco_watchdog_timer_set(struct ssb_chipcommon *cc, u32 ticks)
{
u32 maxt;
enum ssb_clkmode clkmode;
maxt = ssb_chipco_watchdog_get_max_timer(cc);
if (cc->capabilities & SSB_CHIPCO_CAP_PMU) {
if (ticks == 1)
ticks = 2;
else if (ticks > maxt)
ticks = maxt;
chipco_write32(cc, SSB_CHIPCO_PMU_WATCHDOG, ticks);
} else {
clkmode = ticks ? SSB_CLKMODE_FAST : SSB_CLKMODE_DYNAMIC;
ssb_chipco_set_clockmode(cc, clkmode);
if (ticks > maxt)
ticks = maxt;
/* instant NMI */
chipco_write32(cc, SSB_CHIPCO_WATCHDOG, ticks);
}
return ticks;
}
void ssb_chipco_irq_mask(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
chipco_write32_masked(cc, SSB_CHIPCO_IRQMASK, mask, value);
}
u32 ssb_chipco_irq_status(struct ssb_chipcommon *cc, u32 mask)
{
return chipco_read32(cc, SSB_CHIPCO_IRQSTAT) & mask;
}
u32 ssb_chipco_gpio_in(struct ssb_chipcommon *cc, u32 mask)
{
return chipco_read32(cc, SSB_CHIPCO_GPIOIN) & mask;
}
u32 ssb_chipco_gpio_out(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
unsigned long flags;
u32 res = 0;
spin_lock_irqsave(&cc->gpio_lock, flags);
res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOOUT, mask, value);
spin_unlock_irqrestore(&cc->gpio_lock, flags);
return res;
}
u32 ssb_chipco_gpio_outen(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
unsigned long flags;
u32 res = 0;
spin_lock_irqsave(&cc->gpio_lock, flags);
res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOOUTEN, mask, value);
spin_unlock_irqrestore(&cc->gpio_lock, flags);
return res;
}
u32 ssb_chipco_gpio_control(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
unsigned long flags;
u32 res = 0;
spin_lock_irqsave(&cc->gpio_lock, flags);
res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOCTL, mask, value);
spin_unlock_irqrestore(&cc->gpio_lock, flags);
return res;
}
EXPORT_SYMBOL(ssb_chipco_gpio_control);
u32 ssb_chipco_gpio_intmask(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
unsigned long flags;
u32 res = 0;
spin_lock_irqsave(&cc->gpio_lock, flags);
res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOIRQ, mask, value);
spin_unlock_irqrestore(&cc->gpio_lock, flags);
return res;
}
u32 ssb_chipco_gpio_polarity(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
unsigned long flags;
u32 res = 0;
spin_lock_irqsave(&cc->gpio_lock, flags);
res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOPOL, mask, value);
spin_unlock_irqrestore(&cc->gpio_lock, flags);
return res;
}
u32 ssb_chipco_gpio_pullup(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
unsigned long flags;
u32 res = 0;
if (cc->dev->id.revision < 20)
return 0xffffffff;
spin_lock_irqsave(&cc->gpio_lock, flags);
res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOPULLUP, mask, value);
spin_unlock_irqrestore(&cc->gpio_lock, flags);
return res;
}
u32 ssb_chipco_gpio_pulldown(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
unsigned long flags;
u32 res = 0;
if (cc->dev->id.revision < 20)
return 0xffffffff;
spin_lock_irqsave(&cc->gpio_lock, flags);
res = chipco_write32_masked(cc, SSB_CHIPCO_GPIOPULLDOWN, mask, value);
spin_unlock_irqrestore(&cc->gpio_lock, flags);
return res;
}
#ifdef CONFIG_SSB_SERIAL
int ssb_chipco_serial_init(struct ssb_chipcommon *cc,
struct ssb_serial_port *ports)
{
struct ssb_bus *bus = cc->dev->bus;
int nr_ports = 0;
u32 plltype;
unsigned int irq;
u32 baud_base, div;
u32 i, n;
unsigned int ccrev = cc->dev->id.revision;
plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
irq = ssb_mips_irq(cc->dev);
if (plltype == SSB_PLLTYPE_1) {
/* PLL clock */
baud_base = ssb_calc_clock_rate(plltype,
chipco_read32(cc, SSB_CHIPCO_CLOCK_N),
chipco_read32(cc, SSB_CHIPCO_CLOCK_M2));
div = 1;
} else {
if (ccrev == 20) {
/* BCM5354 uses constant 25MHz clock */
baud_base = 25000000;
div = 48;
/* Set the override bit so we don't divide it */
chipco_write32(cc, SSB_CHIPCO_CORECTL,
chipco_read32(cc, SSB_CHIPCO_CORECTL)
| SSB_CHIPCO_CORECTL_UARTCLK0);
} else if ((ccrev >= 11) && (ccrev != 15)) {
baud_base = ssb_chipco_alp_clock(cc);
div = 1;
if (ccrev >= 21) {
/* Turn off UART clock before switching clocksource. */
chipco_write32(cc, SSB_CHIPCO_CORECTL,
chipco_read32(cc, SSB_CHIPCO_CORECTL)
& ~SSB_CHIPCO_CORECTL_UARTCLKEN);
}
/* Set the override bit so we don't divide it */
chipco_write32(cc, SSB_CHIPCO_CORECTL,
chipco_read32(cc, SSB_CHIPCO_CORECTL)
| SSB_CHIPCO_CORECTL_UARTCLK0);
if (ccrev >= 21) {
/* Re-enable the UART clock. */
chipco_write32(cc, SSB_CHIPCO_CORECTL,
chipco_read32(cc, SSB_CHIPCO_CORECTL)
| SSB_CHIPCO_CORECTL_UARTCLKEN);
}
} else if (ccrev >= 3) {
/* Internal backplane clock */
baud_base = ssb_clockspeed(bus);
div = chipco_read32(cc, SSB_CHIPCO_CLKDIV)
& SSB_CHIPCO_CLKDIV_UART;
} else {
/* Fixed internal backplane clock */
baud_base = 88000000;
div = 48;
}
/* Clock source depends on strapping if UartClkOverride is unset */
if ((ccrev > 0) &&
!(chipco_read32(cc, SSB_CHIPCO_CORECTL) & SSB_CHIPCO_CORECTL_UARTCLK0)) {
if ((cc->capabilities & SSB_CHIPCO_CAP_UARTCLK) ==
SSB_CHIPCO_CAP_UARTCLK_INT) {
/* Internal divided backplane clock */
baud_base /= div;
} else {
/* Assume external clock of 1.8432 MHz */
baud_base = 1843200;
}
}
}
/* Determine the registers of the UARTs */
n = (cc->capabilities & SSB_CHIPCO_CAP_NRUART);
for (i = 0; i < n; i++) {
void __iomem *cc_mmio;
void __iomem *uart_regs;
cc_mmio = cc->dev->bus->mmio + (cc->dev->core_index * SSB_CORE_SIZE);
uart_regs = cc_mmio + SSB_CHIPCO_UART0_DATA;
/* Offset changed at after rev 0 */
if (ccrev == 0)
uart_regs += (i * 8);
else
uart_regs += (i * 256);
nr_ports++;
ports[i].regs = uart_regs;
ports[i].irq = irq;
ports[i].baud_base = baud_base;
ports[i].reg_shift = 0;
}
return nr_ports;
}
#endif /* CONFIG_SSB_SERIAL */