mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 18:29:22 +07:00
5adad99154
When a device group is detached from its domain, the iommu core code calls into the iommu driver to detach each device individually. Before this functionality went into the iommu core code, it was implemented in the drivers, also in the AMD IOMMU driver as the device alias handling code. This code is still present, as there might be aliases that don't exist as real PCI devices (and are therefore invisible to the iommu core code). Unfortunatly it might happen now, that a device is unbound multiple times from its domain, first by the alias handling code and then by the iommu core code (or vice verca). This ends up in the do_detach function which dereferences the dev_data->domain pointer. When the device is already detached, this pointer is NULL and we get a kernel oops. Removing the alias code completly is not an option, as that would also remove the code which handles invisible aliases. The code could be simplified, but this is too big of a change outside the merge window. For now, just check the dev_data->domain pointer in do_detach and bail out if it is NULL. Reported-by: Andreas Hartmann <andihartmann@freenet.de> Signed-off-by: Joerg Roedel <jroedel@suse.de>
4110 lines
94 KiB
C
4110 lines
94 KiB
C
/*
|
|
* Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
|
|
* Author: Joerg Roedel <jroedel@suse.de>
|
|
* Leo Duran <leo.duran@amd.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci-ats.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/iommu-helper.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/amd-iommu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/export.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/dma-contiguous.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <asm/irq_remapping.h>
|
|
#include <asm/io_apic.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/msidef.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/gart.h>
|
|
#include <asm/dma.h>
|
|
|
|
#include "amd_iommu_proto.h"
|
|
#include "amd_iommu_types.h"
|
|
#include "irq_remapping.h"
|
|
|
|
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
|
|
|
|
#define LOOP_TIMEOUT 100000
|
|
|
|
/*
|
|
* This bitmap is used to advertise the page sizes our hardware support
|
|
* to the IOMMU core, which will then use this information to split
|
|
* physically contiguous memory regions it is mapping into page sizes
|
|
* that we support.
|
|
*
|
|
* 512GB Pages are not supported due to a hardware bug
|
|
*/
|
|
#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
|
|
|
|
static DEFINE_RWLOCK(amd_iommu_devtable_lock);
|
|
|
|
/* List of all available dev_data structures */
|
|
static LIST_HEAD(dev_data_list);
|
|
static DEFINE_SPINLOCK(dev_data_list_lock);
|
|
|
|
LIST_HEAD(ioapic_map);
|
|
LIST_HEAD(hpet_map);
|
|
|
|
/*
|
|
* Domain for untranslated devices - only allocated
|
|
* if iommu=pt passed on kernel cmd line.
|
|
*/
|
|
static const struct iommu_ops amd_iommu_ops;
|
|
|
|
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
|
|
int amd_iommu_max_glx_val = -1;
|
|
|
|
static struct dma_map_ops amd_iommu_dma_ops;
|
|
|
|
/*
|
|
* This struct contains device specific data for the IOMMU
|
|
*/
|
|
struct iommu_dev_data {
|
|
struct list_head list; /* For domain->dev_list */
|
|
struct list_head dev_data_list; /* For global dev_data_list */
|
|
struct list_head alias_list; /* Link alias-groups together */
|
|
struct iommu_dev_data *alias_data;/* The alias dev_data */
|
|
struct protection_domain *domain; /* Domain the device is bound to */
|
|
u16 devid; /* PCI Device ID */
|
|
bool iommu_v2; /* Device can make use of IOMMUv2 */
|
|
bool passthrough; /* Device is identity mapped */
|
|
struct {
|
|
bool enabled;
|
|
int qdep;
|
|
} ats; /* ATS state */
|
|
bool pri_tlp; /* PASID TLB required for
|
|
PPR completions */
|
|
u32 errata; /* Bitmap for errata to apply */
|
|
};
|
|
|
|
/*
|
|
* general struct to manage commands send to an IOMMU
|
|
*/
|
|
struct iommu_cmd {
|
|
u32 data[4];
|
|
};
|
|
|
|
struct kmem_cache *amd_iommu_irq_cache;
|
|
|
|
static void update_domain(struct protection_domain *domain);
|
|
static int protection_domain_init(struct protection_domain *domain);
|
|
|
|
/****************************************************************************
|
|
*
|
|
* Helper functions
|
|
*
|
|
****************************************************************************/
|
|
|
|
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
|
|
{
|
|
return container_of(dom, struct protection_domain, domain);
|
|
}
|
|
|
|
static struct iommu_dev_data *alloc_dev_data(u16 devid)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
unsigned long flags;
|
|
|
|
dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
|
|
if (!dev_data)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&dev_data->alias_list);
|
|
|
|
dev_data->devid = devid;
|
|
|
|
spin_lock_irqsave(&dev_data_list_lock, flags);
|
|
list_add_tail(&dev_data->dev_data_list, &dev_data_list);
|
|
spin_unlock_irqrestore(&dev_data_list_lock, flags);
|
|
|
|
return dev_data;
|
|
}
|
|
|
|
static void free_dev_data(struct iommu_dev_data *dev_data)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev_data_list_lock, flags);
|
|
list_del(&dev_data->dev_data_list);
|
|
spin_unlock_irqrestore(&dev_data_list_lock, flags);
|
|
|
|
kfree(dev_data);
|
|
}
|
|
|
|
static struct iommu_dev_data *search_dev_data(u16 devid)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev_data_list_lock, flags);
|
|
list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
|
|
if (dev_data->devid == devid)
|
|
goto out_unlock;
|
|
}
|
|
|
|
dev_data = NULL;
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&dev_data_list_lock, flags);
|
|
|
|
return dev_data;
|
|
}
|
|
|
|
static struct iommu_dev_data *find_dev_data(u16 devid)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
dev_data = search_dev_data(devid);
|
|
|
|
if (dev_data == NULL)
|
|
dev_data = alloc_dev_data(devid);
|
|
|
|
return dev_data;
|
|
}
|
|
|
|
static inline u16 get_device_id(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
|
|
return PCI_DEVID(pdev->bus->number, pdev->devfn);
|
|
}
|
|
|
|
static struct iommu_dev_data *get_dev_data(struct device *dev)
|
|
{
|
|
return dev->archdata.iommu;
|
|
}
|
|
|
|
static bool pci_iommuv2_capable(struct pci_dev *pdev)
|
|
{
|
|
static const int caps[] = {
|
|
PCI_EXT_CAP_ID_ATS,
|
|
PCI_EXT_CAP_ID_PRI,
|
|
PCI_EXT_CAP_ID_PASID,
|
|
};
|
|
int i, pos;
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
pos = pci_find_ext_capability(pdev, caps[i]);
|
|
if (pos == 0)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
dev_data = get_dev_data(&pdev->dev);
|
|
|
|
return dev_data->errata & (1 << erratum) ? true : false;
|
|
}
|
|
|
|
/*
|
|
* This function actually applies the mapping to the page table of the
|
|
* dma_ops domain.
|
|
*/
|
|
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
|
|
struct unity_map_entry *e)
|
|
{
|
|
u64 addr;
|
|
|
|
for (addr = e->address_start; addr < e->address_end;
|
|
addr += PAGE_SIZE) {
|
|
if (addr < dma_dom->aperture_size)
|
|
__set_bit(addr >> PAGE_SHIFT,
|
|
dma_dom->aperture[0]->bitmap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Inits the unity mappings required for a specific device
|
|
*/
|
|
static void init_unity_mappings_for_device(struct device *dev,
|
|
struct dma_ops_domain *dma_dom)
|
|
{
|
|
struct unity_map_entry *e;
|
|
u16 devid;
|
|
|
|
devid = get_device_id(dev);
|
|
|
|
list_for_each_entry(e, &amd_iommu_unity_map, list) {
|
|
if (!(devid >= e->devid_start && devid <= e->devid_end))
|
|
continue;
|
|
alloc_unity_mapping(dma_dom, e);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function checks if the driver got a valid device from the caller to
|
|
* avoid dereferencing invalid pointers.
|
|
*/
|
|
static bool check_device(struct device *dev)
|
|
{
|
|
u16 devid;
|
|
|
|
if (!dev || !dev->dma_mask)
|
|
return false;
|
|
|
|
/* No PCI device */
|
|
if (!dev_is_pci(dev))
|
|
return false;
|
|
|
|
devid = get_device_id(dev);
|
|
|
|
/* Out of our scope? */
|
|
if (devid > amd_iommu_last_bdf)
|
|
return false;
|
|
|
|
if (amd_iommu_rlookup_table[devid] == NULL)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void init_iommu_group(struct device *dev)
|
|
{
|
|
struct dma_ops_domain *dma_domain;
|
|
struct iommu_domain *domain;
|
|
struct iommu_group *group;
|
|
|
|
group = iommu_group_get_for_dev(dev);
|
|
if (IS_ERR(group))
|
|
return;
|
|
|
|
domain = iommu_group_default_domain(group);
|
|
if (!domain)
|
|
goto out;
|
|
|
|
dma_domain = to_pdomain(domain)->priv;
|
|
|
|
init_unity_mappings_for_device(dev, dma_domain);
|
|
out:
|
|
iommu_group_put(group);
|
|
}
|
|
|
|
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
|
|
{
|
|
*(u16 *)data = alias;
|
|
return 0;
|
|
}
|
|
|
|
static u16 get_alias(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
u16 devid, ivrs_alias, pci_alias;
|
|
|
|
devid = get_device_id(dev);
|
|
ivrs_alias = amd_iommu_alias_table[devid];
|
|
pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
|
|
|
|
if (ivrs_alias == pci_alias)
|
|
return ivrs_alias;
|
|
|
|
/*
|
|
* DMA alias showdown
|
|
*
|
|
* The IVRS is fairly reliable in telling us about aliases, but it
|
|
* can't know about every screwy device. If we don't have an IVRS
|
|
* reported alias, use the PCI reported alias. In that case we may
|
|
* still need to initialize the rlookup and dev_table entries if the
|
|
* alias is to a non-existent device.
|
|
*/
|
|
if (ivrs_alias == devid) {
|
|
if (!amd_iommu_rlookup_table[pci_alias]) {
|
|
amd_iommu_rlookup_table[pci_alias] =
|
|
amd_iommu_rlookup_table[devid];
|
|
memcpy(amd_iommu_dev_table[pci_alias].data,
|
|
amd_iommu_dev_table[devid].data,
|
|
sizeof(amd_iommu_dev_table[pci_alias].data));
|
|
}
|
|
|
|
return pci_alias;
|
|
}
|
|
|
|
pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
|
|
"for device %s[%04x:%04x], kernel reported alias "
|
|
"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
|
|
PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
|
|
PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
|
|
PCI_FUNC(pci_alias));
|
|
|
|
/*
|
|
* If we don't have a PCI DMA alias and the IVRS alias is on the same
|
|
* bus, then the IVRS table may know about a quirk that we don't.
|
|
*/
|
|
if (pci_alias == devid &&
|
|
PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
|
|
pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
|
|
pdev->dma_alias_devfn = ivrs_alias & 0xff;
|
|
pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
|
|
PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
|
|
dev_name(dev));
|
|
}
|
|
|
|
return ivrs_alias;
|
|
}
|
|
|
|
static int iommu_init_device(struct device *dev)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct iommu_dev_data *dev_data;
|
|
u16 alias;
|
|
|
|
if (dev->archdata.iommu)
|
|
return 0;
|
|
|
|
dev_data = find_dev_data(get_device_id(dev));
|
|
if (!dev_data)
|
|
return -ENOMEM;
|
|
|
|
alias = get_alias(dev);
|
|
|
|
if (alias != dev_data->devid) {
|
|
struct iommu_dev_data *alias_data;
|
|
|
|
alias_data = find_dev_data(alias);
|
|
if (alias_data == NULL) {
|
|
pr_err("AMD-Vi: Warning: Unhandled device %s\n",
|
|
dev_name(dev));
|
|
free_dev_data(dev_data);
|
|
return -ENOTSUPP;
|
|
}
|
|
dev_data->alias_data = alias_data;
|
|
|
|
/* Add device to the alias_list */
|
|
list_add(&dev_data->alias_list, &alias_data->alias_list);
|
|
}
|
|
|
|
if (pci_iommuv2_capable(pdev)) {
|
|
struct amd_iommu *iommu;
|
|
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
dev_data->iommu_v2 = iommu->is_iommu_v2;
|
|
}
|
|
|
|
dev->archdata.iommu = dev_data;
|
|
|
|
iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
|
|
dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_ignore_device(struct device *dev)
|
|
{
|
|
u16 devid, alias;
|
|
|
|
devid = get_device_id(dev);
|
|
alias = amd_iommu_alias_table[devid];
|
|
|
|
memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
|
|
memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
|
|
|
|
amd_iommu_rlookup_table[devid] = NULL;
|
|
amd_iommu_rlookup_table[alias] = NULL;
|
|
}
|
|
|
|
static void iommu_uninit_device(struct device *dev)
|
|
{
|
|
struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
|
|
|
|
if (!dev_data)
|
|
return;
|
|
|
|
iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
|
|
dev);
|
|
|
|
iommu_group_remove_device(dev);
|
|
|
|
/* Unlink from alias, it may change if another device is re-plugged */
|
|
dev_data->alias_data = NULL;
|
|
|
|
/* Remove dma-ops */
|
|
dev->archdata.dma_ops = NULL;
|
|
|
|
/*
|
|
* We keep dev_data around for unplugged devices and reuse it when the
|
|
* device is re-plugged - not doing so would introduce a ton of races.
|
|
*/
|
|
}
|
|
|
|
#ifdef CONFIG_AMD_IOMMU_STATS
|
|
|
|
/*
|
|
* Initialization code for statistics collection
|
|
*/
|
|
|
|
DECLARE_STATS_COUNTER(compl_wait);
|
|
DECLARE_STATS_COUNTER(cnt_map_single);
|
|
DECLARE_STATS_COUNTER(cnt_unmap_single);
|
|
DECLARE_STATS_COUNTER(cnt_map_sg);
|
|
DECLARE_STATS_COUNTER(cnt_unmap_sg);
|
|
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
|
|
DECLARE_STATS_COUNTER(cnt_free_coherent);
|
|
DECLARE_STATS_COUNTER(cross_page);
|
|
DECLARE_STATS_COUNTER(domain_flush_single);
|
|
DECLARE_STATS_COUNTER(domain_flush_all);
|
|
DECLARE_STATS_COUNTER(alloced_io_mem);
|
|
DECLARE_STATS_COUNTER(total_map_requests);
|
|
DECLARE_STATS_COUNTER(complete_ppr);
|
|
DECLARE_STATS_COUNTER(invalidate_iotlb);
|
|
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
|
|
DECLARE_STATS_COUNTER(pri_requests);
|
|
|
|
static struct dentry *stats_dir;
|
|
static struct dentry *de_fflush;
|
|
|
|
static void amd_iommu_stats_add(struct __iommu_counter *cnt)
|
|
{
|
|
if (stats_dir == NULL)
|
|
return;
|
|
|
|
cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
|
|
&cnt->value);
|
|
}
|
|
|
|
static void amd_iommu_stats_init(void)
|
|
{
|
|
stats_dir = debugfs_create_dir("amd-iommu", NULL);
|
|
if (stats_dir == NULL)
|
|
return;
|
|
|
|
de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
|
|
&amd_iommu_unmap_flush);
|
|
|
|
amd_iommu_stats_add(&compl_wait);
|
|
amd_iommu_stats_add(&cnt_map_single);
|
|
amd_iommu_stats_add(&cnt_unmap_single);
|
|
amd_iommu_stats_add(&cnt_map_sg);
|
|
amd_iommu_stats_add(&cnt_unmap_sg);
|
|
amd_iommu_stats_add(&cnt_alloc_coherent);
|
|
amd_iommu_stats_add(&cnt_free_coherent);
|
|
amd_iommu_stats_add(&cross_page);
|
|
amd_iommu_stats_add(&domain_flush_single);
|
|
amd_iommu_stats_add(&domain_flush_all);
|
|
amd_iommu_stats_add(&alloced_io_mem);
|
|
amd_iommu_stats_add(&total_map_requests);
|
|
amd_iommu_stats_add(&complete_ppr);
|
|
amd_iommu_stats_add(&invalidate_iotlb);
|
|
amd_iommu_stats_add(&invalidate_iotlb_all);
|
|
amd_iommu_stats_add(&pri_requests);
|
|
}
|
|
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
*
|
|
* Interrupt handling functions
|
|
*
|
|
****************************************************************************/
|
|
|
|
static void dump_dte_entry(u16 devid)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 4; ++i)
|
|
pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
|
|
amd_iommu_dev_table[devid].data[i]);
|
|
}
|
|
|
|
static void dump_command(unsigned long phys_addr)
|
|
{
|
|
struct iommu_cmd *cmd = phys_to_virt(phys_addr);
|
|
int i;
|
|
|
|
for (i = 0; i < 4; ++i)
|
|
pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
|
|
}
|
|
|
|
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
|
|
{
|
|
int type, devid, domid, flags;
|
|
volatile u32 *event = __evt;
|
|
int count = 0;
|
|
u64 address;
|
|
|
|
retry:
|
|
type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
|
|
devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
|
|
domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
|
|
flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
|
|
address = (u64)(((u64)event[3]) << 32) | event[2];
|
|
|
|
if (type == 0) {
|
|
/* Did we hit the erratum? */
|
|
if (++count == LOOP_TIMEOUT) {
|
|
pr_err("AMD-Vi: No event written to event log\n");
|
|
return;
|
|
}
|
|
udelay(1);
|
|
goto retry;
|
|
}
|
|
|
|
printk(KERN_ERR "AMD-Vi: Event logged [");
|
|
|
|
switch (type) {
|
|
case EVENT_TYPE_ILL_DEV:
|
|
printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
|
|
"address=0x%016llx flags=0x%04x]\n",
|
|
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
address, flags);
|
|
dump_dte_entry(devid);
|
|
break;
|
|
case EVENT_TYPE_IO_FAULT:
|
|
printk("IO_PAGE_FAULT device=%02x:%02x.%x "
|
|
"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
|
|
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
domid, address, flags);
|
|
break;
|
|
case EVENT_TYPE_DEV_TAB_ERR:
|
|
printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
|
|
"address=0x%016llx flags=0x%04x]\n",
|
|
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
address, flags);
|
|
break;
|
|
case EVENT_TYPE_PAGE_TAB_ERR:
|
|
printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
|
|
"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
|
|
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
domid, address, flags);
|
|
break;
|
|
case EVENT_TYPE_ILL_CMD:
|
|
printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
|
|
dump_command(address);
|
|
break;
|
|
case EVENT_TYPE_CMD_HARD_ERR:
|
|
printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
|
|
"flags=0x%04x]\n", address, flags);
|
|
break;
|
|
case EVENT_TYPE_IOTLB_INV_TO:
|
|
printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
|
|
"address=0x%016llx]\n",
|
|
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
address);
|
|
break;
|
|
case EVENT_TYPE_INV_DEV_REQ:
|
|
printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
|
|
"address=0x%016llx flags=0x%04x]\n",
|
|
PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
|
|
address, flags);
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
|
|
}
|
|
|
|
memset(__evt, 0, 4 * sizeof(u32));
|
|
}
|
|
|
|
static void iommu_poll_events(struct amd_iommu *iommu)
|
|
{
|
|
u32 head, tail;
|
|
|
|
head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
|
|
tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
|
|
|
|
while (head != tail) {
|
|
iommu_print_event(iommu, iommu->evt_buf + head);
|
|
head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
|
|
}
|
|
|
|
writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
|
|
}
|
|
|
|
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
|
|
{
|
|
struct amd_iommu_fault fault;
|
|
|
|
INC_STATS_COUNTER(pri_requests);
|
|
|
|
if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
|
|
pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
|
|
return;
|
|
}
|
|
|
|
fault.address = raw[1];
|
|
fault.pasid = PPR_PASID(raw[0]);
|
|
fault.device_id = PPR_DEVID(raw[0]);
|
|
fault.tag = PPR_TAG(raw[0]);
|
|
fault.flags = PPR_FLAGS(raw[0]);
|
|
|
|
atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
|
|
}
|
|
|
|
static void iommu_poll_ppr_log(struct amd_iommu *iommu)
|
|
{
|
|
u32 head, tail;
|
|
|
|
if (iommu->ppr_log == NULL)
|
|
return;
|
|
|
|
head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
|
|
tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
|
|
|
|
while (head != tail) {
|
|
volatile u64 *raw;
|
|
u64 entry[2];
|
|
int i;
|
|
|
|
raw = (u64 *)(iommu->ppr_log + head);
|
|
|
|
/*
|
|
* Hardware bug: Interrupt may arrive before the entry is
|
|
* written to memory. If this happens we need to wait for the
|
|
* entry to arrive.
|
|
*/
|
|
for (i = 0; i < LOOP_TIMEOUT; ++i) {
|
|
if (PPR_REQ_TYPE(raw[0]) != 0)
|
|
break;
|
|
udelay(1);
|
|
}
|
|
|
|
/* Avoid memcpy function-call overhead */
|
|
entry[0] = raw[0];
|
|
entry[1] = raw[1];
|
|
|
|
/*
|
|
* To detect the hardware bug we need to clear the entry
|
|
* back to zero.
|
|
*/
|
|
raw[0] = raw[1] = 0UL;
|
|
|
|
/* Update head pointer of hardware ring-buffer */
|
|
head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
|
|
writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
|
|
|
|
/* Handle PPR entry */
|
|
iommu_handle_ppr_entry(iommu, entry);
|
|
|
|
/* Refresh ring-buffer information */
|
|
head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
|
|
tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
|
|
}
|
|
}
|
|
|
|
irqreturn_t amd_iommu_int_thread(int irq, void *data)
|
|
{
|
|
struct amd_iommu *iommu = (struct amd_iommu *) data;
|
|
u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
|
|
|
|
while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
|
|
/* Enable EVT and PPR interrupts again */
|
|
writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
|
|
iommu->mmio_base + MMIO_STATUS_OFFSET);
|
|
|
|
if (status & MMIO_STATUS_EVT_INT_MASK) {
|
|
pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
|
|
iommu_poll_events(iommu);
|
|
}
|
|
|
|
if (status & MMIO_STATUS_PPR_INT_MASK) {
|
|
pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
|
|
iommu_poll_ppr_log(iommu);
|
|
}
|
|
|
|
/*
|
|
* Hardware bug: ERBT1312
|
|
* When re-enabling interrupt (by writing 1
|
|
* to clear the bit), the hardware might also try to set
|
|
* the interrupt bit in the event status register.
|
|
* In this scenario, the bit will be set, and disable
|
|
* subsequent interrupts.
|
|
*
|
|
* Workaround: The IOMMU driver should read back the
|
|
* status register and check if the interrupt bits are cleared.
|
|
* If not, driver will need to go through the interrupt handler
|
|
* again and re-clear the bits
|
|
*/
|
|
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
irqreturn_t amd_iommu_int_handler(int irq, void *data)
|
|
{
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* IOMMU command queuing functions
|
|
*
|
|
****************************************************************************/
|
|
|
|
static int wait_on_sem(volatile u64 *sem)
|
|
{
|
|
int i = 0;
|
|
|
|
while (*sem == 0 && i < LOOP_TIMEOUT) {
|
|
udelay(1);
|
|
i += 1;
|
|
}
|
|
|
|
if (i == LOOP_TIMEOUT) {
|
|
pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void copy_cmd_to_buffer(struct amd_iommu *iommu,
|
|
struct iommu_cmd *cmd,
|
|
u32 tail)
|
|
{
|
|
u8 *target;
|
|
|
|
target = iommu->cmd_buf + tail;
|
|
tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
|
|
|
|
/* Copy command to buffer */
|
|
memcpy(target, cmd, sizeof(*cmd));
|
|
|
|
/* Tell the IOMMU about it */
|
|
writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
|
|
}
|
|
|
|
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
|
|
{
|
|
WARN_ON(address & 0x7ULL);
|
|
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
|
|
cmd->data[1] = upper_32_bits(__pa(address));
|
|
cmd->data[2] = 1;
|
|
CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
|
|
}
|
|
|
|
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->data[0] = devid;
|
|
CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
|
|
}
|
|
|
|
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
|
|
size_t size, u16 domid, int pde)
|
|
{
|
|
u64 pages;
|
|
bool s;
|
|
|
|
pages = iommu_num_pages(address, size, PAGE_SIZE);
|
|
s = false;
|
|
|
|
if (pages > 1) {
|
|
/*
|
|
* If we have to flush more than one page, flush all
|
|
* TLB entries for this domain
|
|
*/
|
|
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
|
|
s = true;
|
|
}
|
|
|
|
address &= PAGE_MASK;
|
|
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->data[1] |= domid;
|
|
cmd->data[2] = lower_32_bits(address);
|
|
cmd->data[3] = upper_32_bits(address);
|
|
CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
|
|
if (s) /* size bit - we flush more than one 4kb page */
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
|
|
if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
|
|
}
|
|
|
|
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
|
|
u64 address, size_t size)
|
|
{
|
|
u64 pages;
|
|
bool s;
|
|
|
|
pages = iommu_num_pages(address, size, PAGE_SIZE);
|
|
s = false;
|
|
|
|
if (pages > 1) {
|
|
/*
|
|
* If we have to flush more than one page, flush all
|
|
* TLB entries for this domain
|
|
*/
|
|
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
|
|
s = true;
|
|
}
|
|
|
|
address &= PAGE_MASK;
|
|
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->data[0] = devid;
|
|
cmd->data[0] |= (qdep & 0xff) << 24;
|
|
cmd->data[1] = devid;
|
|
cmd->data[2] = lower_32_bits(address);
|
|
cmd->data[3] = upper_32_bits(address);
|
|
CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
|
|
if (s)
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
|
|
}
|
|
|
|
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
|
|
u64 address, bool size)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
|
|
address &= ~(0xfffULL);
|
|
|
|
cmd->data[0] = pasid;
|
|
cmd->data[1] = domid;
|
|
cmd->data[2] = lower_32_bits(address);
|
|
cmd->data[3] = upper_32_bits(address);
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
|
|
if (size)
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
|
|
CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
|
|
}
|
|
|
|
static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
|
|
int qdep, u64 address, bool size)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
|
|
address &= ~(0xfffULL);
|
|
|
|
cmd->data[0] = devid;
|
|
cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
|
|
cmd->data[0] |= (qdep & 0xff) << 24;
|
|
cmd->data[1] = devid;
|
|
cmd->data[1] |= (pasid & 0xff) << 16;
|
|
cmd->data[2] = lower_32_bits(address);
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
|
|
cmd->data[3] = upper_32_bits(address);
|
|
if (size)
|
|
cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
|
|
CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
|
|
}
|
|
|
|
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
|
|
int status, int tag, bool gn)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
|
|
cmd->data[0] = devid;
|
|
if (gn) {
|
|
cmd->data[1] = pasid;
|
|
cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
|
|
}
|
|
cmd->data[3] = tag & 0x1ff;
|
|
cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
|
|
|
|
CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
|
|
}
|
|
|
|
static void build_inv_all(struct iommu_cmd *cmd)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
CMD_SET_TYPE(cmd, CMD_INV_ALL);
|
|
}
|
|
|
|
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
|
|
{
|
|
memset(cmd, 0, sizeof(*cmd));
|
|
cmd->data[0] = devid;
|
|
CMD_SET_TYPE(cmd, CMD_INV_IRT);
|
|
}
|
|
|
|
/*
|
|
* Writes the command to the IOMMUs command buffer and informs the
|
|
* hardware about the new command.
|
|
*/
|
|
static int iommu_queue_command_sync(struct amd_iommu *iommu,
|
|
struct iommu_cmd *cmd,
|
|
bool sync)
|
|
{
|
|
u32 left, tail, head, next_tail;
|
|
unsigned long flags;
|
|
|
|
WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
|
|
|
|
again:
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
|
|
head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
|
|
tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
|
|
next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
|
|
left = (head - next_tail) % iommu->cmd_buf_size;
|
|
|
|
if (left <= 2) {
|
|
struct iommu_cmd sync_cmd;
|
|
volatile u64 sem = 0;
|
|
int ret;
|
|
|
|
build_completion_wait(&sync_cmd, (u64)&sem);
|
|
copy_cmd_to_buffer(iommu, &sync_cmd, tail);
|
|
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
if ((ret = wait_on_sem(&sem)) != 0)
|
|
return ret;
|
|
|
|
goto again;
|
|
}
|
|
|
|
copy_cmd_to_buffer(iommu, cmd, tail);
|
|
|
|
/* We need to sync now to make sure all commands are processed */
|
|
iommu->need_sync = sync;
|
|
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
|
|
{
|
|
return iommu_queue_command_sync(iommu, cmd, true);
|
|
}
|
|
|
|
/*
|
|
* This function queues a completion wait command into the command
|
|
* buffer of an IOMMU
|
|
*/
|
|
static int iommu_completion_wait(struct amd_iommu *iommu)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
volatile u64 sem = 0;
|
|
int ret;
|
|
|
|
if (!iommu->need_sync)
|
|
return 0;
|
|
|
|
build_completion_wait(&cmd, (u64)&sem);
|
|
|
|
ret = iommu_queue_command_sync(iommu, &cmd, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return wait_on_sem(&sem);
|
|
}
|
|
|
|
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
|
|
build_inv_dte(&cmd, devid);
|
|
|
|
return iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
static void iommu_flush_dte_all(struct amd_iommu *iommu)
|
|
{
|
|
u32 devid;
|
|
|
|
for (devid = 0; devid <= 0xffff; ++devid)
|
|
iommu_flush_dte(iommu, devid);
|
|
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
/*
|
|
* This function uses heavy locking and may disable irqs for some time. But
|
|
* this is no issue because it is only called during resume.
|
|
*/
|
|
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
|
|
{
|
|
u32 dom_id;
|
|
|
|
for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
|
|
struct iommu_cmd cmd;
|
|
build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
|
|
dom_id, 1);
|
|
iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
static void iommu_flush_all(struct amd_iommu *iommu)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
|
|
build_inv_all(&cmd);
|
|
|
|
iommu_queue_command(iommu, &cmd);
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
|
|
{
|
|
struct iommu_cmd cmd;
|
|
|
|
build_inv_irt(&cmd, devid);
|
|
|
|
iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
static void iommu_flush_irt_all(struct amd_iommu *iommu)
|
|
{
|
|
u32 devid;
|
|
|
|
for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
|
|
iommu_flush_irt(iommu, devid);
|
|
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
void iommu_flush_all_caches(struct amd_iommu *iommu)
|
|
{
|
|
if (iommu_feature(iommu, FEATURE_IA)) {
|
|
iommu_flush_all(iommu);
|
|
} else {
|
|
iommu_flush_dte_all(iommu);
|
|
iommu_flush_irt_all(iommu);
|
|
iommu_flush_tlb_all(iommu);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Command send function for flushing on-device TLB
|
|
*/
|
|
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
|
|
u64 address, size_t size)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
struct iommu_cmd cmd;
|
|
int qdep;
|
|
|
|
qdep = dev_data->ats.qdep;
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
|
|
build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
|
|
|
|
return iommu_queue_command(iommu, &cmd);
|
|
}
|
|
|
|
/*
|
|
* Command send function for invalidating a device table entry
|
|
*/
|
|
static int device_flush_dte(struct iommu_dev_data *dev_data)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
int ret;
|
|
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
|
|
ret = iommu_flush_dte(iommu, dev_data->devid);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (dev_data->ats.enabled)
|
|
ret = device_flush_iotlb(dev_data, 0, ~0UL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* TLB invalidation function which is called from the mapping functions.
|
|
* It invalidates a single PTE if the range to flush is within a single
|
|
* page. Otherwise it flushes the whole TLB of the IOMMU.
|
|
*/
|
|
static void __domain_flush_pages(struct protection_domain *domain,
|
|
u64 address, size_t size, int pde)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
struct iommu_cmd cmd;
|
|
int ret = 0, i;
|
|
|
|
build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
|
|
|
|
for (i = 0; i < amd_iommus_present; ++i) {
|
|
if (!domain->dev_iommu[i])
|
|
continue;
|
|
|
|
/*
|
|
* Devices of this domain are behind this IOMMU
|
|
* We need a TLB flush
|
|
*/
|
|
ret |= iommu_queue_command(amd_iommus[i], &cmd);
|
|
}
|
|
|
|
list_for_each_entry(dev_data, &domain->dev_list, list) {
|
|
|
|
if (!dev_data->ats.enabled)
|
|
continue;
|
|
|
|
ret |= device_flush_iotlb(dev_data, address, size);
|
|
}
|
|
|
|
WARN_ON(ret);
|
|
}
|
|
|
|
static void domain_flush_pages(struct protection_domain *domain,
|
|
u64 address, size_t size)
|
|
{
|
|
__domain_flush_pages(domain, address, size, 0);
|
|
}
|
|
|
|
/* Flush the whole IO/TLB for a given protection domain */
|
|
static void domain_flush_tlb(struct protection_domain *domain)
|
|
{
|
|
__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
|
|
}
|
|
|
|
/* Flush the whole IO/TLB for a given protection domain - including PDE */
|
|
static void domain_flush_tlb_pde(struct protection_domain *domain)
|
|
{
|
|
__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
|
|
}
|
|
|
|
static void domain_flush_complete(struct protection_domain *domain)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < amd_iommus_present; ++i) {
|
|
if (!domain->dev_iommu[i])
|
|
continue;
|
|
|
|
/*
|
|
* Devices of this domain are behind this IOMMU
|
|
* We need to wait for completion of all commands.
|
|
*/
|
|
iommu_completion_wait(amd_iommus[i]);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* This function flushes the DTEs for all devices in domain
|
|
*/
|
|
static void domain_flush_devices(struct protection_domain *domain)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
list_for_each_entry(dev_data, &domain->dev_list, list)
|
|
device_flush_dte(dev_data);
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The functions below are used the create the page table mappings for
|
|
* unity mapped regions.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* This function is used to add another level to an IO page table. Adding
|
|
* another level increases the size of the address space by 9 bits to a size up
|
|
* to 64 bits.
|
|
*/
|
|
static bool increase_address_space(struct protection_domain *domain,
|
|
gfp_t gfp)
|
|
{
|
|
u64 *pte;
|
|
|
|
if (domain->mode == PAGE_MODE_6_LEVEL)
|
|
/* address space already 64 bit large */
|
|
return false;
|
|
|
|
pte = (void *)get_zeroed_page(gfp);
|
|
if (!pte)
|
|
return false;
|
|
|
|
*pte = PM_LEVEL_PDE(domain->mode,
|
|
virt_to_phys(domain->pt_root));
|
|
domain->pt_root = pte;
|
|
domain->mode += 1;
|
|
domain->updated = true;
|
|
|
|
return true;
|
|
}
|
|
|
|
static u64 *alloc_pte(struct protection_domain *domain,
|
|
unsigned long address,
|
|
unsigned long page_size,
|
|
u64 **pte_page,
|
|
gfp_t gfp)
|
|
{
|
|
int level, end_lvl;
|
|
u64 *pte, *page;
|
|
|
|
BUG_ON(!is_power_of_2(page_size));
|
|
|
|
while (address > PM_LEVEL_SIZE(domain->mode))
|
|
increase_address_space(domain, gfp);
|
|
|
|
level = domain->mode - 1;
|
|
pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
|
|
address = PAGE_SIZE_ALIGN(address, page_size);
|
|
end_lvl = PAGE_SIZE_LEVEL(page_size);
|
|
|
|
while (level > end_lvl) {
|
|
if (!IOMMU_PTE_PRESENT(*pte)) {
|
|
page = (u64 *)get_zeroed_page(gfp);
|
|
if (!page)
|
|
return NULL;
|
|
*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
|
|
}
|
|
|
|
/* No level skipping support yet */
|
|
if (PM_PTE_LEVEL(*pte) != level)
|
|
return NULL;
|
|
|
|
level -= 1;
|
|
|
|
pte = IOMMU_PTE_PAGE(*pte);
|
|
|
|
if (pte_page && level == end_lvl)
|
|
*pte_page = pte;
|
|
|
|
pte = &pte[PM_LEVEL_INDEX(level, address)];
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* This function checks if there is a PTE for a given dma address. If
|
|
* there is one, it returns the pointer to it.
|
|
*/
|
|
static u64 *fetch_pte(struct protection_domain *domain,
|
|
unsigned long address,
|
|
unsigned long *page_size)
|
|
{
|
|
int level;
|
|
u64 *pte;
|
|
|
|
if (address > PM_LEVEL_SIZE(domain->mode))
|
|
return NULL;
|
|
|
|
level = domain->mode - 1;
|
|
pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
|
|
*page_size = PTE_LEVEL_PAGE_SIZE(level);
|
|
|
|
while (level > 0) {
|
|
|
|
/* Not Present */
|
|
if (!IOMMU_PTE_PRESENT(*pte))
|
|
return NULL;
|
|
|
|
/* Large PTE */
|
|
if (PM_PTE_LEVEL(*pte) == 7 ||
|
|
PM_PTE_LEVEL(*pte) == 0)
|
|
break;
|
|
|
|
/* No level skipping support yet */
|
|
if (PM_PTE_LEVEL(*pte) != level)
|
|
return NULL;
|
|
|
|
level -= 1;
|
|
|
|
/* Walk to the next level */
|
|
pte = IOMMU_PTE_PAGE(*pte);
|
|
pte = &pte[PM_LEVEL_INDEX(level, address)];
|
|
*page_size = PTE_LEVEL_PAGE_SIZE(level);
|
|
}
|
|
|
|
if (PM_PTE_LEVEL(*pte) == 0x07) {
|
|
unsigned long pte_mask;
|
|
|
|
/*
|
|
* If we have a series of large PTEs, make
|
|
* sure to return a pointer to the first one.
|
|
*/
|
|
*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
|
|
pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
|
|
pte = (u64 *)(((unsigned long)pte) & pte_mask);
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* Generic mapping functions. It maps a physical address into a DMA
|
|
* address space. It allocates the page table pages if necessary.
|
|
* In the future it can be extended to a generic mapping function
|
|
* supporting all features of AMD IOMMU page tables like level skipping
|
|
* and full 64 bit address spaces.
|
|
*/
|
|
static int iommu_map_page(struct protection_domain *dom,
|
|
unsigned long bus_addr,
|
|
unsigned long phys_addr,
|
|
int prot,
|
|
unsigned long page_size)
|
|
{
|
|
u64 __pte, *pte;
|
|
int i, count;
|
|
|
|
BUG_ON(!IS_ALIGNED(bus_addr, page_size));
|
|
BUG_ON(!IS_ALIGNED(phys_addr, page_size));
|
|
|
|
if (!(prot & IOMMU_PROT_MASK))
|
|
return -EINVAL;
|
|
|
|
count = PAGE_SIZE_PTE_COUNT(page_size);
|
|
pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
|
|
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < count; ++i)
|
|
if (IOMMU_PTE_PRESENT(pte[i]))
|
|
return -EBUSY;
|
|
|
|
if (count > 1) {
|
|
__pte = PAGE_SIZE_PTE(phys_addr, page_size);
|
|
__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
|
|
} else
|
|
__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
|
|
|
|
if (prot & IOMMU_PROT_IR)
|
|
__pte |= IOMMU_PTE_IR;
|
|
if (prot & IOMMU_PROT_IW)
|
|
__pte |= IOMMU_PTE_IW;
|
|
|
|
for (i = 0; i < count; ++i)
|
|
pte[i] = __pte;
|
|
|
|
update_domain(dom);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long iommu_unmap_page(struct protection_domain *dom,
|
|
unsigned long bus_addr,
|
|
unsigned long page_size)
|
|
{
|
|
unsigned long long unmapped;
|
|
unsigned long unmap_size;
|
|
u64 *pte;
|
|
|
|
BUG_ON(!is_power_of_2(page_size));
|
|
|
|
unmapped = 0;
|
|
|
|
while (unmapped < page_size) {
|
|
|
|
pte = fetch_pte(dom, bus_addr, &unmap_size);
|
|
|
|
if (pte) {
|
|
int i, count;
|
|
|
|
count = PAGE_SIZE_PTE_COUNT(unmap_size);
|
|
for (i = 0; i < count; i++)
|
|
pte[i] = 0ULL;
|
|
}
|
|
|
|
bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
|
|
unmapped += unmap_size;
|
|
}
|
|
|
|
BUG_ON(unmapped && !is_power_of_2(unmapped));
|
|
|
|
return unmapped;
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The next functions belong to the address allocator for the dma_ops
|
|
* interface functions. They work like the allocators in the other IOMMU
|
|
* drivers. Its basically a bitmap which marks the allocated pages in
|
|
* the aperture. Maybe it could be enhanced in the future to a more
|
|
* efficient allocator.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* The address allocator core functions.
|
|
*
|
|
* called with domain->lock held
|
|
*/
|
|
|
|
/*
|
|
* Used to reserve address ranges in the aperture (e.g. for exclusion
|
|
* ranges.
|
|
*/
|
|
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
|
|
unsigned long start_page,
|
|
unsigned int pages)
|
|
{
|
|
unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
|
|
|
|
if (start_page + pages > last_page)
|
|
pages = last_page - start_page;
|
|
|
|
for (i = start_page; i < start_page + pages; ++i) {
|
|
int index = i / APERTURE_RANGE_PAGES;
|
|
int page = i % APERTURE_RANGE_PAGES;
|
|
__set_bit(page, dom->aperture[index]->bitmap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function is used to add a new aperture range to an existing
|
|
* aperture in case of dma_ops domain allocation or address allocation
|
|
* failure.
|
|
*/
|
|
static int alloc_new_range(struct dma_ops_domain *dma_dom,
|
|
bool populate, gfp_t gfp)
|
|
{
|
|
int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
|
|
struct amd_iommu *iommu;
|
|
unsigned long i, old_size, pte_pgsize;
|
|
|
|
#ifdef CONFIG_IOMMU_STRESS
|
|
populate = false;
|
|
#endif
|
|
|
|
if (index >= APERTURE_MAX_RANGES)
|
|
return -ENOMEM;
|
|
|
|
dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
|
|
if (!dma_dom->aperture[index])
|
|
return -ENOMEM;
|
|
|
|
dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
|
|
if (!dma_dom->aperture[index]->bitmap)
|
|
goto out_free;
|
|
|
|
dma_dom->aperture[index]->offset = dma_dom->aperture_size;
|
|
|
|
if (populate) {
|
|
unsigned long address = dma_dom->aperture_size;
|
|
int i, num_ptes = APERTURE_RANGE_PAGES / 512;
|
|
u64 *pte, *pte_page;
|
|
|
|
for (i = 0; i < num_ptes; ++i) {
|
|
pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
|
|
&pte_page, gfp);
|
|
if (!pte)
|
|
goto out_free;
|
|
|
|
dma_dom->aperture[index]->pte_pages[i] = pte_page;
|
|
|
|
address += APERTURE_RANGE_SIZE / 64;
|
|
}
|
|
}
|
|
|
|
old_size = dma_dom->aperture_size;
|
|
dma_dom->aperture_size += APERTURE_RANGE_SIZE;
|
|
|
|
/* Reserve address range used for MSI messages */
|
|
if (old_size < MSI_ADDR_BASE_LO &&
|
|
dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
|
|
unsigned long spage;
|
|
int pages;
|
|
|
|
pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
|
|
spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
|
|
|
|
dma_ops_reserve_addresses(dma_dom, spage, pages);
|
|
}
|
|
|
|
/* Initialize the exclusion range if necessary */
|
|
for_each_iommu(iommu) {
|
|
if (iommu->exclusion_start &&
|
|
iommu->exclusion_start >= dma_dom->aperture[index]->offset
|
|
&& iommu->exclusion_start < dma_dom->aperture_size) {
|
|
unsigned long startpage;
|
|
int pages = iommu_num_pages(iommu->exclusion_start,
|
|
iommu->exclusion_length,
|
|
PAGE_SIZE);
|
|
startpage = iommu->exclusion_start >> PAGE_SHIFT;
|
|
dma_ops_reserve_addresses(dma_dom, startpage, pages);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for areas already mapped as present in the new aperture
|
|
* range and mark those pages as reserved in the allocator. Such
|
|
* mappings may already exist as a result of requested unity
|
|
* mappings for devices.
|
|
*/
|
|
for (i = dma_dom->aperture[index]->offset;
|
|
i < dma_dom->aperture_size;
|
|
i += pte_pgsize) {
|
|
u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
|
|
if (!pte || !IOMMU_PTE_PRESENT(*pte))
|
|
continue;
|
|
|
|
dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
|
|
pte_pgsize >> 12);
|
|
}
|
|
|
|
update_domain(&dma_dom->domain);
|
|
|
|
return 0;
|
|
|
|
out_free:
|
|
update_domain(&dma_dom->domain);
|
|
|
|
free_page((unsigned long)dma_dom->aperture[index]->bitmap);
|
|
|
|
kfree(dma_dom->aperture[index]);
|
|
dma_dom->aperture[index] = NULL;
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static unsigned long dma_ops_area_alloc(struct device *dev,
|
|
struct dma_ops_domain *dom,
|
|
unsigned int pages,
|
|
unsigned long align_mask,
|
|
u64 dma_mask,
|
|
unsigned long start)
|
|
{
|
|
unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
|
|
int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
|
|
int i = start >> APERTURE_RANGE_SHIFT;
|
|
unsigned long boundary_size, mask;
|
|
unsigned long address = -1;
|
|
unsigned long limit;
|
|
|
|
next_bit >>= PAGE_SHIFT;
|
|
|
|
mask = dma_get_seg_boundary(dev);
|
|
|
|
boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
|
|
1UL << (BITS_PER_LONG - PAGE_SHIFT);
|
|
|
|
for (;i < max_index; ++i) {
|
|
unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
|
|
|
|
if (dom->aperture[i]->offset >= dma_mask)
|
|
break;
|
|
|
|
limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
|
|
dma_mask >> PAGE_SHIFT);
|
|
|
|
address = iommu_area_alloc(dom->aperture[i]->bitmap,
|
|
limit, next_bit, pages, 0,
|
|
boundary_size, align_mask);
|
|
if (address != -1) {
|
|
address = dom->aperture[i]->offset +
|
|
(address << PAGE_SHIFT);
|
|
dom->next_address = address + (pages << PAGE_SHIFT);
|
|
break;
|
|
}
|
|
|
|
next_bit = 0;
|
|
}
|
|
|
|
return address;
|
|
}
|
|
|
|
static unsigned long dma_ops_alloc_addresses(struct device *dev,
|
|
struct dma_ops_domain *dom,
|
|
unsigned int pages,
|
|
unsigned long align_mask,
|
|
u64 dma_mask)
|
|
{
|
|
unsigned long address;
|
|
|
|
#ifdef CONFIG_IOMMU_STRESS
|
|
dom->next_address = 0;
|
|
dom->need_flush = true;
|
|
#endif
|
|
|
|
address = dma_ops_area_alloc(dev, dom, pages, align_mask,
|
|
dma_mask, dom->next_address);
|
|
|
|
if (address == -1) {
|
|
dom->next_address = 0;
|
|
address = dma_ops_area_alloc(dev, dom, pages, align_mask,
|
|
dma_mask, 0);
|
|
dom->need_flush = true;
|
|
}
|
|
|
|
if (unlikely(address == -1))
|
|
address = DMA_ERROR_CODE;
|
|
|
|
WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
|
|
|
|
return address;
|
|
}
|
|
|
|
/*
|
|
* The address free function.
|
|
*
|
|
* called with domain->lock held
|
|
*/
|
|
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
|
|
unsigned long address,
|
|
unsigned int pages)
|
|
{
|
|
unsigned i = address >> APERTURE_RANGE_SHIFT;
|
|
struct aperture_range *range = dom->aperture[i];
|
|
|
|
BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
|
|
|
|
#ifdef CONFIG_IOMMU_STRESS
|
|
if (i < 4)
|
|
return;
|
|
#endif
|
|
|
|
if (address >= dom->next_address)
|
|
dom->need_flush = true;
|
|
|
|
address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
|
|
|
|
bitmap_clear(range->bitmap, address, pages);
|
|
|
|
}
|
|
|
|
/****************************************************************************
|
|
*
|
|
* The next functions belong to the domain allocation. A domain is
|
|
* allocated for every IOMMU as the default domain. If device isolation
|
|
* is enabled, every device get its own domain. The most important thing
|
|
* about domains is the page table mapping the DMA address space they
|
|
* contain.
|
|
*
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* This function adds a protection domain to the global protection domain list
|
|
*/
|
|
static void add_domain_to_list(struct protection_domain *domain)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&amd_iommu_pd_lock, flags);
|
|
list_add(&domain->list, &amd_iommu_pd_list);
|
|
spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* This function removes a protection domain to the global
|
|
* protection domain list
|
|
*/
|
|
static void del_domain_from_list(struct protection_domain *domain)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&amd_iommu_pd_lock, flags);
|
|
list_del(&domain->list);
|
|
spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
|
|
}
|
|
|
|
static u16 domain_id_alloc(void)
|
|
{
|
|
unsigned long flags;
|
|
int id;
|
|
|
|
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
|
|
id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
|
|
BUG_ON(id == 0);
|
|
if (id > 0 && id < MAX_DOMAIN_ID)
|
|
__set_bit(id, amd_iommu_pd_alloc_bitmap);
|
|
else
|
|
id = 0;
|
|
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
|
|
|
|
return id;
|
|
}
|
|
|
|
static void domain_id_free(int id)
|
|
{
|
|
unsigned long flags;
|
|
|
|
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
|
|
if (id > 0 && id < MAX_DOMAIN_ID)
|
|
__clear_bit(id, amd_iommu_pd_alloc_bitmap);
|
|
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
|
|
}
|
|
|
|
#define DEFINE_FREE_PT_FN(LVL, FN) \
|
|
static void free_pt_##LVL (unsigned long __pt) \
|
|
{ \
|
|
unsigned long p; \
|
|
u64 *pt; \
|
|
int i; \
|
|
\
|
|
pt = (u64 *)__pt; \
|
|
\
|
|
for (i = 0; i < 512; ++i) { \
|
|
/* PTE present? */ \
|
|
if (!IOMMU_PTE_PRESENT(pt[i])) \
|
|
continue; \
|
|
\
|
|
/* Large PTE? */ \
|
|
if (PM_PTE_LEVEL(pt[i]) == 0 || \
|
|
PM_PTE_LEVEL(pt[i]) == 7) \
|
|
continue; \
|
|
\
|
|
p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
|
|
FN(p); \
|
|
} \
|
|
free_page((unsigned long)pt); \
|
|
}
|
|
|
|
DEFINE_FREE_PT_FN(l2, free_page)
|
|
DEFINE_FREE_PT_FN(l3, free_pt_l2)
|
|
DEFINE_FREE_PT_FN(l4, free_pt_l3)
|
|
DEFINE_FREE_PT_FN(l5, free_pt_l4)
|
|
DEFINE_FREE_PT_FN(l6, free_pt_l5)
|
|
|
|
static void free_pagetable(struct protection_domain *domain)
|
|
{
|
|
unsigned long root = (unsigned long)domain->pt_root;
|
|
|
|
switch (domain->mode) {
|
|
case PAGE_MODE_NONE:
|
|
break;
|
|
case PAGE_MODE_1_LEVEL:
|
|
free_page(root);
|
|
break;
|
|
case PAGE_MODE_2_LEVEL:
|
|
free_pt_l2(root);
|
|
break;
|
|
case PAGE_MODE_3_LEVEL:
|
|
free_pt_l3(root);
|
|
break;
|
|
case PAGE_MODE_4_LEVEL:
|
|
free_pt_l4(root);
|
|
break;
|
|
case PAGE_MODE_5_LEVEL:
|
|
free_pt_l5(root);
|
|
break;
|
|
case PAGE_MODE_6_LEVEL:
|
|
free_pt_l6(root);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void free_gcr3_tbl_level1(u64 *tbl)
|
|
{
|
|
u64 *ptr;
|
|
int i;
|
|
|
|
for (i = 0; i < 512; ++i) {
|
|
if (!(tbl[i] & GCR3_VALID))
|
|
continue;
|
|
|
|
ptr = __va(tbl[i] & PAGE_MASK);
|
|
|
|
free_page((unsigned long)ptr);
|
|
}
|
|
}
|
|
|
|
static void free_gcr3_tbl_level2(u64 *tbl)
|
|
{
|
|
u64 *ptr;
|
|
int i;
|
|
|
|
for (i = 0; i < 512; ++i) {
|
|
if (!(tbl[i] & GCR3_VALID))
|
|
continue;
|
|
|
|
ptr = __va(tbl[i] & PAGE_MASK);
|
|
|
|
free_gcr3_tbl_level1(ptr);
|
|
}
|
|
}
|
|
|
|
static void free_gcr3_table(struct protection_domain *domain)
|
|
{
|
|
if (domain->glx == 2)
|
|
free_gcr3_tbl_level2(domain->gcr3_tbl);
|
|
else if (domain->glx == 1)
|
|
free_gcr3_tbl_level1(domain->gcr3_tbl);
|
|
else
|
|
BUG_ON(domain->glx != 0);
|
|
|
|
free_page((unsigned long)domain->gcr3_tbl);
|
|
}
|
|
|
|
/*
|
|
* Free a domain, only used if something went wrong in the
|
|
* allocation path and we need to free an already allocated page table
|
|
*/
|
|
static void dma_ops_domain_free(struct dma_ops_domain *dom)
|
|
{
|
|
int i;
|
|
|
|
if (!dom)
|
|
return;
|
|
|
|
del_domain_from_list(&dom->domain);
|
|
|
|
free_pagetable(&dom->domain);
|
|
|
|
for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
|
|
if (!dom->aperture[i])
|
|
continue;
|
|
free_page((unsigned long)dom->aperture[i]->bitmap);
|
|
kfree(dom->aperture[i]);
|
|
}
|
|
|
|
kfree(dom);
|
|
}
|
|
|
|
/*
|
|
* Allocates a new protection domain usable for the dma_ops functions.
|
|
* It also initializes the page table and the address allocator data
|
|
* structures required for the dma_ops interface
|
|
*/
|
|
static struct dma_ops_domain *dma_ops_domain_alloc(void)
|
|
{
|
|
struct dma_ops_domain *dma_dom;
|
|
|
|
dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
|
|
if (!dma_dom)
|
|
return NULL;
|
|
|
|
if (protection_domain_init(&dma_dom->domain))
|
|
goto free_dma_dom;
|
|
|
|
dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
|
|
dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
|
|
dma_dom->domain.flags = PD_DMA_OPS_MASK;
|
|
dma_dom->domain.priv = dma_dom;
|
|
if (!dma_dom->domain.pt_root)
|
|
goto free_dma_dom;
|
|
|
|
dma_dom->need_flush = false;
|
|
|
|
add_domain_to_list(&dma_dom->domain);
|
|
|
|
if (alloc_new_range(dma_dom, true, GFP_KERNEL))
|
|
goto free_dma_dom;
|
|
|
|
/*
|
|
* mark the first page as allocated so we never return 0 as
|
|
* a valid dma-address. So we can use 0 as error value
|
|
*/
|
|
dma_dom->aperture[0]->bitmap[0] = 1;
|
|
dma_dom->next_address = 0;
|
|
|
|
|
|
return dma_dom;
|
|
|
|
free_dma_dom:
|
|
dma_ops_domain_free(dma_dom);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* little helper function to check whether a given protection domain is a
|
|
* dma_ops domain
|
|
*/
|
|
static bool dma_ops_domain(struct protection_domain *domain)
|
|
{
|
|
return domain->flags & PD_DMA_OPS_MASK;
|
|
}
|
|
|
|
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
|
|
{
|
|
u64 pte_root = 0;
|
|
u64 flags = 0;
|
|
|
|
if (domain->mode != PAGE_MODE_NONE)
|
|
pte_root = virt_to_phys(domain->pt_root);
|
|
|
|
pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
|
|
<< DEV_ENTRY_MODE_SHIFT;
|
|
pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
|
|
|
|
flags = amd_iommu_dev_table[devid].data[1];
|
|
|
|
if (ats)
|
|
flags |= DTE_FLAG_IOTLB;
|
|
|
|
if (domain->flags & PD_IOMMUV2_MASK) {
|
|
u64 gcr3 = __pa(domain->gcr3_tbl);
|
|
u64 glx = domain->glx;
|
|
u64 tmp;
|
|
|
|
pte_root |= DTE_FLAG_GV;
|
|
pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
|
|
|
|
/* First mask out possible old values for GCR3 table */
|
|
tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
|
|
flags &= ~tmp;
|
|
|
|
tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
|
|
flags &= ~tmp;
|
|
|
|
/* Encode GCR3 table into DTE */
|
|
tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
|
|
pte_root |= tmp;
|
|
|
|
tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
|
|
flags |= tmp;
|
|
|
|
tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
|
|
flags |= tmp;
|
|
}
|
|
|
|
flags &= ~(0xffffUL);
|
|
flags |= domain->id;
|
|
|
|
amd_iommu_dev_table[devid].data[1] = flags;
|
|
amd_iommu_dev_table[devid].data[0] = pte_root;
|
|
}
|
|
|
|
static void clear_dte_entry(u16 devid)
|
|
{
|
|
/* remove entry from the device table seen by the hardware */
|
|
amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
|
|
amd_iommu_dev_table[devid].data[1] = 0;
|
|
|
|
amd_iommu_apply_erratum_63(devid);
|
|
}
|
|
|
|
static void do_attach(struct iommu_dev_data *dev_data,
|
|
struct protection_domain *domain)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
bool ats;
|
|
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
ats = dev_data->ats.enabled;
|
|
|
|
/* Update data structures */
|
|
dev_data->domain = domain;
|
|
list_add(&dev_data->list, &domain->dev_list);
|
|
set_dte_entry(dev_data->devid, domain, ats);
|
|
|
|
/* Do reference counting */
|
|
domain->dev_iommu[iommu->index] += 1;
|
|
domain->dev_cnt += 1;
|
|
|
|
/* Flush the DTE entry */
|
|
device_flush_dte(dev_data);
|
|
}
|
|
|
|
static void do_detach(struct iommu_dev_data *dev_data)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
|
|
/*
|
|
* First check if the device is still attached. It might already
|
|
* be detached from its domain because the generic
|
|
* iommu_detach_group code detached it and we try again here in
|
|
* our alias handling.
|
|
*/
|
|
if (!dev_data->domain)
|
|
return;
|
|
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
|
|
/* decrease reference counters */
|
|
dev_data->domain->dev_iommu[iommu->index] -= 1;
|
|
dev_data->domain->dev_cnt -= 1;
|
|
|
|
/* Update data structures */
|
|
dev_data->domain = NULL;
|
|
list_del(&dev_data->list);
|
|
clear_dte_entry(dev_data->devid);
|
|
|
|
/* Flush the DTE entry */
|
|
device_flush_dte(dev_data);
|
|
}
|
|
|
|
/*
|
|
* If a device is not yet associated with a domain, this function does
|
|
* assigns it visible for the hardware
|
|
*/
|
|
static int __attach_device(struct iommu_dev_data *dev_data,
|
|
struct protection_domain *domain)
|
|
{
|
|
struct iommu_dev_data *head, *entry;
|
|
int ret;
|
|
|
|
/* lock domain */
|
|
spin_lock(&domain->lock);
|
|
|
|
head = dev_data;
|
|
|
|
if (head->alias_data != NULL)
|
|
head = head->alias_data;
|
|
|
|
/* Now we have the root of the alias group, if any */
|
|
|
|
ret = -EBUSY;
|
|
if (head->domain != NULL)
|
|
goto out_unlock;
|
|
|
|
/* Attach alias group root */
|
|
do_attach(head, domain);
|
|
|
|
/* Attach other devices in the alias group */
|
|
list_for_each_entry(entry, &head->alias_list, alias_list)
|
|
do_attach(entry, domain);
|
|
|
|
ret = 0;
|
|
|
|
out_unlock:
|
|
|
|
/* ready */
|
|
spin_unlock(&domain->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void pdev_iommuv2_disable(struct pci_dev *pdev)
|
|
{
|
|
pci_disable_ats(pdev);
|
|
pci_disable_pri(pdev);
|
|
pci_disable_pasid(pdev);
|
|
}
|
|
|
|
/* FIXME: Change generic reset-function to do the same */
|
|
static int pri_reset_while_enabled(struct pci_dev *pdev)
|
|
{
|
|
u16 control;
|
|
int pos;
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
|
|
if (!pos)
|
|
return -EINVAL;
|
|
|
|
pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
|
|
control |= PCI_PRI_CTRL_RESET;
|
|
pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pdev_iommuv2_enable(struct pci_dev *pdev)
|
|
{
|
|
bool reset_enable;
|
|
int reqs, ret;
|
|
|
|
/* FIXME: Hardcode number of outstanding requests for now */
|
|
reqs = 32;
|
|
if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
|
|
reqs = 1;
|
|
reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
|
|
|
|
/* Only allow access to user-accessible pages */
|
|
ret = pci_enable_pasid(pdev, 0);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
/* First reset the PRI state of the device */
|
|
ret = pci_reset_pri(pdev);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
/* Enable PRI */
|
|
ret = pci_enable_pri(pdev, reqs);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
if (reset_enable) {
|
|
ret = pri_reset_while_enabled(pdev);
|
|
if (ret)
|
|
goto out_err;
|
|
}
|
|
|
|
ret = pci_enable_ats(pdev, PAGE_SHIFT);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
return 0;
|
|
|
|
out_err:
|
|
pci_disable_pri(pdev);
|
|
pci_disable_pasid(pdev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* FIXME: Move this to PCI code */
|
|
#define PCI_PRI_TLP_OFF (1 << 15)
|
|
|
|
static bool pci_pri_tlp_required(struct pci_dev *pdev)
|
|
{
|
|
u16 status;
|
|
int pos;
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
|
|
if (!pos)
|
|
return false;
|
|
|
|
pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
|
|
|
|
return (status & PCI_PRI_TLP_OFF) ? true : false;
|
|
}
|
|
|
|
/*
|
|
* If a device is not yet associated with a domain, this function
|
|
* assigns it visible for the hardware
|
|
*/
|
|
static int attach_device(struct device *dev,
|
|
struct protection_domain *domain)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct iommu_dev_data *dev_data;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
dev_data = get_dev_data(dev);
|
|
|
|
if (domain->flags & PD_IOMMUV2_MASK) {
|
|
if (!dev_data->passthrough)
|
|
return -EINVAL;
|
|
|
|
if (dev_data->iommu_v2) {
|
|
if (pdev_iommuv2_enable(pdev) != 0)
|
|
return -EINVAL;
|
|
|
|
dev_data->ats.enabled = true;
|
|
dev_data->ats.qdep = pci_ats_queue_depth(pdev);
|
|
dev_data->pri_tlp = pci_pri_tlp_required(pdev);
|
|
}
|
|
} else if (amd_iommu_iotlb_sup &&
|
|
pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
|
|
dev_data->ats.enabled = true;
|
|
dev_data->ats.qdep = pci_ats_queue_depth(pdev);
|
|
}
|
|
|
|
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
|
|
ret = __attach_device(dev_data, domain);
|
|
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
|
|
|
|
/*
|
|
* We might boot into a crash-kernel here. The crashed kernel
|
|
* left the caches in the IOMMU dirty. So we have to flush
|
|
* here to evict all dirty stuff.
|
|
*/
|
|
domain_flush_tlb_pde(domain);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Removes a device from a protection domain (unlocked)
|
|
*/
|
|
static void __detach_device(struct iommu_dev_data *dev_data)
|
|
{
|
|
struct iommu_dev_data *head, *entry;
|
|
struct protection_domain *domain;
|
|
unsigned long flags;
|
|
|
|
BUG_ON(!dev_data->domain);
|
|
|
|
domain = dev_data->domain;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
head = dev_data;
|
|
if (head->alias_data != NULL)
|
|
head = head->alias_data;
|
|
|
|
list_for_each_entry(entry, &head->alias_list, alias_list)
|
|
do_detach(entry);
|
|
|
|
do_detach(head);
|
|
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Removes a device from a protection domain (with devtable_lock held)
|
|
*/
|
|
static void detach_device(struct device *dev)
|
|
{
|
|
struct protection_domain *domain;
|
|
struct iommu_dev_data *dev_data;
|
|
unsigned long flags;
|
|
|
|
dev_data = get_dev_data(dev);
|
|
domain = dev_data->domain;
|
|
|
|
/* lock device table */
|
|
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
|
|
__detach_device(dev_data);
|
|
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
|
|
|
|
if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
|
|
pdev_iommuv2_disable(to_pci_dev(dev));
|
|
else if (dev_data->ats.enabled)
|
|
pci_disable_ats(to_pci_dev(dev));
|
|
|
|
dev_data->ats.enabled = false;
|
|
}
|
|
|
|
static int amd_iommu_add_device(struct device *dev)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
struct iommu_domain *domain;
|
|
struct amd_iommu *iommu;
|
|
u16 devid;
|
|
int ret;
|
|
|
|
if (!check_device(dev) || get_dev_data(dev))
|
|
return 0;
|
|
|
|
devid = get_device_id(dev);
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
|
|
ret = iommu_init_device(dev);
|
|
if (ret) {
|
|
if (ret != -ENOTSUPP)
|
|
pr_err("Failed to initialize device %s - trying to proceed anyway\n",
|
|
dev_name(dev));
|
|
|
|
iommu_ignore_device(dev);
|
|
dev->archdata.dma_ops = &nommu_dma_ops;
|
|
goto out;
|
|
}
|
|
init_iommu_group(dev);
|
|
|
|
dev_data = get_dev_data(dev);
|
|
|
|
BUG_ON(!dev_data);
|
|
|
|
if (iommu_pass_through || dev_data->iommu_v2)
|
|
iommu_request_dm_for_dev(dev);
|
|
|
|
/* Domains are initialized for this device - have a look what we ended up with */
|
|
domain = iommu_get_domain_for_dev(dev);
|
|
if (domain->type == IOMMU_DOMAIN_IDENTITY)
|
|
dev_data->passthrough = true;
|
|
else
|
|
dev->archdata.dma_ops = &amd_iommu_dma_ops;
|
|
|
|
out:
|
|
iommu_completion_wait(iommu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void amd_iommu_remove_device(struct device *dev)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
u16 devid;
|
|
|
|
if (!check_device(dev))
|
|
return;
|
|
|
|
devid = get_device_id(dev);
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
|
|
iommu_uninit_device(dev);
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* The next functions belong to the dma_ops mapping/unmapping code.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* In the dma_ops path we only have the struct device. This function
|
|
* finds the corresponding IOMMU, the protection domain and the
|
|
* requestor id for a given device.
|
|
* If the device is not yet associated with a domain this is also done
|
|
* in this function.
|
|
*/
|
|
static struct protection_domain *get_domain(struct device *dev)
|
|
{
|
|
struct protection_domain *domain;
|
|
struct iommu_domain *io_domain;
|
|
|
|
if (!check_device(dev))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
io_domain = iommu_get_domain_for_dev(dev);
|
|
if (!io_domain)
|
|
return NULL;
|
|
|
|
domain = to_pdomain(io_domain);
|
|
if (!dma_ops_domain(domain))
|
|
return ERR_PTR(-EBUSY);
|
|
|
|
return domain;
|
|
}
|
|
|
|
static void update_device_table(struct protection_domain *domain)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
list_for_each_entry(dev_data, &domain->dev_list, list)
|
|
set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
|
|
}
|
|
|
|
static void update_domain(struct protection_domain *domain)
|
|
{
|
|
if (!domain->updated)
|
|
return;
|
|
|
|
update_device_table(domain);
|
|
|
|
domain_flush_devices(domain);
|
|
domain_flush_tlb_pde(domain);
|
|
|
|
domain->updated = false;
|
|
}
|
|
|
|
/*
|
|
* This function fetches the PTE for a given address in the aperture
|
|
*/
|
|
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
|
|
unsigned long address)
|
|
{
|
|
struct aperture_range *aperture;
|
|
u64 *pte, *pte_page;
|
|
|
|
aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
|
|
if (!aperture)
|
|
return NULL;
|
|
|
|
pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
|
|
if (!pte) {
|
|
pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
|
|
GFP_ATOMIC);
|
|
aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
|
|
} else
|
|
pte += PM_LEVEL_INDEX(0, address);
|
|
|
|
update_domain(&dom->domain);
|
|
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* This is the generic map function. It maps one 4kb page at paddr to
|
|
* the given address in the DMA address space for the domain.
|
|
*/
|
|
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
|
|
unsigned long address,
|
|
phys_addr_t paddr,
|
|
int direction)
|
|
{
|
|
u64 *pte, __pte;
|
|
|
|
WARN_ON(address > dom->aperture_size);
|
|
|
|
paddr &= PAGE_MASK;
|
|
|
|
pte = dma_ops_get_pte(dom, address);
|
|
if (!pte)
|
|
return DMA_ERROR_CODE;
|
|
|
|
__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
|
|
|
|
if (direction == DMA_TO_DEVICE)
|
|
__pte |= IOMMU_PTE_IR;
|
|
else if (direction == DMA_FROM_DEVICE)
|
|
__pte |= IOMMU_PTE_IW;
|
|
else if (direction == DMA_BIDIRECTIONAL)
|
|
__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
|
|
|
|
WARN_ON(*pte);
|
|
|
|
*pte = __pte;
|
|
|
|
return (dma_addr_t)address;
|
|
}
|
|
|
|
/*
|
|
* The generic unmapping function for on page in the DMA address space.
|
|
*/
|
|
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
|
|
unsigned long address)
|
|
{
|
|
struct aperture_range *aperture;
|
|
u64 *pte;
|
|
|
|
if (address >= dom->aperture_size)
|
|
return;
|
|
|
|
aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
|
|
if (!aperture)
|
|
return;
|
|
|
|
pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
|
|
if (!pte)
|
|
return;
|
|
|
|
pte += PM_LEVEL_INDEX(0, address);
|
|
|
|
WARN_ON(!*pte);
|
|
|
|
*pte = 0ULL;
|
|
}
|
|
|
|
/*
|
|
* This function contains common code for mapping of a physically
|
|
* contiguous memory region into DMA address space. It is used by all
|
|
* mapping functions provided with this IOMMU driver.
|
|
* Must be called with the domain lock held.
|
|
*/
|
|
static dma_addr_t __map_single(struct device *dev,
|
|
struct dma_ops_domain *dma_dom,
|
|
phys_addr_t paddr,
|
|
size_t size,
|
|
int dir,
|
|
bool align,
|
|
u64 dma_mask)
|
|
{
|
|
dma_addr_t offset = paddr & ~PAGE_MASK;
|
|
dma_addr_t address, start, ret;
|
|
unsigned int pages;
|
|
unsigned long align_mask = 0;
|
|
int i;
|
|
|
|
pages = iommu_num_pages(paddr, size, PAGE_SIZE);
|
|
paddr &= PAGE_MASK;
|
|
|
|
INC_STATS_COUNTER(total_map_requests);
|
|
|
|
if (pages > 1)
|
|
INC_STATS_COUNTER(cross_page);
|
|
|
|
if (align)
|
|
align_mask = (1UL << get_order(size)) - 1;
|
|
|
|
retry:
|
|
address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
|
|
dma_mask);
|
|
if (unlikely(address == DMA_ERROR_CODE)) {
|
|
/*
|
|
* setting next_address here will let the address
|
|
* allocator only scan the new allocated range in the
|
|
* first run. This is a small optimization.
|
|
*/
|
|
dma_dom->next_address = dma_dom->aperture_size;
|
|
|
|
if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
|
|
goto out;
|
|
|
|
/*
|
|
* aperture was successfully enlarged by 128 MB, try
|
|
* allocation again
|
|
*/
|
|
goto retry;
|
|
}
|
|
|
|
start = address;
|
|
for (i = 0; i < pages; ++i) {
|
|
ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
|
|
if (ret == DMA_ERROR_CODE)
|
|
goto out_unmap;
|
|
|
|
paddr += PAGE_SIZE;
|
|
start += PAGE_SIZE;
|
|
}
|
|
address += offset;
|
|
|
|
ADD_STATS_COUNTER(alloced_io_mem, size);
|
|
|
|
if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
|
|
domain_flush_tlb(&dma_dom->domain);
|
|
dma_dom->need_flush = false;
|
|
} else if (unlikely(amd_iommu_np_cache))
|
|
domain_flush_pages(&dma_dom->domain, address, size);
|
|
|
|
out:
|
|
return address;
|
|
|
|
out_unmap:
|
|
|
|
for (--i; i >= 0; --i) {
|
|
start -= PAGE_SIZE;
|
|
dma_ops_domain_unmap(dma_dom, start);
|
|
}
|
|
|
|
dma_ops_free_addresses(dma_dom, address, pages);
|
|
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
|
|
/*
|
|
* Does the reverse of the __map_single function. Must be called with
|
|
* the domain lock held too
|
|
*/
|
|
static void __unmap_single(struct dma_ops_domain *dma_dom,
|
|
dma_addr_t dma_addr,
|
|
size_t size,
|
|
int dir)
|
|
{
|
|
dma_addr_t flush_addr;
|
|
dma_addr_t i, start;
|
|
unsigned int pages;
|
|
|
|
if ((dma_addr == DMA_ERROR_CODE) ||
|
|
(dma_addr + size > dma_dom->aperture_size))
|
|
return;
|
|
|
|
flush_addr = dma_addr;
|
|
pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
|
|
dma_addr &= PAGE_MASK;
|
|
start = dma_addr;
|
|
|
|
for (i = 0; i < pages; ++i) {
|
|
dma_ops_domain_unmap(dma_dom, start);
|
|
start += PAGE_SIZE;
|
|
}
|
|
|
|
SUB_STATS_COUNTER(alloced_io_mem, size);
|
|
|
|
dma_ops_free_addresses(dma_dom, dma_addr, pages);
|
|
|
|
if (amd_iommu_unmap_flush || dma_dom->need_flush) {
|
|
domain_flush_pages(&dma_dom->domain, flush_addr, size);
|
|
dma_dom->need_flush = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The exported map_single function for dma_ops.
|
|
*/
|
|
static dma_addr_t map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
unsigned long flags;
|
|
struct protection_domain *domain;
|
|
dma_addr_t addr;
|
|
u64 dma_mask;
|
|
phys_addr_t paddr = page_to_phys(page) + offset;
|
|
|
|
INC_STATS_COUNTER(cnt_map_single);
|
|
|
|
domain = get_domain(dev);
|
|
if (PTR_ERR(domain) == -EINVAL)
|
|
return (dma_addr_t)paddr;
|
|
else if (IS_ERR(domain))
|
|
return DMA_ERROR_CODE;
|
|
|
|
dma_mask = *dev->dma_mask;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
addr = __map_single(dev, domain->priv, paddr, size, dir, false,
|
|
dma_mask);
|
|
if (addr == DMA_ERROR_CODE)
|
|
goto out;
|
|
|
|
domain_flush_complete(domain);
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
* The exported unmap_single function for dma_ops.
|
|
*/
|
|
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
|
|
enum dma_data_direction dir, struct dma_attrs *attrs)
|
|
{
|
|
unsigned long flags;
|
|
struct protection_domain *domain;
|
|
|
|
INC_STATS_COUNTER(cnt_unmap_single);
|
|
|
|
domain = get_domain(dev);
|
|
if (IS_ERR(domain))
|
|
return;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
__unmap_single(domain->priv, dma_addr, size, dir);
|
|
|
|
domain_flush_complete(domain);
|
|
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* The exported map_sg function for dma_ops (handles scatter-gather
|
|
* lists).
|
|
*/
|
|
static int map_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nelems, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
unsigned long flags;
|
|
struct protection_domain *domain;
|
|
int i;
|
|
struct scatterlist *s;
|
|
phys_addr_t paddr;
|
|
int mapped_elems = 0;
|
|
u64 dma_mask;
|
|
|
|
INC_STATS_COUNTER(cnt_map_sg);
|
|
|
|
domain = get_domain(dev);
|
|
if (IS_ERR(domain))
|
|
return 0;
|
|
|
|
dma_mask = *dev->dma_mask;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
for_each_sg(sglist, s, nelems, i) {
|
|
paddr = sg_phys(s);
|
|
|
|
s->dma_address = __map_single(dev, domain->priv,
|
|
paddr, s->length, dir, false,
|
|
dma_mask);
|
|
|
|
if (s->dma_address) {
|
|
s->dma_length = s->length;
|
|
mapped_elems++;
|
|
} else
|
|
goto unmap;
|
|
}
|
|
|
|
domain_flush_complete(domain);
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return mapped_elems;
|
|
unmap:
|
|
for_each_sg(sglist, s, mapped_elems, i) {
|
|
if (s->dma_address)
|
|
__unmap_single(domain->priv, s->dma_address,
|
|
s->dma_length, dir);
|
|
s->dma_address = s->dma_length = 0;
|
|
}
|
|
|
|
mapped_elems = 0;
|
|
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The exported map_sg function for dma_ops (handles scatter-gather
|
|
* lists).
|
|
*/
|
|
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
|
|
int nelems, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
unsigned long flags;
|
|
struct protection_domain *domain;
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
INC_STATS_COUNTER(cnt_unmap_sg);
|
|
|
|
domain = get_domain(dev);
|
|
if (IS_ERR(domain))
|
|
return;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
for_each_sg(sglist, s, nelems, i) {
|
|
__unmap_single(domain->priv, s->dma_address,
|
|
s->dma_length, dir);
|
|
s->dma_address = s->dma_length = 0;
|
|
}
|
|
|
|
domain_flush_complete(domain);
|
|
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* The exported alloc_coherent function for dma_ops.
|
|
*/
|
|
static void *alloc_coherent(struct device *dev, size_t size,
|
|
dma_addr_t *dma_addr, gfp_t flag,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
u64 dma_mask = dev->coherent_dma_mask;
|
|
struct protection_domain *domain;
|
|
unsigned long flags;
|
|
struct page *page;
|
|
|
|
INC_STATS_COUNTER(cnt_alloc_coherent);
|
|
|
|
domain = get_domain(dev);
|
|
if (PTR_ERR(domain) == -EINVAL) {
|
|
page = alloc_pages(flag, get_order(size));
|
|
*dma_addr = page_to_phys(page);
|
|
return page_address(page);
|
|
} else if (IS_ERR(domain))
|
|
return NULL;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
dma_mask = dev->coherent_dma_mask;
|
|
flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
|
|
flag |= __GFP_ZERO;
|
|
|
|
page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
|
|
if (!page) {
|
|
if (!(flag & __GFP_WAIT))
|
|
return NULL;
|
|
|
|
page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
|
|
get_order(size));
|
|
if (!page)
|
|
return NULL;
|
|
}
|
|
|
|
if (!dma_mask)
|
|
dma_mask = *dev->dma_mask;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
|
|
size, DMA_BIDIRECTIONAL, true, dma_mask);
|
|
|
|
if (*dma_addr == DMA_ERROR_CODE) {
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
goto out_free;
|
|
}
|
|
|
|
domain_flush_complete(domain);
|
|
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return page_address(page);
|
|
|
|
out_free:
|
|
|
|
if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
|
|
__free_pages(page, get_order(size));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* The exported free_coherent function for dma_ops.
|
|
*/
|
|
static void free_coherent(struct device *dev, size_t size,
|
|
void *virt_addr, dma_addr_t dma_addr,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct protection_domain *domain;
|
|
unsigned long flags;
|
|
struct page *page;
|
|
|
|
INC_STATS_COUNTER(cnt_free_coherent);
|
|
|
|
page = virt_to_page(virt_addr);
|
|
size = PAGE_ALIGN(size);
|
|
|
|
domain = get_domain(dev);
|
|
if (IS_ERR(domain))
|
|
goto free_mem;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
|
|
|
|
domain_flush_complete(domain);
|
|
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
free_mem:
|
|
if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
|
|
__free_pages(page, get_order(size));
|
|
}
|
|
|
|
/*
|
|
* This function is called by the DMA layer to find out if we can handle a
|
|
* particular device. It is part of the dma_ops.
|
|
*/
|
|
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
|
|
{
|
|
return check_device(dev);
|
|
}
|
|
|
|
static struct dma_map_ops amd_iommu_dma_ops = {
|
|
.alloc = alloc_coherent,
|
|
.free = free_coherent,
|
|
.map_page = map_page,
|
|
.unmap_page = unmap_page,
|
|
.map_sg = map_sg,
|
|
.unmap_sg = unmap_sg,
|
|
.dma_supported = amd_iommu_dma_supported,
|
|
};
|
|
|
|
int __init amd_iommu_init_api(void)
|
|
{
|
|
return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
|
|
}
|
|
|
|
int __init amd_iommu_init_dma_ops(void)
|
|
{
|
|
swiotlb = iommu_pass_through ? 1 : 0;
|
|
iommu_detected = 1;
|
|
|
|
/*
|
|
* In case we don't initialize SWIOTLB (actually the common case
|
|
* when AMD IOMMU is enabled), make sure there are global
|
|
* dma_ops set as a fall-back for devices not handled by this
|
|
* driver (for example non-PCI devices).
|
|
*/
|
|
if (!swiotlb)
|
|
dma_ops = &nommu_dma_ops;
|
|
|
|
amd_iommu_stats_init();
|
|
|
|
if (amd_iommu_unmap_flush)
|
|
pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
|
|
else
|
|
pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* The following functions belong to the exported interface of AMD IOMMU
|
|
*
|
|
* This interface allows access to lower level functions of the IOMMU
|
|
* like protection domain handling and assignement of devices to domains
|
|
* which is not possible with the dma_ops interface.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
static void cleanup_domain(struct protection_domain *domain)
|
|
{
|
|
struct iommu_dev_data *entry;
|
|
unsigned long flags;
|
|
|
|
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
|
|
|
|
while (!list_empty(&domain->dev_list)) {
|
|
entry = list_first_entry(&domain->dev_list,
|
|
struct iommu_dev_data, list);
|
|
__detach_device(entry);
|
|
}
|
|
|
|
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
|
|
}
|
|
|
|
static void protection_domain_free(struct protection_domain *domain)
|
|
{
|
|
if (!domain)
|
|
return;
|
|
|
|
del_domain_from_list(domain);
|
|
|
|
if (domain->id)
|
|
domain_id_free(domain->id);
|
|
|
|
kfree(domain);
|
|
}
|
|
|
|
static int protection_domain_init(struct protection_domain *domain)
|
|
{
|
|
spin_lock_init(&domain->lock);
|
|
mutex_init(&domain->api_lock);
|
|
domain->id = domain_id_alloc();
|
|
if (!domain->id)
|
|
return -ENOMEM;
|
|
INIT_LIST_HEAD(&domain->dev_list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct protection_domain *protection_domain_alloc(void)
|
|
{
|
|
struct protection_domain *domain;
|
|
|
|
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
|
|
if (!domain)
|
|
return NULL;
|
|
|
|
if (protection_domain_init(domain))
|
|
goto out_err;
|
|
|
|
add_domain_to_list(domain);
|
|
|
|
return domain;
|
|
|
|
out_err:
|
|
kfree(domain);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
|
|
{
|
|
struct protection_domain *pdomain;
|
|
struct dma_ops_domain *dma_domain;
|
|
|
|
switch (type) {
|
|
case IOMMU_DOMAIN_UNMANAGED:
|
|
pdomain = protection_domain_alloc();
|
|
if (!pdomain)
|
|
return NULL;
|
|
|
|
pdomain->mode = PAGE_MODE_3_LEVEL;
|
|
pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
|
|
if (!pdomain->pt_root) {
|
|
protection_domain_free(pdomain);
|
|
return NULL;
|
|
}
|
|
|
|
pdomain->domain.geometry.aperture_start = 0;
|
|
pdomain->domain.geometry.aperture_end = ~0ULL;
|
|
pdomain->domain.geometry.force_aperture = true;
|
|
|
|
break;
|
|
case IOMMU_DOMAIN_DMA:
|
|
dma_domain = dma_ops_domain_alloc();
|
|
if (!dma_domain) {
|
|
pr_err("AMD-Vi: Failed to allocate\n");
|
|
return NULL;
|
|
}
|
|
pdomain = &dma_domain->domain;
|
|
break;
|
|
case IOMMU_DOMAIN_IDENTITY:
|
|
pdomain = protection_domain_alloc();
|
|
if (!pdomain)
|
|
return NULL;
|
|
|
|
pdomain->mode = PAGE_MODE_NONE;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
return &pdomain->domain;
|
|
}
|
|
|
|
static void amd_iommu_domain_free(struct iommu_domain *dom)
|
|
{
|
|
struct protection_domain *domain;
|
|
|
|
if (!dom)
|
|
return;
|
|
|
|
domain = to_pdomain(dom);
|
|
|
|
if (domain->dev_cnt > 0)
|
|
cleanup_domain(domain);
|
|
|
|
BUG_ON(domain->dev_cnt != 0);
|
|
|
|
if (domain->mode != PAGE_MODE_NONE)
|
|
free_pagetable(domain);
|
|
|
|
if (domain->flags & PD_IOMMUV2_MASK)
|
|
free_gcr3_table(domain);
|
|
|
|
protection_domain_free(domain);
|
|
}
|
|
|
|
static void amd_iommu_detach_device(struct iommu_domain *dom,
|
|
struct device *dev)
|
|
{
|
|
struct iommu_dev_data *dev_data = dev->archdata.iommu;
|
|
struct amd_iommu *iommu;
|
|
u16 devid;
|
|
|
|
if (!check_device(dev))
|
|
return;
|
|
|
|
devid = get_device_id(dev);
|
|
|
|
if (dev_data->domain != NULL)
|
|
detach_device(dev);
|
|
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
if (!iommu)
|
|
return;
|
|
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
static int amd_iommu_attach_device(struct iommu_domain *dom,
|
|
struct device *dev)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
struct iommu_dev_data *dev_data;
|
|
struct amd_iommu *iommu;
|
|
int ret;
|
|
|
|
if (!check_device(dev))
|
|
return -EINVAL;
|
|
|
|
dev_data = dev->archdata.iommu;
|
|
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
if (!iommu)
|
|
return -EINVAL;
|
|
|
|
if (dev_data->domain)
|
|
detach_device(dev);
|
|
|
|
ret = attach_device(dev, domain);
|
|
|
|
iommu_completion_wait(iommu);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
|
|
phys_addr_t paddr, size_t page_size, int iommu_prot)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
int prot = 0;
|
|
int ret;
|
|
|
|
if (domain->mode == PAGE_MODE_NONE)
|
|
return -EINVAL;
|
|
|
|
if (iommu_prot & IOMMU_READ)
|
|
prot |= IOMMU_PROT_IR;
|
|
if (iommu_prot & IOMMU_WRITE)
|
|
prot |= IOMMU_PROT_IW;
|
|
|
|
mutex_lock(&domain->api_lock);
|
|
ret = iommu_map_page(domain, iova, paddr, prot, page_size);
|
|
mutex_unlock(&domain->api_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
|
|
size_t page_size)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
size_t unmap_size;
|
|
|
|
if (domain->mode == PAGE_MODE_NONE)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&domain->api_lock);
|
|
unmap_size = iommu_unmap_page(domain, iova, page_size);
|
|
mutex_unlock(&domain->api_lock);
|
|
|
|
domain_flush_tlb_pde(domain);
|
|
|
|
return unmap_size;
|
|
}
|
|
|
|
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
|
|
dma_addr_t iova)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long offset_mask, pte_pgsize;
|
|
u64 *pte, __pte;
|
|
|
|
if (domain->mode == PAGE_MODE_NONE)
|
|
return iova;
|
|
|
|
pte = fetch_pte(domain, iova, &pte_pgsize);
|
|
|
|
if (!pte || !IOMMU_PTE_PRESENT(*pte))
|
|
return 0;
|
|
|
|
offset_mask = pte_pgsize - 1;
|
|
__pte = *pte & PM_ADDR_MASK;
|
|
|
|
return (__pte & ~offset_mask) | (iova & offset_mask);
|
|
}
|
|
|
|
static bool amd_iommu_capable(enum iommu_cap cap)
|
|
{
|
|
switch (cap) {
|
|
case IOMMU_CAP_CACHE_COHERENCY:
|
|
return true;
|
|
case IOMMU_CAP_INTR_REMAP:
|
|
return (irq_remapping_enabled == 1);
|
|
case IOMMU_CAP_NOEXEC:
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void amd_iommu_get_dm_regions(struct device *dev,
|
|
struct list_head *head)
|
|
{
|
|
struct unity_map_entry *entry;
|
|
u16 devid;
|
|
|
|
devid = get_device_id(dev);
|
|
|
|
list_for_each_entry(entry, &amd_iommu_unity_map, list) {
|
|
struct iommu_dm_region *region;
|
|
|
|
if (devid < entry->devid_start || devid > entry->devid_end)
|
|
continue;
|
|
|
|
region = kzalloc(sizeof(*region), GFP_KERNEL);
|
|
if (!region) {
|
|
pr_err("Out of memory allocating dm-regions for %s\n",
|
|
dev_name(dev));
|
|
return;
|
|
}
|
|
|
|
region->start = entry->address_start;
|
|
region->length = entry->address_end - entry->address_start;
|
|
if (entry->prot & IOMMU_PROT_IR)
|
|
region->prot |= IOMMU_READ;
|
|
if (entry->prot & IOMMU_PROT_IW)
|
|
region->prot |= IOMMU_WRITE;
|
|
|
|
list_add_tail(®ion->list, head);
|
|
}
|
|
}
|
|
|
|
static void amd_iommu_put_dm_regions(struct device *dev,
|
|
struct list_head *head)
|
|
{
|
|
struct iommu_dm_region *entry, *next;
|
|
|
|
list_for_each_entry_safe(entry, next, head, list)
|
|
kfree(entry);
|
|
}
|
|
|
|
static const struct iommu_ops amd_iommu_ops = {
|
|
.capable = amd_iommu_capable,
|
|
.domain_alloc = amd_iommu_domain_alloc,
|
|
.domain_free = amd_iommu_domain_free,
|
|
.attach_dev = amd_iommu_attach_device,
|
|
.detach_dev = amd_iommu_detach_device,
|
|
.map = amd_iommu_map,
|
|
.unmap = amd_iommu_unmap,
|
|
.map_sg = default_iommu_map_sg,
|
|
.iova_to_phys = amd_iommu_iova_to_phys,
|
|
.add_device = amd_iommu_add_device,
|
|
.remove_device = amd_iommu_remove_device,
|
|
.get_dm_regions = amd_iommu_get_dm_regions,
|
|
.put_dm_regions = amd_iommu_put_dm_regions,
|
|
.pgsize_bitmap = AMD_IOMMU_PGSIZES,
|
|
};
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* The next functions do a basic initialization of IOMMU for pass through
|
|
* mode
|
|
*
|
|
* In passthrough mode the IOMMU is initialized and enabled but not used for
|
|
* DMA-API translation.
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/* IOMMUv2 specific functions */
|
|
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_register(&ppr_notifier, nb);
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
|
|
|
|
int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_unregister(&ppr_notifier, nb);
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
|
|
|
|
void amd_iommu_domain_direct_map(struct iommu_domain *dom)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
/* Update data structure */
|
|
domain->mode = PAGE_MODE_NONE;
|
|
domain->updated = true;
|
|
|
|
/* Make changes visible to IOMMUs */
|
|
update_domain(domain);
|
|
|
|
/* Page-table is not visible to IOMMU anymore, so free it */
|
|
free_pagetable(domain);
|
|
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
|
|
|
|
int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long flags;
|
|
int levels, ret;
|
|
|
|
if (pasids <= 0 || pasids > (PASID_MASK + 1))
|
|
return -EINVAL;
|
|
|
|
/* Number of GCR3 table levels required */
|
|
for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
|
|
levels += 1;
|
|
|
|
if (levels > amd_iommu_max_glx_val)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
|
|
/*
|
|
* Save us all sanity checks whether devices already in the
|
|
* domain support IOMMUv2. Just force that the domain has no
|
|
* devices attached when it is switched into IOMMUv2 mode.
|
|
*/
|
|
ret = -EBUSY;
|
|
if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
|
|
goto out;
|
|
|
|
ret = -ENOMEM;
|
|
domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
|
|
if (domain->gcr3_tbl == NULL)
|
|
goto out;
|
|
|
|
domain->glx = levels;
|
|
domain->flags |= PD_IOMMUV2_MASK;
|
|
domain->updated = true;
|
|
|
|
update_domain(domain);
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
|
|
|
|
static int __flush_pasid(struct protection_domain *domain, int pasid,
|
|
u64 address, bool size)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
struct iommu_cmd cmd;
|
|
int i, ret;
|
|
|
|
if (!(domain->flags & PD_IOMMUV2_MASK))
|
|
return -EINVAL;
|
|
|
|
build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
|
|
|
|
/*
|
|
* IOMMU TLB needs to be flushed before Device TLB to
|
|
* prevent device TLB refill from IOMMU TLB
|
|
*/
|
|
for (i = 0; i < amd_iommus_present; ++i) {
|
|
if (domain->dev_iommu[i] == 0)
|
|
continue;
|
|
|
|
ret = iommu_queue_command(amd_iommus[i], &cmd);
|
|
if (ret != 0)
|
|
goto out;
|
|
}
|
|
|
|
/* Wait until IOMMU TLB flushes are complete */
|
|
domain_flush_complete(domain);
|
|
|
|
/* Now flush device TLBs */
|
|
list_for_each_entry(dev_data, &domain->dev_list, list) {
|
|
struct amd_iommu *iommu;
|
|
int qdep;
|
|
|
|
/*
|
|
There might be non-IOMMUv2 capable devices in an IOMMUv2
|
|
* domain.
|
|
*/
|
|
if (!dev_data->ats.enabled)
|
|
continue;
|
|
|
|
qdep = dev_data->ats.qdep;
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
|
|
build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
|
|
qdep, address, size);
|
|
|
|
ret = iommu_queue_command(iommu, &cmd);
|
|
if (ret != 0)
|
|
goto out;
|
|
}
|
|
|
|
/* Wait until all device TLBs are flushed */
|
|
domain_flush_complete(domain);
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
|
|
u64 address)
|
|
{
|
|
INC_STATS_COUNTER(invalidate_iotlb);
|
|
|
|
return __flush_pasid(domain, pasid, address, false);
|
|
}
|
|
|
|
int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
|
|
u64 address)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
ret = __amd_iommu_flush_page(domain, pasid, address);
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_flush_page);
|
|
|
|
static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
|
|
{
|
|
INC_STATS_COUNTER(invalidate_iotlb_all);
|
|
|
|
return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
|
|
true);
|
|
}
|
|
|
|
int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
ret = __amd_iommu_flush_tlb(domain, pasid);
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_flush_tlb);
|
|
|
|
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
|
|
{
|
|
int index;
|
|
u64 *pte;
|
|
|
|
while (true) {
|
|
|
|
index = (pasid >> (9 * level)) & 0x1ff;
|
|
pte = &root[index];
|
|
|
|
if (level == 0)
|
|
break;
|
|
|
|
if (!(*pte & GCR3_VALID)) {
|
|
if (!alloc)
|
|
return NULL;
|
|
|
|
root = (void *)get_zeroed_page(GFP_ATOMIC);
|
|
if (root == NULL)
|
|
return NULL;
|
|
|
|
*pte = __pa(root) | GCR3_VALID;
|
|
}
|
|
|
|
root = __va(*pte & PAGE_MASK);
|
|
|
|
level -= 1;
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static int __set_gcr3(struct protection_domain *domain, int pasid,
|
|
unsigned long cr3)
|
|
{
|
|
u64 *pte;
|
|
|
|
if (domain->mode != PAGE_MODE_NONE)
|
|
return -EINVAL;
|
|
|
|
pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
|
|
if (pte == NULL)
|
|
return -ENOMEM;
|
|
|
|
*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
|
|
|
|
return __amd_iommu_flush_tlb(domain, pasid);
|
|
}
|
|
|
|
static int __clear_gcr3(struct protection_domain *domain, int pasid)
|
|
{
|
|
u64 *pte;
|
|
|
|
if (domain->mode != PAGE_MODE_NONE)
|
|
return -EINVAL;
|
|
|
|
pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
|
|
if (pte == NULL)
|
|
return 0;
|
|
|
|
*pte = 0;
|
|
|
|
return __amd_iommu_flush_tlb(domain, pasid);
|
|
}
|
|
|
|
int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
|
|
unsigned long cr3)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
ret = __set_gcr3(domain, pasid, cr3);
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
|
|
|
|
int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
|
|
{
|
|
struct protection_domain *domain = to_pdomain(dom);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&domain->lock, flags);
|
|
ret = __clear_gcr3(domain, pasid);
|
|
spin_unlock_irqrestore(&domain->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
|
|
|
|
int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
|
|
int status, int tag)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
struct amd_iommu *iommu;
|
|
struct iommu_cmd cmd;
|
|
|
|
INC_STATS_COUNTER(complete_ppr);
|
|
|
|
dev_data = get_dev_data(&pdev->dev);
|
|
iommu = amd_iommu_rlookup_table[dev_data->devid];
|
|
|
|
build_complete_ppr(&cmd, dev_data->devid, pasid, status,
|
|
tag, dev_data->pri_tlp);
|
|
|
|
return iommu_queue_command(iommu, &cmd);
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_complete_ppr);
|
|
|
|
struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
|
|
{
|
|
struct protection_domain *pdomain;
|
|
|
|
pdomain = get_domain(&pdev->dev);
|
|
if (IS_ERR(pdomain))
|
|
return NULL;
|
|
|
|
/* Only return IOMMUv2 domains */
|
|
if (!(pdomain->flags & PD_IOMMUV2_MASK))
|
|
return NULL;
|
|
|
|
return &pdomain->domain;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
|
|
|
|
void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
|
|
{
|
|
struct iommu_dev_data *dev_data;
|
|
|
|
if (!amd_iommu_v2_supported())
|
|
return;
|
|
|
|
dev_data = get_dev_data(&pdev->dev);
|
|
dev_data->errata |= (1 << erratum);
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
|
|
|
|
int amd_iommu_device_info(struct pci_dev *pdev,
|
|
struct amd_iommu_device_info *info)
|
|
{
|
|
int max_pasids;
|
|
int pos;
|
|
|
|
if (pdev == NULL || info == NULL)
|
|
return -EINVAL;
|
|
|
|
if (!amd_iommu_v2_supported())
|
|
return -EINVAL;
|
|
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
|
|
if (pos)
|
|
info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
|
|
if (pos)
|
|
info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
|
|
|
|
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
|
|
if (pos) {
|
|
int features;
|
|
|
|
max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
|
|
max_pasids = min(max_pasids, (1 << 20));
|
|
|
|
info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
|
|
info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
|
|
|
|
features = pci_pasid_features(pdev);
|
|
if (features & PCI_PASID_CAP_EXEC)
|
|
info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
|
|
if (features & PCI_PASID_CAP_PRIV)
|
|
info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(amd_iommu_device_info);
|
|
|
|
#ifdef CONFIG_IRQ_REMAP
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* Interrupt Remapping Implementation
|
|
*
|
|
*****************************************************************************/
|
|
|
|
union irte {
|
|
u32 val;
|
|
struct {
|
|
u32 valid : 1,
|
|
no_fault : 1,
|
|
int_type : 3,
|
|
rq_eoi : 1,
|
|
dm : 1,
|
|
rsvd_1 : 1,
|
|
destination : 8,
|
|
vector : 8,
|
|
rsvd_2 : 8;
|
|
} fields;
|
|
};
|
|
|
|
struct irq_2_irte {
|
|
u16 devid; /* Device ID for IRTE table */
|
|
u16 index; /* Index into IRTE table*/
|
|
};
|
|
|
|
struct amd_ir_data {
|
|
struct irq_2_irte irq_2_irte;
|
|
union irte irte_entry;
|
|
union {
|
|
struct msi_msg msi_entry;
|
|
};
|
|
};
|
|
|
|
static struct irq_chip amd_ir_chip;
|
|
|
|
#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
|
|
#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
|
|
#define DTE_IRQ_TABLE_LEN (8ULL << 1)
|
|
#define DTE_IRQ_REMAP_ENABLE 1ULL
|
|
|
|
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
|
|
{
|
|
u64 dte;
|
|
|
|
dte = amd_iommu_dev_table[devid].data[2];
|
|
dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
|
|
dte |= virt_to_phys(table->table);
|
|
dte |= DTE_IRQ_REMAP_INTCTL;
|
|
dte |= DTE_IRQ_TABLE_LEN;
|
|
dte |= DTE_IRQ_REMAP_ENABLE;
|
|
|
|
amd_iommu_dev_table[devid].data[2] = dte;
|
|
}
|
|
|
|
#define IRTE_ALLOCATED (~1U)
|
|
|
|
static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
|
|
{
|
|
struct irq_remap_table *table = NULL;
|
|
struct amd_iommu *iommu;
|
|
unsigned long flags;
|
|
u16 alias;
|
|
|
|
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
|
|
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
if (!iommu)
|
|
goto out_unlock;
|
|
|
|
table = irq_lookup_table[devid];
|
|
if (table)
|
|
goto out;
|
|
|
|
alias = amd_iommu_alias_table[devid];
|
|
table = irq_lookup_table[alias];
|
|
if (table) {
|
|
irq_lookup_table[devid] = table;
|
|
set_dte_irq_entry(devid, table);
|
|
iommu_flush_dte(iommu, devid);
|
|
goto out;
|
|
}
|
|
|
|
/* Nothing there yet, allocate new irq remapping table */
|
|
table = kzalloc(sizeof(*table), GFP_ATOMIC);
|
|
if (!table)
|
|
goto out;
|
|
|
|
/* Initialize table spin-lock */
|
|
spin_lock_init(&table->lock);
|
|
|
|
if (ioapic)
|
|
/* Keep the first 32 indexes free for IOAPIC interrupts */
|
|
table->min_index = 32;
|
|
|
|
table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
|
|
if (!table->table) {
|
|
kfree(table);
|
|
table = NULL;
|
|
goto out;
|
|
}
|
|
|
|
memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
|
|
|
|
if (ioapic) {
|
|
int i;
|
|
|
|
for (i = 0; i < 32; ++i)
|
|
table->table[i] = IRTE_ALLOCATED;
|
|
}
|
|
|
|
irq_lookup_table[devid] = table;
|
|
set_dte_irq_entry(devid, table);
|
|
iommu_flush_dte(iommu, devid);
|
|
if (devid != alias) {
|
|
irq_lookup_table[alias] = table;
|
|
set_dte_irq_entry(alias, table);
|
|
iommu_flush_dte(iommu, alias);
|
|
}
|
|
|
|
out:
|
|
iommu_completion_wait(iommu);
|
|
|
|
out_unlock:
|
|
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
|
|
|
|
return table;
|
|
}
|
|
|
|
static int alloc_irq_index(u16 devid, int count)
|
|
{
|
|
struct irq_remap_table *table;
|
|
unsigned long flags;
|
|
int index, c;
|
|
|
|
table = get_irq_table(devid, false);
|
|
if (!table)
|
|
return -ENODEV;
|
|
|
|
spin_lock_irqsave(&table->lock, flags);
|
|
|
|
/* Scan table for free entries */
|
|
for (c = 0, index = table->min_index;
|
|
index < MAX_IRQS_PER_TABLE;
|
|
++index) {
|
|
if (table->table[index] == 0)
|
|
c += 1;
|
|
else
|
|
c = 0;
|
|
|
|
if (c == count) {
|
|
for (; c != 0; --c)
|
|
table->table[index - c + 1] = IRTE_ALLOCATED;
|
|
|
|
index -= count - 1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
index = -ENOSPC;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&table->lock, flags);
|
|
|
|
return index;
|
|
}
|
|
|
|
static int modify_irte(u16 devid, int index, union irte irte)
|
|
{
|
|
struct irq_remap_table *table;
|
|
struct amd_iommu *iommu;
|
|
unsigned long flags;
|
|
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
if (iommu == NULL)
|
|
return -EINVAL;
|
|
|
|
table = get_irq_table(devid, false);
|
|
if (!table)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_irqsave(&table->lock, flags);
|
|
table->table[index] = irte.val;
|
|
spin_unlock_irqrestore(&table->lock, flags);
|
|
|
|
iommu_flush_irt(iommu, devid);
|
|
iommu_completion_wait(iommu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_irte(u16 devid, int index)
|
|
{
|
|
struct irq_remap_table *table;
|
|
struct amd_iommu *iommu;
|
|
unsigned long flags;
|
|
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
if (iommu == NULL)
|
|
return;
|
|
|
|
table = get_irq_table(devid, false);
|
|
if (!table)
|
|
return;
|
|
|
|
spin_lock_irqsave(&table->lock, flags);
|
|
table->table[index] = 0;
|
|
spin_unlock_irqrestore(&table->lock, flags);
|
|
|
|
iommu_flush_irt(iommu, devid);
|
|
iommu_completion_wait(iommu);
|
|
}
|
|
|
|
static int get_devid(struct irq_alloc_info *info)
|
|
{
|
|
int devid = -1;
|
|
|
|
switch (info->type) {
|
|
case X86_IRQ_ALLOC_TYPE_IOAPIC:
|
|
devid = get_ioapic_devid(info->ioapic_id);
|
|
break;
|
|
case X86_IRQ_ALLOC_TYPE_HPET:
|
|
devid = get_hpet_devid(info->hpet_id);
|
|
break;
|
|
case X86_IRQ_ALLOC_TYPE_MSI:
|
|
case X86_IRQ_ALLOC_TYPE_MSIX:
|
|
devid = get_device_id(&info->msi_dev->dev);
|
|
break;
|
|
default:
|
|
BUG_ON(1);
|
|
break;
|
|
}
|
|
|
|
return devid;
|
|
}
|
|
|
|
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
int devid;
|
|
|
|
if (!info)
|
|
return NULL;
|
|
|
|
devid = get_devid(info);
|
|
if (devid >= 0) {
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
if (iommu)
|
|
return iommu->ir_domain;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
|
|
{
|
|
struct amd_iommu *iommu;
|
|
int devid;
|
|
|
|
if (!info)
|
|
return NULL;
|
|
|
|
switch (info->type) {
|
|
case X86_IRQ_ALLOC_TYPE_MSI:
|
|
case X86_IRQ_ALLOC_TYPE_MSIX:
|
|
devid = get_device_id(&info->msi_dev->dev);
|
|
if (devid >= 0) {
|
|
iommu = amd_iommu_rlookup_table[devid];
|
|
if (iommu)
|
|
return iommu->msi_domain;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct irq_remap_ops amd_iommu_irq_ops = {
|
|
.prepare = amd_iommu_prepare,
|
|
.enable = amd_iommu_enable,
|
|
.disable = amd_iommu_disable,
|
|
.reenable = amd_iommu_reenable,
|
|
.enable_faulting = amd_iommu_enable_faulting,
|
|
.get_ir_irq_domain = get_ir_irq_domain,
|
|
.get_irq_domain = get_irq_domain,
|
|
};
|
|
|
|
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
|
|
struct irq_cfg *irq_cfg,
|
|
struct irq_alloc_info *info,
|
|
int devid, int index, int sub_handle)
|
|
{
|
|
struct irq_2_irte *irte_info = &data->irq_2_irte;
|
|
struct msi_msg *msg = &data->msi_entry;
|
|
union irte *irte = &data->irte_entry;
|
|
struct IO_APIC_route_entry *entry;
|
|
|
|
data->irq_2_irte.devid = devid;
|
|
data->irq_2_irte.index = index + sub_handle;
|
|
|
|
/* Setup IRTE for IOMMU */
|
|
irte->val = 0;
|
|
irte->fields.vector = irq_cfg->vector;
|
|
irte->fields.int_type = apic->irq_delivery_mode;
|
|
irte->fields.destination = irq_cfg->dest_apicid;
|
|
irte->fields.dm = apic->irq_dest_mode;
|
|
irte->fields.valid = 1;
|
|
|
|
switch (info->type) {
|
|
case X86_IRQ_ALLOC_TYPE_IOAPIC:
|
|
/* Setup IOAPIC entry */
|
|
entry = info->ioapic_entry;
|
|
info->ioapic_entry = NULL;
|
|
memset(entry, 0, sizeof(*entry));
|
|
entry->vector = index;
|
|
entry->mask = 0;
|
|
entry->trigger = info->ioapic_trigger;
|
|
entry->polarity = info->ioapic_polarity;
|
|
/* Mask level triggered irqs. */
|
|
if (info->ioapic_trigger)
|
|
entry->mask = 1;
|
|
break;
|
|
|
|
case X86_IRQ_ALLOC_TYPE_HPET:
|
|
case X86_IRQ_ALLOC_TYPE_MSI:
|
|
case X86_IRQ_ALLOC_TYPE_MSIX:
|
|
msg->address_hi = MSI_ADDR_BASE_HI;
|
|
msg->address_lo = MSI_ADDR_BASE_LO;
|
|
msg->data = irte_info->index;
|
|
break;
|
|
|
|
default:
|
|
BUG_ON(1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs, void *arg)
|
|
{
|
|
struct irq_alloc_info *info = arg;
|
|
struct irq_data *irq_data;
|
|
struct amd_ir_data *data;
|
|
struct irq_cfg *cfg;
|
|
int i, ret, devid;
|
|
int index = -1;
|
|
|
|
if (!info)
|
|
return -EINVAL;
|
|
if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
|
|
info->type != X86_IRQ_ALLOC_TYPE_MSIX)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* With IRQ remapping enabled, don't need contiguous CPU vectors
|
|
* to support multiple MSI interrupts.
|
|
*/
|
|
if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
|
|
info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
|
|
|
|
devid = get_devid(info);
|
|
if (devid < 0)
|
|
return -EINVAL;
|
|
|
|
ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
|
|
if (get_irq_table(devid, true))
|
|
index = info->ioapic_pin;
|
|
else
|
|
ret = -ENOMEM;
|
|
} else {
|
|
index = alloc_irq_index(devid, nr_irqs);
|
|
}
|
|
if (index < 0) {
|
|
pr_warn("Failed to allocate IRTE\n");
|
|
goto out_free_parent;
|
|
}
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
irq_data = irq_domain_get_irq_data(domain, virq + i);
|
|
cfg = irqd_cfg(irq_data);
|
|
if (!irq_data || !cfg) {
|
|
ret = -EINVAL;
|
|
goto out_free_data;
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
goto out_free_data;
|
|
|
|
irq_data->hwirq = (devid << 16) + i;
|
|
irq_data->chip_data = data;
|
|
irq_data->chip = &amd_ir_chip;
|
|
irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
|
|
irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_free_data:
|
|
for (i--; i >= 0; i--) {
|
|
irq_data = irq_domain_get_irq_data(domain, virq + i);
|
|
if (irq_data)
|
|
kfree(irq_data->chip_data);
|
|
}
|
|
for (i = 0; i < nr_irqs; i++)
|
|
free_irte(devid, index + i);
|
|
out_free_parent:
|
|
irq_domain_free_irqs_common(domain, virq, nr_irqs);
|
|
return ret;
|
|
}
|
|
|
|
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
|
|
unsigned int nr_irqs)
|
|
{
|
|
struct irq_2_irte *irte_info;
|
|
struct irq_data *irq_data;
|
|
struct amd_ir_data *data;
|
|
int i;
|
|
|
|
for (i = 0; i < nr_irqs; i++) {
|
|
irq_data = irq_domain_get_irq_data(domain, virq + i);
|
|
if (irq_data && irq_data->chip_data) {
|
|
data = irq_data->chip_data;
|
|
irte_info = &data->irq_2_irte;
|
|
free_irte(irte_info->devid, irte_info->index);
|
|
kfree(data);
|
|
}
|
|
}
|
|
irq_domain_free_irqs_common(domain, virq, nr_irqs);
|
|
}
|
|
|
|
static void irq_remapping_activate(struct irq_domain *domain,
|
|
struct irq_data *irq_data)
|
|
{
|
|
struct amd_ir_data *data = irq_data->chip_data;
|
|
struct irq_2_irte *irte_info = &data->irq_2_irte;
|
|
|
|
modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
|
|
}
|
|
|
|
static void irq_remapping_deactivate(struct irq_domain *domain,
|
|
struct irq_data *irq_data)
|
|
{
|
|
struct amd_ir_data *data = irq_data->chip_data;
|
|
struct irq_2_irte *irte_info = &data->irq_2_irte;
|
|
union irte entry;
|
|
|
|
entry.val = 0;
|
|
modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
|
|
}
|
|
|
|
static struct irq_domain_ops amd_ir_domain_ops = {
|
|
.alloc = irq_remapping_alloc,
|
|
.free = irq_remapping_free,
|
|
.activate = irq_remapping_activate,
|
|
.deactivate = irq_remapping_deactivate,
|
|
};
|
|
|
|
static int amd_ir_set_affinity(struct irq_data *data,
|
|
const struct cpumask *mask, bool force)
|
|
{
|
|
struct amd_ir_data *ir_data = data->chip_data;
|
|
struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
|
|
struct irq_cfg *cfg = irqd_cfg(data);
|
|
struct irq_data *parent = data->parent_data;
|
|
int ret;
|
|
|
|
ret = parent->chip->irq_set_affinity(parent, mask, force);
|
|
if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
|
|
return ret;
|
|
|
|
/*
|
|
* Atomically updates the IRTE with the new destination, vector
|
|
* and flushes the interrupt entry cache.
|
|
*/
|
|
ir_data->irte_entry.fields.vector = cfg->vector;
|
|
ir_data->irte_entry.fields.destination = cfg->dest_apicid;
|
|
modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
|
|
|
|
/*
|
|
* After this point, all the interrupts will start arriving
|
|
* at the new destination. So, time to cleanup the previous
|
|
* vector allocation.
|
|
*/
|
|
send_cleanup_vector(cfg);
|
|
|
|
return IRQ_SET_MASK_OK_DONE;
|
|
}
|
|
|
|
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
|
|
{
|
|
struct amd_ir_data *ir_data = irq_data->chip_data;
|
|
|
|
*msg = ir_data->msi_entry;
|
|
}
|
|
|
|
static struct irq_chip amd_ir_chip = {
|
|
.irq_ack = ir_ack_apic_edge,
|
|
.irq_set_affinity = amd_ir_set_affinity,
|
|
.irq_compose_msi_msg = ir_compose_msi_msg,
|
|
};
|
|
|
|
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
|
|
{
|
|
iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
|
|
if (!iommu->ir_domain)
|
|
return -ENOMEM;
|
|
|
|
iommu->ir_domain->parent = arch_get_ir_parent_domain();
|
|
iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|