mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 15:15:59 +07:00
891584f48a
Before commitd4289fcc9b
("net: IP6 defrag: use rbtrees for IPv6 defrag"), a netperf UDP_STREAM test[0] using big IPv6 datagrams (thus generating many fragments) and running over an IPsec tunnel, reported more than 6Gbps throughput. After that patch, the same test gets only 9Mbps when receiving on a be2net nic (driver can make a big difference here, for example, ixgbe doesn't seem to be affected). By reusing the IPv4 defragmentation code, IPv6 lost fragment coalescing (IPv4 fragment coalescing was dropped by commit14fe22e334
("Revert "ipv4: use skb coalescing in defragmentation"")). Without fragment coalescing, be2net runs out of Rx ring entries and starts to drop frames (ethtool reports rx_drops_no_frags errors). Since the netperf traffic is only composed of UDP fragments, any lost packet prevents reassembly of the full datagram. Therefore, fragments which have no possibility to ever get reassembled pile up in the reassembly queue, until the memory accounting exeeds the threshold. At that point no fragment is accepted anymore, which effectively discards all netperf traffic. When reassembly timeout expires, some stale fragments are removed from the reassembly queue, so a few packets can be received, reassembled and delivered to the netperf receiver. But the nic still drops frames and soon the reassembly queue gets filled again with stale fragments. These long time frames where no datagram can be received explain why the performance drop is so significant. Re-introducing fragment coalescing is enough to get the initial performances again (6.6Gbps with be2net): driver doesn't drop frames anymore (no more rx_drops_no_frags errors) and the reassembly engine works at full speed. This patch is quite conservative and only coalesces skbs for local IPv4 and IPv6 delivery (in order to avoid changing skb geometry when forwarding). Coalescing could be extended in the future if need be, as more scenarios would probably benefit from it. [0]: Test configuration Sender: ip xfrm policy flush ip xfrm state flush ip xfrm state add src fc00:1::1 dst fc00:2::1 proto esp spi 0x1000 aead 'rfc4106(gcm(aes))' 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 96 mode transport sel src fc00:1::1 dst fc00:2::1 ip xfrm policy add src fc00:1::1 dst fc00:2::1 dir in tmpl src fc00:1::1 dst fc00:2::1 proto esp mode transport action allow ip xfrm state add src fc00:2::1 dst fc00:1::1 proto esp spi 0x1001 aead 'rfc4106(gcm(aes))' 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 96 mode transport sel src fc00:2::1 dst fc00:1::1 ip xfrm policy add src fc00:2::1 dst fc00:1::1 dir out tmpl src fc00:2::1 dst fc00:1::1 proto esp mode transport action allow netserver -D -L fc00:2::1 Receiver: ip xfrm policy flush ip xfrm state flush ip xfrm state add src fc00:2::1 dst fc00:1::1 proto esp spi 0x1001 aead 'rfc4106(gcm(aes))' 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 96 mode transport sel src fc00:2::1 dst fc00:1::1 ip xfrm policy add src fc00:2::1 dst fc00:1::1 dir in tmpl src fc00:2::1 dst fc00:1::1 proto esp mode transport action allow ip xfrm state add src fc00:1::1 dst fc00:2::1 proto esp spi 0x1000 aead 'rfc4106(gcm(aes))' 0x0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b 96 mode transport sel src fc00:1::1 dst fc00:2::1 ip xfrm policy add src fc00:1::1 dst fc00:2::1 dir out tmpl src fc00:1::1 dst fc00:2::1 proto esp mode transport action allow netperf -H fc00:2::1 -f k -P 0 -L fc00:1::1 -l 60 -t UDP_STREAM -I 99,5 -i 5,5 -T5,5 -6 Signed-off-by: Guillaume Nault <gnault@redhat.com> Acked-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
569 lines
14 KiB
C
569 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* inet fragments management
|
|
*
|
|
* Authors: Pavel Emelyanov <xemul@openvz.org>
|
|
* Started as consolidation of ipv4/ip_fragment.c,
|
|
* ipv6/reassembly. and ipv6 nf conntrack reassembly
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/module.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/random.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/rhashtable.h>
|
|
|
|
#include <net/sock.h>
|
|
#include <net/inet_frag.h>
|
|
#include <net/inet_ecn.h>
|
|
#include <net/ip.h>
|
|
#include <net/ipv6.h>
|
|
|
|
/* Use skb->cb to track consecutive/adjacent fragments coming at
|
|
* the end of the queue. Nodes in the rb-tree queue will
|
|
* contain "runs" of one or more adjacent fragments.
|
|
*
|
|
* Invariants:
|
|
* - next_frag is NULL at the tail of a "run";
|
|
* - the head of a "run" has the sum of all fragment lengths in frag_run_len.
|
|
*/
|
|
struct ipfrag_skb_cb {
|
|
union {
|
|
struct inet_skb_parm h4;
|
|
struct inet6_skb_parm h6;
|
|
};
|
|
struct sk_buff *next_frag;
|
|
int frag_run_len;
|
|
};
|
|
|
|
#define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
|
|
|
|
static void fragcb_clear(struct sk_buff *skb)
|
|
{
|
|
RB_CLEAR_NODE(&skb->rbnode);
|
|
FRAG_CB(skb)->next_frag = NULL;
|
|
FRAG_CB(skb)->frag_run_len = skb->len;
|
|
}
|
|
|
|
/* Append skb to the last "run". */
|
|
static void fragrun_append_to_last(struct inet_frag_queue *q,
|
|
struct sk_buff *skb)
|
|
{
|
|
fragcb_clear(skb);
|
|
|
|
FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
|
|
FRAG_CB(q->fragments_tail)->next_frag = skb;
|
|
q->fragments_tail = skb;
|
|
}
|
|
|
|
/* Create a new "run" with the skb. */
|
|
static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
|
|
{
|
|
BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
|
|
fragcb_clear(skb);
|
|
|
|
if (q->last_run_head)
|
|
rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
|
|
&q->last_run_head->rbnode.rb_right);
|
|
else
|
|
rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
|
|
rb_insert_color(&skb->rbnode, &q->rb_fragments);
|
|
|
|
q->fragments_tail = skb;
|
|
q->last_run_head = skb;
|
|
}
|
|
|
|
/* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
|
|
* Value : 0xff if frame should be dropped.
|
|
* 0 or INET_ECN_CE value, to be ORed in to final iph->tos field
|
|
*/
|
|
const u8 ip_frag_ecn_table[16] = {
|
|
/* at least one fragment had CE, and others ECT_0 or ECT_1 */
|
|
[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE,
|
|
[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
|
|
[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
|
|
|
|
/* invalid combinations : drop frame */
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
|
|
[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
|
|
};
|
|
EXPORT_SYMBOL(ip_frag_ecn_table);
|
|
|
|
int inet_frags_init(struct inet_frags *f)
|
|
{
|
|
f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
|
|
NULL);
|
|
if (!f->frags_cachep)
|
|
return -ENOMEM;
|
|
|
|
refcount_set(&f->refcnt, 1);
|
|
init_completion(&f->completion);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(inet_frags_init);
|
|
|
|
void inet_frags_fini(struct inet_frags *f)
|
|
{
|
|
if (refcount_dec_and_test(&f->refcnt))
|
|
complete(&f->completion);
|
|
|
|
wait_for_completion(&f->completion);
|
|
|
|
kmem_cache_destroy(f->frags_cachep);
|
|
f->frags_cachep = NULL;
|
|
}
|
|
EXPORT_SYMBOL(inet_frags_fini);
|
|
|
|
/* called from rhashtable_free_and_destroy() at netns_frags dismantle */
|
|
static void inet_frags_free_cb(void *ptr, void *arg)
|
|
{
|
|
struct inet_frag_queue *fq = ptr;
|
|
int count;
|
|
|
|
count = del_timer_sync(&fq->timer) ? 1 : 0;
|
|
|
|
spin_lock_bh(&fq->lock);
|
|
if (!(fq->flags & INET_FRAG_COMPLETE)) {
|
|
fq->flags |= INET_FRAG_COMPLETE;
|
|
count++;
|
|
} else if (fq->flags & INET_FRAG_HASH_DEAD) {
|
|
count++;
|
|
}
|
|
spin_unlock_bh(&fq->lock);
|
|
|
|
if (refcount_sub_and_test(count, &fq->refcnt))
|
|
inet_frag_destroy(fq);
|
|
}
|
|
|
|
static void fqdir_work_fn(struct work_struct *work)
|
|
{
|
|
struct fqdir *fqdir = container_of(work, struct fqdir, destroy_work);
|
|
struct inet_frags *f = fqdir->f;
|
|
|
|
rhashtable_free_and_destroy(&fqdir->rhashtable, inet_frags_free_cb, NULL);
|
|
|
|
/* We need to make sure all ongoing call_rcu(..., inet_frag_destroy_rcu)
|
|
* have completed, since they need to dereference fqdir.
|
|
* Would it not be nice to have kfree_rcu_barrier() ? :)
|
|
*/
|
|
rcu_barrier();
|
|
|
|
if (refcount_dec_and_test(&f->refcnt))
|
|
complete(&f->completion);
|
|
|
|
kfree(fqdir);
|
|
}
|
|
|
|
int fqdir_init(struct fqdir **fqdirp, struct inet_frags *f, struct net *net)
|
|
{
|
|
struct fqdir *fqdir = kzalloc(sizeof(*fqdir), GFP_KERNEL);
|
|
int res;
|
|
|
|
if (!fqdir)
|
|
return -ENOMEM;
|
|
fqdir->f = f;
|
|
fqdir->net = net;
|
|
res = rhashtable_init(&fqdir->rhashtable, &fqdir->f->rhash_params);
|
|
if (res < 0) {
|
|
kfree(fqdir);
|
|
return res;
|
|
}
|
|
refcount_inc(&f->refcnt);
|
|
*fqdirp = fqdir;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fqdir_init);
|
|
|
|
void fqdir_exit(struct fqdir *fqdir)
|
|
{
|
|
INIT_WORK(&fqdir->destroy_work, fqdir_work_fn);
|
|
queue_work(system_wq, &fqdir->destroy_work);
|
|
}
|
|
EXPORT_SYMBOL(fqdir_exit);
|
|
|
|
void inet_frag_kill(struct inet_frag_queue *fq)
|
|
{
|
|
if (del_timer(&fq->timer))
|
|
refcount_dec(&fq->refcnt);
|
|
|
|
if (!(fq->flags & INET_FRAG_COMPLETE)) {
|
|
struct fqdir *fqdir = fq->fqdir;
|
|
|
|
fq->flags |= INET_FRAG_COMPLETE;
|
|
rcu_read_lock();
|
|
/* The RCU read lock provides a memory barrier
|
|
* guaranteeing that if fqdir->dead is false then
|
|
* the hash table destruction will not start until
|
|
* after we unlock. Paired with inet_frags_exit_net().
|
|
*/
|
|
if (!fqdir->dead) {
|
|
rhashtable_remove_fast(&fqdir->rhashtable, &fq->node,
|
|
fqdir->f->rhash_params);
|
|
refcount_dec(&fq->refcnt);
|
|
} else {
|
|
fq->flags |= INET_FRAG_HASH_DEAD;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_kill);
|
|
|
|
static void inet_frag_destroy_rcu(struct rcu_head *head)
|
|
{
|
|
struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
|
|
rcu);
|
|
struct inet_frags *f = q->fqdir->f;
|
|
|
|
if (f->destructor)
|
|
f->destructor(q);
|
|
kmem_cache_free(f->frags_cachep, q);
|
|
}
|
|
|
|
unsigned int inet_frag_rbtree_purge(struct rb_root *root)
|
|
{
|
|
struct rb_node *p = rb_first(root);
|
|
unsigned int sum = 0;
|
|
|
|
while (p) {
|
|
struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
|
|
|
|
p = rb_next(p);
|
|
rb_erase(&skb->rbnode, root);
|
|
while (skb) {
|
|
struct sk_buff *next = FRAG_CB(skb)->next_frag;
|
|
|
|
sum += skb->truesize;
|
|
kfree_skb(skb);
|
|
skb = next;
|
|
}
|
|
}
|
|
return sum;
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_rbtree_purge);
|
|
|
|
void inet_frag_destroy(struct inet_frag_queue *q)
|
|
{
|
|
struct fqdir *fqdir;
|
|
unsigned int sum, sum_truesize = 0;
|
|
struct inet_frags *f;
|
|
|
|
WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
|
|
WARN_ON(del_timer(&q->timer) != 0);
|
|
|
|
/* Release all fragment data. */
|
|
fqdir = q->fqdir;
|
|
f = fqdir->f;
|
|
sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
|
|
sum = sum_truesize + f->qsize;
|
|
|
|
call_rcu(&q->rcu, inet_frag_destroy_rcu);
|
|
|
|
sub_frag_mem_limit(fqdir, sum);
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_destroy);
|
|
|
|
static struct inet_frag_queue *inet_frag_alloc(struct fqdir *fqdir,
|
|
struct inet_frags *f,
|
|
void *arg)
|
|
{
|
|
struct inet_frag_queue *q;
|
|
|
|
q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
|
|
if (!q)
|
|
return NULL;
|
|
|
|
q->fqdir = fqdir;
|
|
f->constructor(q, arg);
|
|
add_frag_mem_limit(fqdir, f->qsize);
|
|
|
|
timer_setup(&q->timer, f->frag_expire, 0);
|
|
spin_lock_init(&q->lock);
|
|
refcount_set(&q->refcnt, 3);
|
|
|
|
return q;
|
|
}
|
|
|
|
static struct inet_frag_queue *inet_frag_create(struct fqdir *fqdir,
|
|
void *arg,
|
|
struct inet_frag_queue **prev)
|
|
{
|
|
struct inet_frags *f = fqdir->f;
|
|
struct inet_frag_queue *q;
|
|
|
|
q = inet_frag_alloc(fqdir, f, arg);
|
|
if (!q) {
|
|
*prev = ERR_PTR(-ENOMEM);
|
|
return NULL;
|
|
}
|
|
mod_timer(&q->timer, jiffies + fqdir->timeout);
|
|
|
|
*prev = rhashtable_lookup_get_insert_key(&fqdir->rhashtable, &q->key,
|
|
&q->node, f->rhash_params);
|
|
if (*prev) {
|
|
q->flags |= INET_FRAG_COMPLETE;
|
|
inet_frag_kill(q);
|
|
inet_frag_destroy(q);
|
|
return NULL;
|
|
}
|
|
return q;
|
|
}
|
|
|
|
/* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
|
|
struct inet_frag_queue *inet_frag_find(struct fqdir *fqdir, void *key)
|
|
{
|
|
struct inet_frag_queue *fq = NULL, *prev;
|
|
|
|
if (!fqdir->high_thresh || frag_mem_limit(fqdir) > fqdir->high_thresh)
|
|
return NULL;
|
|
|
|
rcu_read_lock();
|
|
|
|
prev = rhashtable_lookup(&fqdir->rhashtable, key, fqdir->f->rhash_params);
|
|
if (!prev)
|
|
fq = inet_frag_create(fqdir, key, &prev);
|
|
if (!IS_ERR_OR_NULL(prev)) {
|
|
fq = prev;
|
|
if (!refcount_inc_not_zero(&fq->refcnt))
|
|
fq = NULL;
|
|
}
|
|
rcu_read_unlock();
|
|
return fq;
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_find);
|
|
|
|
int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
|
|
int offset, int end)
|
|
{
|
|
struct sk_buff *last = q->fragments_tail;
|
|
|
|
/* RFC5722, Section 4, amended by Errata ID : 3089
|
|
* When reassembling an IPv6 datagram, if
|
|
* one or more its constituent fragments is determined to be an
|
|
* overlapping fragment, the entire datagram (and any constituent
|
|
* fragments) MUST be silently discarded.
|
|
*
|
|
* Duplicates, however, should be ignored (i.e. skb dropped, but the
|
|
* queue/fragments kept for later reassembly).
|
|
*/
|
|
if (!last)
|
|
fragrun_create(q, skb); /* First fragment. */
|
|
else if (last->ip_defrag_offset + last->len < end) {
|
|
/* This is the common case: skb goes to the end. */
|
|
/* Detect and discard overlaps. */
|
|
if (offset < last->ip_defrag_offset + last->len)
|
|
return IPFRAG_OVERLAP;
|
|
if (offset == last->ip_defrag_offset + last->len)
|
|
fragrun_append_to_last(q, skb);
|
|
else
|
|
fragrun_create(q, skb);
|
|
} else {
|
|
/* Binary search. Note that skb can become the first fragment,
|
|
* but not the last (covered above).
|
|
*/
|
|
struct rb_node **rbn, *parent;
|
|
|
|
rbn = &q->rb_fragments.rb_node;
|
|
do {
|
|
struct sk_buff *curr;
|
|
int curr_run_end;
|
|
|
|
parent = *rbn;
|
|
curr = rb_to_skb(parent);
|
|
curr_run_end = curr->ip_defrag_offset +
|
|
FRAG_CB(curr)->frag_run_len;
|
|
if (end <= curr->ip_defrag_offset)
|
|
rbn = &parent->rb_left;
|
|
else if (offset >= curr_run_end)
|
|
rbn = &parent->rb_right;
|
|
else if (offset >= curr->ip_defrag_offset &&
|
|
end <= curr_run_end)
|
|
return IPFRAG_DUP;
|
|
else
|
|
return IPFRAG_OVERLAP;
|
|
} while (*rbn);
|
|
/* Here we have parent properly set, and rbn pointing to
|
|
* one of its NULL left/right children. Insert skb.
|
|
*/
|
|
fragcb_clear(skb);
|
|
rb_link_node(&skb->rbnode, parent, rbn);
|
|
rb_insert_color(&skb->rbnode, &q->rb_fragments);
|
|
}
|
|
|
|
skb->ip_defrag_offset = offset;
|
|
|
|
return IPFRAG_OK;
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_queue_insert);
|
|
|
|
void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
|
|
struct sk_buff *parent)
|
|
{
|
|
struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
|
|
struct sk_buff **nextp;
|
|
int delta;
|
|
|
|
if (head != skb) {
|
|
fp = skb_clone(skb, GFP_ATOMIC);
|
|
if (!fp)
|
|
return NULL;
|
|
FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
|
|
if (RB_EMPTY_NODE(&skb->rbnode))
|
|
FRAG_CB(parent)->next_frag = fp;
|
|
else
|
|
rb_replace_node(&skb->rbnode, &fp->rbnode,
|
|
&q->rb_fragments);
|
|
if (q->fragments_tail == skb)
|
|
q->fragments_tail = fp;
|
|
skb_morph(skb, head);
|
|
FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
|
|
rb_replace_node(&head->rbnode, &skb->rbnode,
|
|
&q->rb_fragments);
|
|
consume_skb(head);
|
|
head = skb;
|
|
}
|
|
WARN_ON(head->ip_defrag_offset != 0);
|
|
|
|
delta = -head->truesize;
|
|
|
|
/* Head of list must not be cloned. */
|
|
if (skb_unclone(head, GFP_ATOMIC))
|
|
return NULL;
|
|
|
|
delta += head->truesize;
|
|
if (delta)
|
|
add_frag_mem_limit(q->fqdir, delta);
|
|
|
|
/* If the first fragment is fragmented itself, we split
|
|
* it to two chunks: the first with data and paged part
|
|
* and the second, holding only fragments.
|
|
*/
|
|
if (skb_has_frag_list(head)) {
|
|
struct sk_buff *clone;
|
|
int i, plen = 0;
|
|
|
|
clone = alloc_skb(0, GFP_ATOMIC);
|
|
if (!clone)
|
|
return NULL;
|
|
skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
|
|
skb_frag_list_init(head);
|
|
for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
|
|
plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
|
|
clone->data_len = head->data_len - plen;
|
|
clone->len = clone->data_len;
|
|
head->truesize += clone->truesize;
|
|
clone->csum = 0;
|
|
clone->ip_summed = head->ip_summed;
|
|
add_frag_mem_limit(q->fqdir, clone->truesize);
|
|
skb_shinfo(head)->frag_list = clone;
|
|
nextp = &clone->next;
|
|
} else {
|
|
nextp = &skb_shinfo(head)->frag_list;
|
|
}
|
|
|
|
return nextp;
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_reasm_prepare);
|
|
|
|
void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
|
|
void *reasm_data, bool try_coalesce)
|
|
{
|
|
struct sk_buff **nextp = (struct sk_buff **)reasm_data;
|
|
struct rb_node *rbn;
|
|
struct sk_buff *fp;
|
|
int sum_truesize;
|
|
|
|
skb_push(head, head->data - skb_network_header(head));
|
|
|
|
/* Traverse the tree in order, to build frag_list. */
|
|
fp = FRAG_CB(head)->next_frag;
|
|
rbn = rb_next(&head->rbnode);
|
|
rb_erase(&head->rbnode, &q->rb_fragments);
|
|
|
|
sum_truesize = head->truesize;
|
|
while (rbn || fp) {
|
|
/* fp points to the next sk_buff in the current run;
|
|
* rbn points to the next run.
|
|
*/
|
|
/* Go through the current run. */
|
|
while (fp) {
|
|
struct sk_buff *next_frag = FRAG_CB(fp)->next_frag;
|
|
bool stolen;
|
|
int delta;
|
|
|
|
sum_truesize += fp->truesize;
|
|
if (head->ip_summed != fp->ip_summed)
|
|
head->ip_summed = CHECKSUM_NONE;
|
|
else if (head->ip_summed == CHECKSUM_COMPLETE)
|
|
head->csum = csum_add(head->csum, fp->csum);
|
|
|
|
if (try_coalesce && skb_try_coalesce(head, fp, &stolen,
|
|
&delta)) {
|
|
kfree_skb_partial(fp, stolen);
|
|
} else {
|
|
fp->prev = NULL;
|
|
memset(&fp->rbnode, 0, sizeof(fp->rbnode));
|
|
fp->sk = NULL;
|
|
|
|
head->data_len += fp->len;
|
|
head->len += fp->len;
|
|
head->truesize += fp->truesize;
|
|
|
|
*nextp = fp;
|
|
nextp = &fp->next;
|
|
}
|
|
|
|
fp = next_frag;
|
|
}
|
|
/* Move to the next run. */
|
|
if (rbn) {
|
|
struct rb_node *rbnext = rb_next(rbn);
|
|
|
|
fp = rb_to_skb(rbn);
|
|
rb_erase(rbn, &q->rb_fragments);
|
|
rbn = rbnext;
|
|
}
|
|
}
|
|
sub_frag_mem_limit(q->fqdir, sum_truesize);
|
|
|
|
*nextp = NULL;
|
|
skb_mark_not_on_list(head);
|
|
head->prev = NULL;
|
|
head->tstamp = q->stamp;
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_reasm_finish);
|
|
|
|
struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
|
|
{
|
|
struct sk_buff *head, *skb;
|
|
|
|
head = skb_rb_first(&q->rb_fragments);
|
|
if (!head)
|
|
return NULL;
|
|
skb = FRAG_CB(head)->next_frag;
|
|
if (skb)
|
|
rb_replace_node(&head->rbnode, &skb->rbnode,
|
|
&q->rb_fragments);
|
|
else
|
|
rb_erase(&head->rbnode, &q->rb_fragments);
|
|
memset(&head->rbnode, 0, sizeof(head->rbnode));
|
|
barrier();
|
|
|
|
if (head == q->fragments_tail)
|
|
q->fragments_tail = NULL;
|
|
|
|
sub_frag_mem_limit(q->fqdir, head->truesize);
|
|
|
|
return head;
|
|
}
|
|
EXPORT_SYMBOL(inet_frag_pull_head);
|