linux_dsm_epyc7002/mm/mprotect.c
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

572 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* mm/mprotect.c
*
* (C) Copyright 1994 Linus Torvalds
* (C) Copyright 2002 Christoph Hellwig
*
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
* (C) Copyright 2002 Red Hat Inc, All Rights Reserved
*/
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/shm.h>
#include <linux/mman.h>
#include <linux/fs.h>
#include <linux/highmem.h>
#include <linux/security.h>
#include <linux/mempolicy.h>
#include <linux/personality.h>
#include <linux/syscalls.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/mmu_notifier.h>
#include <linux/migrate.h>
#include <linux/perf_event.h>
#include <linux/pkeys.h>
#include <linux/ksm.h>
#include <linux/uaccess.h>
#include <asm/pgtable.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include "internal.h"
static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end, pgprot_t newprot,
int dirty_accountable, int prot_numa)
{
struct mm_struct *mm = vma->vm_mm;
pte_t *pte, oldpte;
spinlock_t *ptl;
unsigned long pages = 0;
int target_node = NUMA_NO_NODE;
/*
* Can be called with only the mmap_sem for reading by
* prot_numa so we must check the pmd isn't constantly
* changing from under us from pmd_none to pmd_trans_huge
* and/or the other way around.
*/
if (pmd_trans_unstable(pmd))
return 0;
/*
* The pmd points to a regular pte so the pmd can't change
* from under us even if the mmap_sem is only hold for
* reading.
*/
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
/* Get target node for single threaded private VMAs */
if (prot_numa && !(vma->vm_flags & VM_SHARED) &&
atomic_read(&vma->vm_mm->mm_users) == 1)
target_node = numa_node_id();
flush_tlb_batched_pending(vma->vm_mm);
arch_enter_lazy_mmu_mode();
do {
oldpte = *pte;
if (pte_present(oldpte)) {
pte_t ptent;
bool preserve_write = prot_numa && pte_write(oldpte);
/*
* Avoid trapping faults against the zero or KSM
* pages. See similar comment in change_huge_pmd.
*/
if (prot_numa) {
struct page *page;
page = vm_normal_page(vma, addr, oldpte);
if (!page || PageKsm(page))
continue;
/* Avoid TLB flush if possible */
if (pte_protnone(oldpte))
continue;
/*
* Don't mess with PTEs if page is already on the node
* a single-threaded process is running on.
*/
if (target_node == page_to_nid(page))
continue;
}
ptent = ptep_modify_prot_start(mm, addr, pte);
ptent = pte_modify(ptent, newprot);
if (preserve_write)
ptent = pte_mk_savedwrite(ptent);
/* Avoid taking write faults for known dirty pages */
if (dirty_accountable && pte_dirty(ptent) &&
(pte_soft_dirty(ptent) ||
!(vma->vm_flags & VM_SOFTDIRTY))) {
ptent = pte_mkwrite(ptent);
}
ptep_modify_prot_commit(mm, addr, pte, ptent);
pages++;
} else if (IS_ENABLED(CONFIG_MIGRATION)) {
swp_entry_t entry = pte_to_swp_entry(oldpte);
if (is_write_migration_entry(entry)) {
pte_t newpte;
/*
* A protection check is difficult so
* just be safe and disable write
*/
make_migration_entry_read(&entry);
newpte = swp_entry_to_pte(entry);
if (pte_swp_soft_dirty(oldpte))
newpte = pte_swp_mksoft_dirty(newpte);
set_pte_at(mm, addr, pte, newpte);
pages++;
}
if (is_write_device_private_entry(entry)) {
pte_t newpte;
/*
* We do not preserve soft-dirtiness. See
* copy_one_pte() for explanation.
*/
make_device_private_entry_read(&entry);
newpte = swp_entry_to_pte(entry);
set_pte_at(mm, addr, pte, newpte);
pages++;
}
}
} while (pte++, addr += PAGE_SIZE, addr != end);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(pte - 1, ptl);
return pages;
}
static inline unsigned long change_pmd_range(struct vm_area_struct *vma,
pud_t *pud, unsigned long addr, unsigned long end,
pgprot_t newprot, int dirty_accountable, int prot_numa)
{
pmd_t *pmd;
struct mm_struct *mm = vma->vm_mm;
unsigned long next;
unsigned long pages = 0;
unsigned long nr_huge_updates = 0;
unsigned long mni_start = 0;
pmd = pmd_offset(pud, addr);
do {
unsigned long this_pages;
next = pmd_addr_end(addr, end);
if (!is_swap_pmd(*pmd) && !pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)
&& pmd_none_or_clear_bad(pmd))
continue;
/* invoke the mmu notifier if the pmd is populated */
if (!mni_start) {
mni_start = addr;
mmu_notifier_invalidate_range_start(mm, mni_start, end);
}
if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
if (next - addr != HPAGE_PMD_SIZE) {
__split_huge_pmd(vma, pmd, addr, false, NULL);
} else {
int nr_ptes = change_huge_pmd(vma, pmd, addr,
newprot, prot_numa);
if (nr_ptes) {
if (nr_ptes == HPAGE_PMD_NR) {
pages += HPAGE_PMD_NR;
nr_huge_updates++;
}
/* huge pmd was handled */
continue;
}
}
/* fall through, the trans huge pmd just split */
}
this_pages = change_pte_range(vma, pmd, addr, next, newprot,
dirty_accountable, prot_numa);
pages += this_pages;
} while (pmd++, addr = next, addr != end);
if (mni_start)
mmu_notifier_invalidate_range_end(mm, mni_start, end);
if (nr_huge_updates)
count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
return pages;
}
static inline unsigned long change_pud_range(struct vm_area_struct *vma,
p4d_t *p4d, unsigned long addr, unsigned long end,
pgprot_t newprot, int dirty_accountable, int prot_numa)
{
pud_t *pud;
unsigned long next;
unsigned long pages = 0;
pud = pud_offset(p4d, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;
pages += change_pmd_range(vma, pud, addr, next, newprot,
dirty_accountable, prot_numa);
} while (pud++, addr = next, addr != end);
return pages;
}
static inline unsigned long change_p4d_range(struct vm_area_struct *vma,
pgd_t *pgd, unsigned long addr, unsigned long end,
pgprot_t newprot, int dirty_accountable, int prot_numa)
{
p4d_t *p4d;
unsigned long next;
unsigned long pages = 0;
p4d = p4d_offset(pgd, addr);
do {
next = p4d_addr_end(addr, end);
if (p4d_none_or_clear_bad(p4d))
continue;
pages += change_pud_range(vma, p4d, addr, next, newprot,
dirty_accountable, prot_numa);
} while (p4d++, addr = next, addr != end);
return pages;
}
static unsigned long change_protection_range(struct vm_area_struct *vma,
unsigned long addr, unsigned long end, pgprot_t newprot,
int dirty_accountable, int prot_numa)
{
struct mm_struct *mm = vma->vm_mm;
pgd_t *pgd;
unsigned long next;
unsigned long start = addr;
unsigned long pages = 0;
BUG_ON(addr >= end);
pgd = pgd_offset(mm, addr);
flush_cache_range(vma, addr, end);
inc_tlb_flush_pending(mm);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
pages += change_p4d_range(vma, pgd, addr, next, newprot,
dirty_accountable, prot_numa);
} while (pgd++, addr = next, addr != end);
/* Only flush the TLB if we actually modified any entries: */
if (pages)
flush_tlb_range(vma, start, end);
dec_tlb_flush_pending(mm);
return pages;
}
unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgprot_t newprot,
int dirty_accountable, int prot_numa)
{
unsigned long pages;
if (is_vm_hugetlb_page(vma))
pages = hugetlb_change_protection(vma, start, end, newprot);
else
pages = change_protection_range(vma, start, end, newprot, dirty_accountable, prot_numa);
return pages;
}
int
mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev,
unsigned long start, unsigned long end, unsigned long newflags)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long oldflags = vma->vm_flags;
long nrpages = (end - start) >> PAGE_SHIFT;
unsigned long charged = 0;
pgoff_t pgoff;
int error;
int dirty_accountable = 0;
if (newflags == oldflags) {
*pprev = vma;
return 0;
}
/*
* If we make a private mapping writable we increase our commit;
* but (without finer accounting) cannot reduce our commit if we
* make it unwritable again. hugetlb mapping were accounted for
* even if read-only so there is no need to account for them here
*/
if (newflags & VM_WRITE) {
/* Check space limits when area turns into data. */
if (!may_expand_vm(mm, newflags, nrpages) &&
may_expand_vm(mm, oldflags, nrpages))
return -ENOMEM;
if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
VM_SHARED|VM_NORESERVE))) {
charged = nrpages;
if (security_vm_enough_memory_mm(mm, charged))
return -ENOMEM;
newflags |= VM_ACCOUNT;
}
}
/*
* First try to merge with previous and/or next vma.
*/
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
*pprev = vma_merge(mm, *pprev, start, end, newflags,
vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
vma->vm_userfaultfd_ctx);
if (*pprev) {
vma = *pprev;
VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY);
goto success;
}
*pprev = vma;
if (start != vma->vm_start) {
error = split_vma(mm, vma, start, 1);
if (error)
goto fail;
}
if (end != vma->vm_end) {
error = split_vma(mm, vma, end, 0);
if (error)
goto fail;
}
success:
/*
* vm_flags and vm_page_prot are protected by the mmap_sem
* held in write mode.
*/
vma->vm_flags = newflags;
dirty_accountable = vma_wants_writenotify(vma, vma->vm_page_prot);
vma_set_page_prot(vma);
change_protection(vma, start, end, vma->vm_page_prot,
dirty_accountable, 0);
/*
* Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
* fault on access.
*/
if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED &&
(newflags & VM_WRITE)) {
populate_vma_page_range(vma, start, end, NULL);
}
vm_stat_account(mm, oldflags, -nrpages);
vm_stat_account(mm, newflags, nrpages);
perf_event_mmap(vma);
return 0;
fail:
vm_unacct_memory(charged);
return error;
}
/*
* pkey==-1 when doing a legacy mprotect()
*/
static int do_mprotect_pkey(unsigned long start, size_t len,
unsigned long prot, int pkey)
{
unsigned long nstart, end, tmp, reqprot;
struct vm_area_struct *vma, *prev;
int error = -EINVAL;
const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
(prot & PROT_READ);
prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
return -EINVAL;
if (start & ~PAGE_MASK)
return -EINVAL;
if (!len)
return 0;
len = PAGE_ALIGN(len);
end = start + len;
if (end <= start)
return -ENOMEM;
if (!arch_validate_prot(prot))
return -EINVAL;
reqprot = prot;
if (down_write_killable(&current->mm->mmap_sem))
return -EINTR;
/*
* If userspace did not allocate the pkey, do not let
* them use it here.
*/
error = -EINVAL;
if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey))
goto out;
vma = find_vma(current->mm, start);
error = -ENOMEM;
if (!vma)
goto out;
prev = vma->vm_prev;
if (unlikely(grows & PROT_GROWSDOWN)) {
if (vma->vm_start >= end)
goto out;
start = vma->vm_start;
error = -EINVAL;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto out;
} else {
if (vma->vm_start > start)
goto out;
if (unlikely(grows & PROT_GROWSUP)) {
end = vma->vm_end;
error = -EINVAL;
if (!(vma->vm_flags & VM_GROWSUP))
goto out;
}
}
if (start > vma->vm_start)
prev = vma;
for (nstart = start ; ; ) {
unsigned long mask_off_old_flags;
unsigned long newflags;
int new_vma_pkey;
/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
/* Does the application expect PROT_READ to imply PROT_EXEC */
if (rier && (vma->vm_flags & VM_MAYEXEC))
prot |= PROT_EXEC;
/*
* Each mprotect() call explicitly passes r/w/x permissions.
* If a permission is not passed to mprotect(), it must be
* cleared from the VMA.
*/
mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC |
ARCH_VM_PKEY_FLAGS;
new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
newflags = calc_vm_prot_bits(prot, new_vma_pkey);
newflags |= (vma->vm_flags & ~mask_off_old_flags);
/* newflags >> 4 shift VM_MAY% in place of VM_% */
if ((newflags & ~(newflags >> 4)) & (VM_READ | VM_WRITE | VM_EXEC)) {
error = -EACCES;
goto out;
}
error = security_file_mprotect(vma, reqprot, prot);
if (error)
goto out;
tmp = vma->vm_end;
if (tmp > end)
tmp = end;
error = mprotect_fixup(vma, &prev, nstart, tmp, newflags);
if (error)
goto out;
nstart = tmp;
if (nstart < prev->vm_end)
nstart = prev->vm_end;
if (nstart >= end)
goto out;
vma = prev->vm_next;
if (!vma || vma->vm_start != nstart) {
error = -ENOMEM;
goto out;
}
prot = reqprot;
}
out:
up_write(&current->mm->mmap_sem);
return error;
}
SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
unsigned long, prot)
{
return do_mprotect_pkey(start, len, prot, -1);
}
#ifdef CONFIG_ARCH_HAS_PKEYS
SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
unsigned long, prot, int, pkey)
{
return do_mprotect_pkey(start, len, prot, pkey);
}
SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val)
{
int pkey;
int ret;
/* No flags supported yet. */
if (flags)
return -EINVAL;
/* check for unsupported init values */
if (init_val & ~PKEY_ACCESS_MASK)
return -EINVAL;
down_write(&current->mm->mmap_sem);
pkey = mm_pkey_alloc(current->mm);
ret = -ENOSPC;
if (pkey == -1)
goto out;
ret = arch_set_user_pkey_access(current, pkey, init_val);
if (ret) {
mm_pkey_free(current->mm, pkey);
goto out;
}
ret = pkey;
out:
up_write(&current->mm->mmap_sem);
return ret;
}
SYSCALL_DEFINE1(pkey_free, int, pkey)
{
int ret;
down_write(&current->mm->mmap_sem);
ret = mm_pkey_free(current->mm, pkey);
up_write(&current->mm->mmap_sem);
/*
* We could provie warnings or errors if any VMA still
* has the pkey set here.
*/
return ret;
}
#endif /* CONFIG_ARCH_HAS_PKEYS */