mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
d88525e8fd
The problem is that when the attenuation is increased, the rate will start to drop from MCS7 -> MCS6, and finally will see MCS1 -> CCK_11Mbps. When the rate is changed b/w CCK and OFDM, it will use register desired_scale to calculate how much tx gain need to change. The output power with the same tx gain for CCK and OFDM modulated signals are different. This difference is constant for AR9280 but not AR9285/AR9271. It has different PA architecture a constant. So it should be calibrated against this PA characteristic. The driver has to read the calibrated values from EEPROM and set the tx power registers accordingly. Signed-off-by: Rajkumar Manoharan <rmanoharan@atheros.com> Acked-by: Felix Fietkau <nbd@openwrt.org> Signed-off-by: John W. Linville <linville@tuxdriver.com>
1075 lines
31 KiB
C
1075 lines
31 KiB
C
/*
|
|
* Copyright (c) 2008-2009 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "hw.h"
|
|
#include "ar9002_phy.h"
|
|
|
|
static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
|
|
{
|
|
return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
|
|
}
|
|
|
|
static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
|
|
{
|
|
return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
|
|
}
|
|
|
|
#define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
|
|
|
|
static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u16 *eep_data = (u16 *)&ah->eeprom.map4k;
|
|
int addr, eep_start_loc = 64;
|
|
|
|
for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
|
|
if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
|
|
ath_dbg(common, ATH_DBG_EEPROM,
|
|
"Unable to read eeprom region\n");
|
|
return false;
|
|
}
|
|
eep_data++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
|
|
{
|
|
u16 *eep_data = (u16 *)&ah->eeprom.map4k;
|
|
|
|
ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
if (!ath9k_hw_use_flash(ah)) {
|
|
ath_dbg(common, ATH_DBG_EEPROM,
|
|
"Reading from EEPROM, not flash\n");
|
|
}
|
|
|
|
if (common->bus_ops->ath_bus_type == ATH_USB)
|
|
return __ath9k_hw_usb_4k_fill_eeprom(ah);
|
|
else
|
|
return __ath9k_hw_4k_fill_eeprom(ah);
|
|
}
|
|
|
|
#undef SIZE_EEPROM_4K
|
|
|
|
static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
|
|
{
|
|
#define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ar5416_eeprom_4k *eep =
|
|
(struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
|
|
u16 *eepdata, temp, magic, magic2;
|
|
u32 sum = 0, el;
|
|
bool need_swap = false;
|
|
int i, addr;
|
|
|
|
|
|
if (!ath9k_hw_use_flash(ah)) {
|
|
if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
|
|
&magic)) {
|
|
ath_err(common, "Reading Magic # failed\n");
|
|
return false;
|
|
}
|
|
|
|
ath_dbg(common, ATH_DBG_EEPROM,
|
|
"Read Magic = 0x%04X\n", magic);
|
|
|
|
if (magic != AR5416_EEPROM_MAGIC) {
|
|
magic2 = swab16(magic);
|
|
|
|
if (magic2 == AR5416_EEPROM_MAGIC) {
|
|
need_swap = true;
|
|
eepdata = (u16 *) (&ah->eeprom);
|
|
|
|
for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
|
|
temp = swab16(*eepdata);
|
|
*eepdata = temp;
|
|
eepdata++;
|
|
}
|
|
} else {
|
|
ath_err(common,
|
|
"Invalid EEPROM Magic. Endianness mismatch.\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
|
|
need_swap ? "True" : "False");
|
|
|
|
if (need_swap)
|
|
el = swab16(ah->eeprom.map4k.baseEepHeader.length);
|
|
else
|
|
el = ah->eeprom.map4k.baseEepHeader.length;
|
|
|
|
if (el > sizeof(struct ar5416_eeprom_4k))
|
|
el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
|
|
else
|
|
el = el / sizeof(u16);
|
|
|
|
eepdata = (u16 *)(&ah->eeprom);
|
|
|
|
for (i = 0; i < el; i++)
|
|
sum ^= *eepdata++;
|
|
|
|
if (need_swap) {
|
|
u32 integer;
|
|
u16 word;
|
|
|
|
ath_dbg(common, ATH_DBG_EEPROM,
|
|
"EEPROM Endianness is not native.. Changing\n");
|
|
|
|
word = swab16(eep->baseEepHeader.length);
|
|
eep->baseEepHeader.length = word;
|
|
|
|
word = swab16(eep->baseEepHeader.checksum);
|
|
eep->baseEepHeader.checksum = word;
|
|
|
|
word = swab16(eep->baseEepHeader.version);
|
|
eep->baseEepHeader.version = word;
|
|
|
|
word = swab16(eep->baseEepHeader.regDmn[0]);
|
|
eep->baseEepHeader.regDmn[0] = word;
|
|
|
|
word = swab16(eep->baseEepHeader.regDmn[1]);
|
|
eep->baseEepHeader.regDmn[1] = word;
|
|
|
|
word = swab16(eep->baseEepHeader.rfSilent);
|
|
eep->baseEepHeader.rfSilent = word;
|
|
|
|
word = swab16(eep->baseEepHeader.blueToothOptions);
|
|
eep->baseEepHeader.blueToothOptions = word;
|
|
|
|
word = swab16(eep->baseEepHeader.deviceCap);
|
|
eep->baseEepHeader.deviceCap = word;
|
|
|
|
integer = swab32(eep->modalHeader.antCtrlCommon);
|
|
eep->modalHeader.antCtrlCommon = integer;
|
|
|
|
for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
|
|
integer = swab32(eep->modalHeader.antCtrlChain[i]);
|
|
eep->modalHeader.antCtrlChain[i] = integer;
|
|
}
|
|
|
|
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
|
|
word = swab16(eep->modalHeader.spurChans[i].spurChan);
|
|
eep->modalHeader.spurChans[i].spurChan = word;
|
|
}
|
|
}
|
|
|
|
if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
|
|
ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
|
|
ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
|
|
sum, ah->eep_ops->get_eeprom_ver(ah));
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
#undef EEPROM_4K_SIZE
|
|
}
|
|
|
|
static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
|
|
enum eeprom_param param)
|
|
{
|
|
struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
|
|
struct modal_eep_4k_header *pModal = &eep->modalHeader;
|
|
struct base_eep_header_4k *pBase = &eep->baseEepHeader;
|
|
u16 ver_minor;
|
|
|
|
ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
|
|
|
|
switch (param) {
|
|
case EEP_NFTHRESH_2:
|
|
return pModal->noiseFloorThreshCh[0];
|
|
case EEP_MAC_LSW:
|
|
return pBase->macAddr[0] << 8 | pBase->macAddr[1];
|
|
case EEP_MAC_MID:
|
|
return pBase->macAddr[2] << 8 | pBase->macAddr[3];
|
|
case EEP_MAC_MSW:
|
|
return pBase->macAddr[4] << 8 | pBase->macAddr[5];
|
|
case EEP_REG_0:
|
|
return pBase->regDmn[0];
|
|
case EEP_REG_1:
|
|
return pBase->regDmn[1];
|
|
case EEP_OP_CAP:
|
|
return pBase->deviceCap;
|
|
case EEP_OP_MODE:
|
|
return pBase->opCapFlags;
|
|
case EEP_RF_SILENT:
|
|
return pBase->rfSilent;
|
|
case EEP_OB_2:
|
|
return pModal->ob_0;
|
|
case EEP_DB_2:
|
|
return pModal->db1_1;
|
|
case EEP_MINOR_REV:
|
|
return ver_minor;
|
|
case EEP_TX_MASK:
|
|
return pBase->txMask;
|
|
case EEP_RX_MASK:
|
|
return pBase->rxMask;
|
|
case EEP_FRAC_N_5G:
|
|
return 0;
|
|
case EEP_PWR_TABLE_OFFSET:
|
|
return AR5416_PWR_TABLE_OFFSET_DB;
|
|
case EEP_MODAL_VER:
|
|
return pModal->version;
|
|
case EEP_ANT_DIV_CTL1:
|
|
return pModal->antdiv_ctl1;
|
|
case EEP_TXGAIN_TYPE:
|
|
if (ver_minor >= AR5416_EEP_MINOR_VER_19)
|
|
return pBase->txGainType;
|
|
else
|
|
return AR5416_EEP_TXGAIN_ORIGINAL;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
int16_t *pTxPowerIndexOffset)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
|
|
struct cal_data_per_freq_4k *pRawDataset;
|
|
u8 *pCalBChans = NULL;
|
|
u16 pdGainOverlap_t2;
|
|
static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
|
|
u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
|
|
u16 numPiers, i, j;
|
|
u16 numXpdGain, xpdMask;
|
|
u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
|
|
u32 reg32, regOffset, regChainOffset;
|
|
|
|
xpdMask = pEepData->modalHeader.xpdGain;
|
|
|
|
if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_2) {
|
|
pdGainOverlap_t2 =
|
|
pEepData->modalHeader.pdGainOverlap;
|
|
} else {
|
|
pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
|
|
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
|
|
}
|
|
|
|
pCalBChans = pEepData->calFreqPier2G;
|
|
numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
|
|
|
|
numXpdGain = 0;
|
|
|
|
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
|
|
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
|
|
if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
|
|
break;
|
|
xpdGainValues[numXpdGain] =
|
|
(u16)(AR5416_PD_GAINS_IN_MASK - i);
|
|
numXpdGain++;
|
|
}
|
|
}
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
|
|
(numXpdGain - 1) & 0x3);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
|
|
xpdGainValues[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
|
|
xpdGainValues[1]);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
|
|
|
|
for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
|
|
if (AR_SREV_5416_20_OR_LATER(ah) &&
|
|
(ah->rxchainmask == 5 || ah->txchainmask == 5) &&
|
|
(i != 0)) {
|
|
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
|
|
} else
|
|
regChainOffset = i * 0x1000;
|
|
|
|
if (pEepData->baseEepHeader.txMask & (1 << i)) {
|
|
pRawDataset = pEepData->calPierData2G[i];
|
|
|
|
ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
|
|
pRawDataset, pCalBChans,
|
|
numPiers, pdGainOverlap_t2,
|
|
gainBoundaries,
|
|
pdadcValues, numXpdGain);
|
|
|
|
ENABLE_REGWRITE_BUFFER(ah);
|
|
|
|
if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
|
|
REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
|
|
SM(pdGainOverlap_t2,
|
|
AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
|
|
| SM(gainBoundaries[0],
|
|
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
|
|
| SM(gainBoundaries[1],
|
|
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
|
|
| SM(gainBoundaries[2],
|
|
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
|
|
| SM(gainBoundaries[3],
|
|
AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
|
|
}
|
|
|
|
regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
|
|
for (j = 0; j < 32; j++) {
|
|
reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
|
|
((pdadcValues[4 * j + 1] & 0xFF) << 8) |
|
|
((pdadcValues[4 * j + 2] & 0xFF) << 16)|
|
|
((pdadcValues[4 * j + 3] & 0xFF) << 24);
|
|
REG_WRITE(ah, regOffset, reg32);
|
|
|
|
ath_dbg(common, ATH_DBG_EEPROM,
|
|
"PDADC (%d,%4x): %4.4x %8.8x\n",
|
|
i, regChainOffset, regOffset,
|
|
reg32);
|
|
ath_dbg(common, ATH_DBG_EEPROM,
|
|
"PDADC: Chain %d | "
|
|
"PDADC %3d Value %3d | "
|
|
"PDADC %3d Value %3d | "
|
|
"PDADC %3d Value %3d | "
|
|
"PDADC %3d Value %3d |\n",
|
|
i, 4 * j, pdadcValues[4 * j],
|
|
4 * j + 1, pdadcValues[4 * j + 1],
|
|
4 * j + 2, pdadcValues[4 * j + 2],
|
|
4 * j + 3, pdadcValues[4 * j + 3]);
|
|
|
|
regOffset += 4;
|
|
}
|
|
|
|
REGWRITE_BUFFER_FLUSH(ah);
|
|
}
|
|
}
|
|
|
|
*pTxPowerIndexOffset = 0;
|
|
}
|
|
|
|
static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
int16_t *ratesArray,
|
|
u16 cfgCtl,
|
|
u16 AntennaReduction,
|
|
u16 twiceMaxRegulatoryPower,
|
|
u16 powerLimit)
|
|
{
|
|
#define CMP_TEST_GRP \
|
|
(((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
|
|
pEepData->ctlIndex[i]) \
|
|
|| (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
|
|
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
|
|
|
|
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
|
|
int i;
|
|
int16_t twiceLargestAntenna;
|
|
u16 twiceMinEdgePower;
|
|
u16 twiceMaxEdgePower = MAX_RATE_POWER;
|
|
u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
|
|
u16 numCtlModes;
|
|
const u16 *pCtlMode;
|
|
u16 ctlMode, freq;
|
|
struct chan_centers centers;
|
|
struct cal_ctl_data_4k *rep;
|
|
struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
|
|
static const u16 tpScaleReductionTable[5] =
|
|
{ 0, 3, 6, 9, MAX_RATE_POWER };
|
|
struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
|
|
0, { 0, 0, 0, 0}
|
|
};
|
|
struct cal_target_power_leg targetPowerOfdmExt = {
|
|
0, { 0, 0, 0, 0} }, targetPowerCckExt = {
|
|
0, { 0, 0, 0, 0 }
|
|
};
|
|
struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
|
|
0, {0, 0, 0, 0}
|
|
};
|
|
static const u16 ctlModesFor11g[] = {
|
|
CTL_11B, CTL_11G, CTL_2GHT20,
|
|
CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
|
|
};
|
|
|
|
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
|
|
|
|
twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
|
|
twiceLargestAntenna = (int16_t)min(AntennaReduction -
|
|
twiceLargestAntenna, 0);
|
|
|
|
maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
|
|
if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
|
|
maxRegAllowedPower -=
|
|
(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
|
|
}
|
|
|
|
scaledPower = min(powerLimit, maxRegAllowedPower);
|
|
scaledPower = max((u16)0, scaledPower);
|
|
|
|
numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
|
|
pCtlMode = ctlModesFor11g;
|
|
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPowerCck,
|
|
AR5416_NUM_2G_CCK_TARGET_POWERS,
|
|
&targetPowerCck, 4, false);
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPower2G,
|
|
AR5416_NUM_2G_20_TARGET_POWERS,
|
|
&targetPowerOfdm, 4, false);
|
|
ath9k_hw_get_target_powers(ah, chan,
|
|
pEepData->calTargetPower2GHT20,
|
|
AR5416_NUM_2G_20_TARGET_POWERS,
|
|
&targetPowerHt20, 8, false);
|
|
|
|
if (IS_CHAN_HT40(chan)) {
|
|
numCtlModes = ARRAY_SIZE(ctlModesFor11g);
|
|
ath9k_hw_get_target_powers(ah, chan,
|
|
pEepData->calTargetPower2GHT40,
|
|
AR5416_NUM_2G_40_TARGET_POWERS,
|
|
&targetPowerHt40, 8, true);
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPowerCck,
|
|
AR5416_NUM_2G_CCK_TARGET_POWERS,
|
|
&targetPowerCckExt, 4, true);
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPower2G,
|
|
AR5416_NUM_2G_20_TARGET_POWERS,
|
|
&targetPowerOfdmExt, 4, true);
|
|
}
|
|
|
|
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
|
|
bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
|
|
(pCtlMode[ctlMode] == CTL_2GHT40);
|
|
|
|
if (isHt40CtlMode)
|
|
freq = centers.synth_center;
|
|
else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
|
|
freq = centers.ext_center;
|
|
else
|
|
freq = centers.ctl_center;
|
|
|
|
if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
|
|
ah->eep_ops->get_eeprom_rev(ah) <= 2)
|
|
twiceMaxEdgePower = MAX_RATE_POWER;
|
|
|
|
for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
|
|
pEepData->ctlIndex[i]; i++) {
|
|
|
|
if (CMP_TEST_GRP) {
|
|
rep = &(pEepData->ctlData[i]);
|
|
|
|
twiceMinEdgePower = ath9k_hw_get_max_edge_power(
|
|
freq,
|
|
rep->ctlEdges[
|
|
ar5416_get_ntxchains(ah->txchainmask) - 1],
|
|
IS_CHAN_2GHZ(chan),
|
|
AR5416_EEP4K_NUM_BAND_EDGES);
|
|
|
|
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
|
|
twiceMaxEdgePower =
|
|
min(twiceMaxEdgePower,
|
|
twiceMinEdgePower);
|
|
} else {
|
|
twiceMaxEdgePower = twiceMinEdgePower;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
|
|
|
|
switch (pCtlMode[ctlMode]) {
|
|
case CTL_11B:
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
|
|
targetPowerCck.tPow2x[i] =
|
|
min((u16)targetPowerCck.tPow2x[i],
|
|
minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_11G:
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
|
|
targetPowerOfdm.tPow2x[i] =
|
|
min((u16)targetPowerOfdm.tPow2x[i],
|
|
minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_2GHT20:
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
|
|
targetPowerHt20.tPow2x[i] =
|
|
min((u16)targetPowerHt20.tPow2x[i],
|
|
minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_11B_EXT:
|
|
targetPowerCckExt.tPow2x[0] =
|
|
min((u16)targetPowerCckExt.tPow2x[0],
|
|
minCtlPower);
|
|
break;
|
|
case CTL_11G_EXT:
|
|
targetPowerOfdmExt.tPow2x[0] =
|
|
min((u16)targetPowerOfdmExt.tPow2x[0],
|
|
minCtlPower);
|
|
break;
|
|
case CTL_2GHT40:
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
|
|
targetPowerHt40.tPow2x[i] =
|
|
min((u16)targetPowerHt40.tPow2x[i],
|
|
minCtlPower);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
ratesArray[rate6mb] =
|
|
ratesArray[rate9mb] =
|
|
ratesArray[rate12mb] =
|
|
ratesArray[rate18mb] =
|
|
ratesArray[rate24mb] =
|
|
targetPowerOfdm.tPow2x[0];
|
|
|
|
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
|
|
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
|
|
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
|
|
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
|
|
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
|
|
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
|
|
|
|
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
|
|
ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
|
|
ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
|
|
ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
|
|
|
|
if (IS_CHAN_HT40(chan)) {
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
|
|
ratesArray[rateHt40_0 + i] =
|
|
targetPowerHt40.tPow2x[i];
|
|
}
|
|
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
|
|
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
|
|
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
|
|
ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
|
|
}
|
|
|
|
#undef CMP_TEST_GRP
|
|
}
|
|
|
|
static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
u16 cfgCtl,
|
|
u8 twiceAntennaReduction,
|
|
u8 twiceMaxRegulatoryPower,
|
|
u8 powerLimit, bool test)
|
|
{
|
|
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
|
|
struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
|
|
struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
|
|
int16_t ratesArray[Ar5416RateSize];
|
|
int16_t txPowerIndexOffset = 0;
|
|
u8 ht40PowerIncForPdadc = 2;
|
|
int i;
|
|
|
|
memset(ratesArray, 0, sizeof(ratesArray));
|
|
|
|
if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_2) {
|
|
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
|
|
}
|
|
|
|
ath9k_hw_set_4k_power_per_rate_table(ah, chan,
|
|
&ratesArray[0], cfgCtl,
|
|
twiceAntennaReduction,
|
|
twiceMaxRegulatoryPower,
|
|
powerLimit);
|
|
|
|
ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
|
|
|
|
regulatory->max_power_level = 0;
|
|
for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
|
|
ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
|
|
if (ratesArray[i] > MAX_RATE_POWER)
|
|
ratesArray[i] = MAX_RATE_POWER;
|
|
|
|
if (ratesArray[i] > regulatory->max_power_level)
|
|
regulatory->max_power_level = ratesArray[i];
|
|
}
|
|
|
|
if (test)
|
|
return;
|
|
|
|
/* Update regulatory */
|
|
i = rate6mb;
|
|
if (IS_CHAN_HT40(chan))
|
|
i = rateHt40_0;
|
|
else if (IS_CHAN_HT20(chan))
|
|
i = rateHt20_0;
|
|
|
|
regulatory->max_power_level = ratesArray[i];
|
|
|
|
if (AR_SREV_9280_20_OR_LATER(ah)) {
|
|
for (i = 0; i < Ar5416RateSize; i++)
|
|
ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
|
|
}
|
|
|
|
ENABLE_REGWRITE_BUFFER(ah);
|
|
|
|
/* OFDM power per rate */
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
|
|
ATH9K_POW_SM(ratesArray[rate18mb], 24)
|
|
| ATH9K_POW_SM(ratesArray[rate12mb], 16)
|
|
| ATH9K_POW_SM(ratesArray[rate9mb], 8)
|
|
| ATH9K_POW_SM(ratesArray[rate6mb], 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
|
|
ATH9K_POW_SM(ratesArray[rate54mb], 24)
|
|
| ATH9K_POW_SM(ratesArray[rate48mb], 16)
|
|
| ATH9K_POW_SM(ratesArray[rate36mb], 8)
|
|
| ATH9K_POW_SM(ratesArray[rate24mb], 0));
|
|
|
|
/* CCK power per rate */
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
|
|
ATH9K_POW_SM(ratesArray[rate2s], 24)
|
|
| ATH9K_POW_SM(ratesArray[rate2l], 16)
|
|
| ATH9K_POW_SM(ratesArray[rateXr], 8)
|
|
| ATH9K_POW_SM(ratesArray[rate1l], 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
|
|
ATH9K_POW_SM(ratesArray[rate11s], 24)
|
|
| ATH9K_POW_SM(ratesArray[rate11l], 16)
|
|
| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
|
|
| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
|
|
|
|
/* HT20 power per rate */
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
|
|
ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
|
|
ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
|
|
|
|
/* HT40 power per rate */
|
|
if (IS_CHAN_HT40(chan)) {
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
|
|
ATH9K_POW_SM(ratesArray[rateHt40_3] +
|
|
ht40PowerIncForPdadc, 24)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_2] +
|
|
ht40PowerIncForPdadc, 16)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_1] +
|
|
ht40PowerIncForPdadc, 8)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_0] +
|
|
ht40PowerIncForPdadc, 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
|
|
ATH9K_POW_SM(ratesArray[rateHt40_7] +
|
|
ht40PowerIncForPdadc, 24)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_6] +
|
|
ht40PowerIncForPdadc, 16)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_5] +
|
|
ht40PowerIncForPdadc, 8)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_4] +
|
|
ht40PowerIncForPdadc, 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
|
|
ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
|
|
| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
|
|
| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
|
|
| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
|
|
}
|
|
|
|
REGWRITE_BUFFER_FLUSH(ah);
|
|
}
|
|
|
|
static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
struct modal_eep_4k_header *pModal;
|
|
struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
|
|
u8 biaslevel;
|
|
|
|
if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
|
|
return;
|
|
|
|
if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
|
|
return;
|
|
|
|
pModal = &eep->modalHeader;
|
|
|
|
if (pModal->xpaBiasLvl != 0xff) {
|
|
biaslevel = pModal->xpaBiasLvl;
|
|
INI_RA(&ah->iniAddac, 7, 1) =
|
|
(INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
|
|
}
|
|
}
|
|
|
|
static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
|
|
struct modal_eep_4k_header *pModal,
|
|
struct ar5416_eeprom_4k *eep,
|
|
u8 txRxAttenLocal)
|
|
{
|
|
REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
|
|
pModal->antCtrlChain[0]);
|
|
|
|
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
|
|
(REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
|
|
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
|
|
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
|
|
SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
|
|
SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
|
|
|
|
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_3) {
|
|
txRxAttenLocal = pModal->txRxAttenCh[0];
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
|
|
pModal->xatten2Margin[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
|
|
|
|
/* Set the block 1 value to block 0 value */
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
|
|
pModal->bswMargin[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
|
|
pModal->xatten2Margin[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_DB,
|
|
pModal->xatten2Db[0]);
|
|
}
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
|
|
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
|
|
REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
|
|
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
|
|
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
|
|
REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
|
|
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
|
|
}
|
|
|
|
/*
|
|
* Read EEPROM header info and program the device for correct operation
|
|
* given the channel value.
|
|
*/
|
|
static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
struct modal_eep_4k_header *pModal;
|
|
struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
|
|
struct base_eep_header_4k *pBase = &eep->baseEepHeader;
|
|
u8 txRxAttenLocal;
|
|
u8 ob[5], db1[5], db2[5];
|
|
u8 ant_div_control1, ant_div_control2;
|
|
u32 regVal;
|
|
|
|
pModal = &eep->modalHeader;
|
|
txRxAttenLocal = 23;
|
|
|
|
REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
|
|
|
|
/* Single chain for 4K EEPROM*/
|
|
ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
|
|
|
|
/* Initialize Ant Diversity settings from EEPROM */
|
|
if (pModal->version >= 3) {
|
|
ant_div_control1 = pModal->antdiv_ctl1;
|
|
ant_div_control2 = pModal->antdiv_ctl2;
|
|
|
|
regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
|
|
regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
|
|
|
|
regVal |= SM(ant_div_control1,
|
|
AR_PHY_9285_ANT_DIV_CTL);
|
|
regVal |= SM(ant_div_control2,
|
|
AR_PHY_9285_ANT_DIV_ALT_LNACONF);
|
|
regVal |= SM((ant_div_control2 >> 2),
|
|
AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
|
|
regVal |= SM((ant_div_control1 >> 1),
|
|
AR_PHY_9285_ANT_DIV_ALT_GAINTB);
|
|
regVal |= SM((ant_div_control1 >> 2),
|
|
AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
|
|
|
|
|
|
REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
|
|
regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
|
|
regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
|
|
regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
|
|
regVal |= SM((ant_div_control1 >> 3),
|
|
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
|
|
|
|
REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
|
|
regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
|
|
}
|
|
|
|
if (pModal->version >= 2) {
|
|
ob[0] = pModal->ob_0;
|
|
ob[1] = pModal->ob_1;
|
|
ob[2] = pModal->ob_2;
|
|
ob[3] = pModal->ob_3;
|
|
ob[4] = pModal->ob_4;
|
|
|
|
db1[0] = pModal->db1_0;
|
|
db1[1] = pModal->db1_1;
|
|
db1[2] = pModal->db1_2;
|
|
db1[3] = pModal->db1_3;
|
|
db1[4] = pModal->db1_4;
|
|
|
|
db2[0] = pModal->db2_0;
|
|
db2[1] = pModal->db2_1;
|
|
db2[2] = pModal->db2_2;
|
|
db2[3] = pModal->db2_3;
|
|
db2[4] = pModal->db2_4;
|
|
} else if (pModal->version == 1) {
|
|
ob[0] = pModal->ob_0;
|
|
ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
|
|
db1[0] = pModal->db1_0;
|
|
db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
|
|
db2[0] = pModal->db2_0;
|
|
db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
|
|
} else {
|
|
int i;
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
ob[i] = pModal->ob_0;
|
|
db1[i] = pModal->db1_0;
|
|
db2[i] = pModal->db1_0;
|
|
}
|
|
}
|
|
|
|
if (AR_SREV_9271(ah)) {
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9271_AN_RF2G3_OB_cck,
|
|
AR9271_AN_RF2G3_OB_cck_S,
|
|
ob[0]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9271_AN_RF2G3_OB_psk,
|
|
AR9271_AN_RF2G3_OB_psk_S,
|
|
ob[1]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9271_AN_RF2G3_OB_qam,
|
|
AR9271_AN_RF2G3_OB_qam_S,
|
|
ob[2]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9271_AN_RF2G3_DB_1,
|
|
AR9271_AN_RF2G3_DB_1_S,
|
|
db1[0]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9271_AN_RF2G4_DB_2,
|
|
AR9271_AN_RF2G4_DB_2_S,
|
|
db2[0]);
|
|
} else {
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_OB_0,
|
|
AR9285_AN_RF2G3_OB_0_S,
|
|
ob[0]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_OB_1,
|
|
AR9285_AN_RF2G3_OB_1_S,
|
|
ob[1]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_OB_2,
|
|
AR9285_AN_RF2G3_OB_2_S,
|
|
ob[2]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_OB_3,
|
|
AR9285_AN_RF2G3_OB_3_S,
|
|
ob[3]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_OB_4,
|
|
AR9285_AN_RF2G3_OB_4_S,
|
|
ob[4]);
|
|
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_DB1_0,
|
|
AR9285_AN_RF2G3_DB1_0_S,
|
|
db1[0]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_DB1_1,
|
|
AR9285_AN_RF2G3_DB1_1_S,
|
|
db1[1]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G3,
|
|
AR9285_AN_RF2G3_DB1_2,
|
|
AR9285_AN_RF2G3_DB1_2_S,
|
|
db1[2]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB1_3,
|
|
AR9285_AN_RF2G4_DB1_3_S,
|
|
db1[3]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB1_4,
|
|
AR9285_AN_RF2G4_DB1_4_S, db1[4]);
|
|
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB2_0,
|
|
AR9285_AN_RF2G4_DB2_0_S,
|
|
db2[0]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB2_1,
|
|
AR9285_AN_RF2G4_DB2_1_S,
|
|
db2[1]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB2_2,
|
|
AR9285_AN_RF2G4_DB2_2_S,
|
|
db2[2]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB2_3,
|
|
AR9285_AN_RF2G4_DB2_3_S,
|
|
db2[3]);
|
|
ath9k_hw_analog_shift_rmw(ah,
|
|
AR9285_AN_RF2G4,
|
|
AR9285_AN_RF2G4_DB2_4,
|
|
AR9285_AN_RF2G4_DB2_4_S,
|
|
db2[4]);
|
|
}
|
|
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
|
|
pModal->switchSettling);
|
|
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
|
|
pModal->adcDesiredSize);
|
|
|
|
REG_WRITE(ah, AR_PHY_RF_CTL4,
|
|
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
|
|
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
|
|
SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
|
|
SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
|
|
pModal->txEndToRxOn);
|
|
|
|
if (AR_SREV_9271_10(ah))
|
|
REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
|
|
pModal->txEndToRxOn);
|
|
REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
|
|
pModal->thresh62);
|
|
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
|
|
pModal->thresh62);
|
|
|
|
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_2) {
|
|
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
|
|
pModal->txFrameToDataStart);
|
|
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
|
|
pModal->txFrameToPaOn);
|
|
}
|
|
|
|
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_3) {
|
|
if (IS_CHAN_HT40(chan))
|
|
REG_RMW_FIELD(ah, AR_PHY_SETTLING,
|
|
AR_PHY_SETTLING_SWITCH,
|
|
pModal->swSettleHt40);
|
|
}
|
|
if (AR_SREV_9271(ah) || AR_SREV_9285(ah)) {
|
|
u8 bb_desired_scale = (pModal->bb_scale_smrt_antenna &
|
|
EEP_4K_BB_DESIRED_SCALE_MASK);
|
|
if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
|
|
u32 pwrctrl, mask, clr;
|
|
|
|
mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
|
|
pwrctrl = mask * bb_desired_scale;
|
|
clr = mask * 0x1f;
|
|
REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
|
|
REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
|
|
REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
|
|
|
|
mask = BIT(0)|BIT(5)|BIT(15);
|
|
pwrctrl = mask * bb_desired_scale;
|
|
clr = mask * 0x1f;
|
|
REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
|
|
|
|
mask = BIT(0)|BIT(5);
|
|
pwrctrl = mask * bb_desired_scale;
|
|
clr = mask * 0x1f;
|
|
REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
|
|
REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
|
|
}
|
|
}
|
|
}
|
|
|
|
static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
|
|
{
|
|
#define EEP_MAP4K_SPURCHAN \
|
|
(ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
u16 spur_val = AR_NO_SPUR;
|
|
|
|
ath_dbg(common, ATH_DBG_ANI,
|
|
"Getting spur idx:%d is2Ghz:%d val:%x\n",
|
|
i, is2GHz, ah->config.spurchans[i][is2GHz]);
|
|
|
|
switch (ah->config.spurmode) {
|
|
case SPUR_DISABLE:
|
|
break;
|
|
case SPUR_ENABLE_IOCTL:
|
|
spur_val = ah->config.spurchans[i][is2GHz];
|
|
ath_dbg(common, ATH_DBG_ANI,
|
|
"Getting spur val from new loc. %d\n", spur_val);
|
|
break;
|
|
case SPUR_ENABLE_EEPROM:
|
|
spur_val = EEP_MAP4K_SPURCHAN;
|
|
break;
|
|
}
|
|
|
|
return spur_val;
|
|
|
|
#undef EEP_MAP4K_SPURCHAN
|
|
}
|
|
|
|
const struct eeprom_ops eep_4k_ops = {
|
|
.check_eeprom = ath9k_hw_4k_check_eeprom,
|
|
.get_eeprom = ath9k_hw_4k_get_eeprom,
|
|
.fill_eeprom = ath9k_hw_4k_fill_eeprom,
|
|
.get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
|
|
.get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
|
|
.set_board_values = ath9k_hw_4k_set_board_values,
|
|
.set_addac = ath9k_hw_4k_set_addac,
|
|
.set_txpower = ath9k_hw_4k_set_txpower,
|
|
.get_spur_channel = ath9k_hw_4k_get_spur_channel
|
|
};
|