linux_dsm_epyc7002/drivers/cpufreq/intel_pstate.c
Rafael J. Wysocki d74b199291 cpufreq: intel_pstate: Fix intel_pstate_verify_policy()
The code added to intel_pstate_verify_policy() by commit 1443ebbacf
(cpufreq: intel_pstate: Fix sysfs limits enforcement for performance
policy) should use perf_limits instead of limits, because otherwise
setting global limits via sysfs may affect policies inconsistently.

For example, in the sequence of shell commands below, the
scaling_min_freq attribute for policy1 and policy2 should be
affected in the same way, because scaling_governor is set in
the same way for both of them:

 # cat cpufreq/policy1/scaling_governor
 powersave
 # cat cpufreq/policy2/scaling_governor
 powersave
 # echo performance > cpufreq/policy0/scaling_governor
 # echo 94 > intel_pstate/min_perf_pct
 # cat cpufreq/policy0/scaling_min_freq
 2914000
 # cat cpufreq/policy1/scaling_min_freq
 2914000
 # cat cpufreq/policy2/scaling_min_freq
 800000

The are affected differently, because intel_pstate_verify_policy()
is invoked with limits set to &performance_limits (left behind by
policy0) for policy1 and with limits set to &powersave_limits (left
behind by policy1) for policy2.  Since perf_limits is set to the
set of limits matching the policy being updated, using it instead
of limits fixes the inconsistency.

Fixes: 1443ebbacf (cpufreq: intel_pstate: Fix sysfs limits enforcement for performance policy)
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-03-06 00:06:05 +01:00

2818 lines
70 KiB
C

/*
* intel_pstate.c: Native P state management for Intel processors
*
* (C) Copyright 2012 Intel Corporation
* Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
#include <linux/acpi.h>
#include <linux/vmalloc.h>
#include <trace/events/power.h>
#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
#include <asm/cpufeature.h>
#include <asm/intel-family.h>
#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
#define ATOM_RATIOS 0x66a
#define ATOM_VIDS 0x66b
#define ATOM_TURBO_RATIOS 0x66c
#define ATOM_TURBO_VIDS 0x66d
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#include <acpi/cppc_acpi.h>
#endif
#define FRAC_BITS 8
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
static inline int32_t mul_fp(int32_t x, int32_t y)
{
return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}
static inline int32_t div_fp(s64 x, s64 y)
{
return div64_s64((int64_t)x << FRAC_BITS, y);
}
static inline int ceiling_fp(int32_t x)
{
int mask, ret;
ret = fp_toint(x);
mask = (1 << FRAC_BITS) - 1;
if (x & mask)
ret += 1;
return ret;
}
static inline u64 mul_ext_fp(u64 x, u64 y)
{
return (x * y) >> EXT_FRAC_BITS;
}
static inline u64 div_ext_fp(u64 x, u64 y)
{
return div64_u64(x << EXT_FRAC_BITS, y);
}
/**
* struct sample - Store performance sample
* @core_avg_perf: Ratio of APERF/MPERF which is the actual average
* performance during last sample period
* @busy_scaled: Scaled busy value which is used to calculate next
* P state. This can be different than core_avg_perf
* to account for cpu idle period
* @aperf: Difference of actual performance frequency clock count
* read from APERF MSR between last and current sample
* @mperf: Difference of maximum performance frequency clock count
* read from MPERF MSR between last and current sample
* @tsc: Difference of time stamp counter between last and
* current sample
* @time: Current time from scheduler
*
* This structure is used in the cpudata structure to store performance sample
* data for choosing next P State.
*/
struct sample {
int32_t core_avg_perf;
int32_t busy_scaled;
u64 aperf;
u64 mperf;
u64 tsc;
u64 time;
};
/**
* struct pstate_data - Store P state data
* @current_pstate: Current requested P state
* @min_pstate: Min P state possible for this platform
* @max_pstate: Max P state possible for this platform
* @max_pstate_physical:This is physical Max P state for a processor
* This can be higher than the max_pstate which can
* be limited by platform thermal design power limits
* @scaling: Scaling factor to convert frequency to cpufreq
* frequency units
* @turbo_pstate: Max Turbo P state possible for this platform
* @max_freq: @max_pstate frequency in cpufreq units
* @turbo_freq: @turbo_pstate frequency in cpufreq units
*
* Stores the per cpu model P state limits and current P state.
*/
struct pstate_data {
int current_pstate;
int min_pstate;
int max_pstate;
int max_pstate_physical;
int scaling;
int turbo_pstate;
unsigned int max_freq;
unsigned int turbo_freq;
};
/**
* struct vid_data - Stores voltage information data
* @min: VID data for this platform corresponding to
* the lowest P state
* @max: VID data corresponding to the highest P State.
* @turbo: VID data for turbo P state
* @ratio: Ratio of (vid max - vid min) /
* (max P state - Min P State)
*
* Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
* This data is used in Atom platforms, where in addition to target P state,
* the voltage data needs to be specified to select next P State.
*/
struct vid_data {
int min;
int max;
int turbo;
int32_t ratio;
};
/**
* struct _pid - Stores PID data
* @setpoint: Target set point for busyness or performance
* @integral: Storage for accumulated error values
* @p_gain: PID proportional gain
* @i_gain: PID integral gain
* @d_gain: PID derivative gain
* @deadband: PID deadband
* @last_err: Last error storage for integral part of PID calculation
*
* Stores PID coefficients and last error for PID controller.
*/
struct _pid {
int setpoint;
int32_t integral;
int32_t p_gain;
int32_t i_gain;
int32_t d_gain;
int deadband;
int32_t last_err;
};
/**
* struct perf_limits - Store user and policy limits
* @no_turbo: User requested turbo state from intel_pstate sysfs
* @turbo_disabled: Platform turbo status either from msr
* MSR_IA32_MISC_ENABLE or when maximum available pstate
* matches the maximum turbo pstate
* @max_perf_pct: Effective maximum performance limit in percentage, this
* is minimum of either limits enforced by cpufreq policy
* or limits from user set limits via intel_pstate sysfs
* @min_perf_pct: Effective minimum performance limit in percentage, this
* is maximum of either limits enforced by cpufreq policy
* or limits from user set limits via intel_pstate sysfs
* @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
* This value is used to limit max pstate
* @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
* This value is used to limit min pstate
* @max_policy_pct: The maximum performance in percentage enforced by
* cpufreq setpolicy interface
* @max_sysfs_pct: The maximum performance in percentage enforced by
* intel pstate sysfs interface, unused when per cpu
* controls are enforced
* @min_policy_pct: The minimum performance in percentage enforced by
* cpufreq setpolicy interface
* @min_sysfs_pct: The minimum performance in percentage enforced by
* intel pstate sysfs interface, unused when per cpu
* controls are enforced
*
* Storage for user and policy defined limits.
*/
struct perf_limits {
int no_turbo;
int turbo_disabled;
int max_perf_pct;
int min_perf_pct;
int32_t max_perf;
int32_t min_perf;
int max_policy_pct;
int max_sysfs_pct;
int min_policy_pct;
int min_sysfs_pct;
};
/**
* struct cpudata - Per CPU instance data storage
* @cpu: CPU number for this instance data
* @policy: CPUFreq policy value
* @update_util: CPUFreq utility callback information
* @update_util_set: CPUFreq utility callback is set
* @iowait_boost: iowait-related boost fraction
* @last_update: Time of the last update.
* @pstate: Stores P state limits for this CPU
* @vid: Stores VID limits for this CPU
* @pid: Stores PID parameters for this CPU
* @last_sample_time: Last Sample time
* @prev_aperf: Last APERF value read from APERF MSR
* @prev_mperf: Last MPERF value read from MPERF MSR
* @prev_tsc: Last timestamp counter (TSC) value
* @prev_cummulative_iowait: IO Wait time difference from last and
* current sample
* @sample: Storage for storing last Sample data
* @perf_limits: Pointer to perf_limit unique to this CPU
* Not all field in the structure are applicable
* when per cpu controls are enforced
* @acpi_perf_data: Stores ACPI perf information read from _PSS
* @valid_pss_table: Set to true for valid ACPI _PSS entries found
* @epp_powersave: Last saved HWP energy performance preference
* (EPP) or energy performance bias (EPB),
* when policy switched to performance
* @epp_policy: Last saved policy used to set EPP/EPB
* @epp_default: Power on default HWP energy performance
* preference/bias
* @epp_saved: Saved EPP/EPB during system suspend or CPU offline
* operation
*
* This structure stores per CPU instance data for all CPUs.
*/
struct cpudata {
int cpu;
unsigned int policy;
struct update_util_data update_util;
bool update_util_set;
struct pstate_data pstate;
struct vid_data vid;
struct _pid pid;
u64 last_update;
u64 last_sample_time;
u64 prev_aperf;
u64 prev_mperf;
u64 prev_tsc;
u64 prev_cummulative_iowait;
struct sample sample;
struct perf_limits *perf_limits;
#ifdef CONFIG_ACPI
struct acpi_processor_performance acpi_perf_data;
bool valid_pss_table;
#endif
unsigned int iowait_boost;
s16 epp_powersave;
s16 epp_policy;
s16 epp_default;
s16 epp_saved;
};
static struct cpudata **all_cpu_data;
/**
* struct pstate_adjust_policy - Stores static PID configuration data
* @sample_rate_ms: PID calculation sample rate in ms
* @sample_rate_ns: Sample rate calculation in ns
* @deadband: PID deadband
* @setpoint: PID Setpoint
* @p_gain_pct: PID proportional gain
* @i_gain_pct: PID integral gain
* @d_gain_pct: PID derivative gain
*
* Stores per CPU model static PID configuration data.
*/
struct pstate_adjust_policy {
int sample_rate_ms;
s64 sample_rate_ns;
int deadband;
int setpoint;
int p_gain_pct;
int d_gain_pct;
int i_gain_pct;
};
/**
* struct pstate_funcs - Per CPU model specific callbacks
* @get_max: Callback to get maximum non turbo effective P state
* @get_max_physical: Callback to get maximum non turbo physical P state
* @get_min: Callback to get minimum P state
* @get_turbo: Callback to get turbo P state
* @get_scaling: Callback to get frequency scaling factor
* @get_val: Callback to convert P state to actual MSR write value
* @get_vid: Callback to get VID data for Atom platforms
* @get_target_pstate: Callback to a function to calculate next P state to use
*
* Core and Atom CPU models have different way to get P State limits. This
* structure is used to store those callbacks.
*/
struct pstate_funcs {
int (*get_max)(void);
int (*get_max_physical)(void);
int (*get_min)(void);
int (*get_turbo)(void);
int (*get_scaling)(void);
u64 (*get_val)(struct cpudata*, int pstate);
void (*get_vid)(struct cpudata *);
int32_t (*get_target_pstate)(struct cpudata *);
};
/**
* struct cpu_defaults- Per CPU model default config data
* @pid_policy: PID config data
* @funcs: Callback function data
*/
struct cpu_defaults {
struct pstate_adjust_policy pid_policy;
struct pstate_funcs funcs;
};
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
static struct pstate_adjust_policy pid_params __read_mostly;
static struct pstate_funcs pstate_funcs __read_mostly;
static int hwp_active __read_mostly;
static bool per_cpu_limits __read_mostly;
static bool driver_registered __read_mostly;
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
static struct perf_limits performance_limits;
static struct perf_limits powersave_limits;
static struct perf_limits *limits;
static void intel_pstate_init_limits(struct perf_limits *limits)
{
memset(limits, 0, sizeof(*limits));
limits->max_perf_pct = 100;
limits->max_perf = int_ext_tofp(1);
limits->max_policy_pct = 100;
limits->max_sysfs_pct = 100;
}
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
intel_pstate_init_limits(limits);
limits->min_perf_pct = 100;
limits->min_perf = int_ext_tofp(1);
}
static DEFINE_MUTEX(intel_pstate_driver_lock);
static DEFINE_MUTEX(intel_pstate_limits_lock);
#ifdef CONFIG_ACPI
static bool intel_pstate_get_ppc_enable_status(void)
{
if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
return true;
return acpi_ppc;
}
#ifdef CONFIG_ACPI_CPPC_LIB
/* The work item is needed to avoid CPU hotplug locking issues */
static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
{
sched_set_itmt_support();
}
static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
static void intel_pstate_set_itmt_prio(int cpu)
{
struct cppc_perf_caps cppc_perf;
static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
int ret;
ret = cppc_get_perf_caps(cpu, &cppc_perf);
if (ret)
return;
/*
* The priorities can be set regardless of whether or not
* sched_set_itmt_support(true) has been called and it is valid to
* update them at any time after it has been called.
*/
sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
if (max_highest_perf <= min_highest_perf) {
if (cppc_perf.highest_perf > max_highest_perf)
max_highest_perf = cppc_perf.highest_perf;
if (cppc_perf.highest_perf < min_highest_perf)
min_highest_perf = cppc_perf.highest_perf;
if (max_highest_perf > min_highest_perf) {
/*
* This code can be run during CPU online under the
* CPU hotplug locks, so sched_set_itmt_support()
* cannot be called from here. Queue up a work item
* to invoke it.
*/
schedule_work(&sched_itmt_work);
}
}
}
#else
static void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
struct cpudata *cpu;
int ret;
int i;
if (hwp_active) {
intel_pstate_set_itmt_prio(policy->cpu);
return;
}
if (!intel_pstate_get_ppc_enable_status())
return;
cpu = all_cpu_data[policy->cpu];
ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
policy->cpu);
if (ret)
return;
/*
* Check if the control value in _PSS is for PERF_CTL MSR, which should
* guarantee that the states returned by it map to the states in our
* list directly.
*/
if (cpu->acpi_perf_data.control_register.space_id !=
ACPI_ADR_SPACE_FIXED_HARDWARE)
goto err;
/*
* If there is only one entry _PSS, simply ignore _PSS and continue as
* usual without taking _PSS into account
*/
if (cpu->acpi_perf_data.state_count < 2)
goto err;
pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
(i == cpu->acpi_perf_data.state ? '*' : ' '), i,
(u32) cpu->acpi_perf_data.states[i].core_frequency,
(u32) cpu->acpi_perf_data.states[i].power,
(u32) cpu->acpi_perf_data.states[i].control);
}
/*
* The _PSS table doesn't contain whole turbo frequency range.
* This just contains +1 MHZ above the max non turbo frequency,
* with control value corresponding to max turbo ratio. But
* when cpufreq set policy is called, it will call with this
* max frequency, which will cause a reduced performance as
* this driver uses real max turbo frequency as the max
* frequency. So correct this frequency in _PSS table to
* correct max turbo frequency based on the turbo state.
* Also need to convert to MHz as _PSS freq is in MHz.
*/
if (!limits->turbo_disabled)
cpu->acpi_perf_data.states[0].core_frequency =
policy->cpuinfo.max_freq / 1000;
cpu->valid_pss_table = true;
pr_debug("_PPC limits will be enforced\n");
return;
err:
cpu->valid_pss_table = false;
acpi_processor_unregister_performance(policy->cpu);
}
static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
struct cpudata *cpu;
cpu = all_cpu_data[policy->cpu];
if (!cpu->valid_pss_table)
return;
acpi_processor_unregister_performance(policy->cpu);
}
#else
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}
static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
int deadband, int integral) {
pid->setpoint = int_tofp(setpoint);
pid->deadband = int_tofp(deadband);
pid->integral = int_tofp(integral);
pid->last_err = int_tofp(setpoint) - int_tofp(busy);
}
static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
pid->p_gain = div_fp(percent, 100);
}
static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
pid->i_gain = div_fp(percent, 100);
}
static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
pid->d_gain = div_fp(percent, 100);
}
static signed int pid_calc(struct _pid *pid, int32_t busy)
{
signed int result;
int32_t pterm, dterm, fp_error;
int32_t integral_limit;
fp_error = pid->setpoint - busy;
if (abs(fp_error) <= pid->deadband)
return 0;
pterm = mul_fp(pid->p_gain, fp_error);
pid->integral += fp_error;
/*
* We limit the integral here so that it will never
* get higher than 30. This prevents it from becoming
* too large an input over long periods of time and allows
* it to get factored out sooner.
*
* The value of 30 was chosen through experimentation.
*/
integral_limit = int_tofp(30);
if (pid->integral > integral_limit)
pid->integral = integral_limit;
if (pid->integral < -integral_limit)
pid->integral = -integral_limit;
dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
pid->last_err = fp_error;
result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
result = result + (1 << (FRAC_BITS-1));
return (signed int)fp_toint(result);
}
static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
}
static inline void intel_pstate_reset_all_pid(void)
{
unsigned int cpu;
for_each_online_cpu(cpu) {
if (all_cpu_data[cpu])
intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
}
}
static inline void update_turbo_state(void)
{
u64 misc_en;
struct cpudata *cpu;
cpu = all_cpu_data[0];
rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
limits->turbo_disabled =
(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}
static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
{
u64 epb;
int ret;
if (!static_cpu_has(X86_FEATURE_EPB))
return -ENXIO;
ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
if (ret)
return (s16)ret;
return (s16)(epb & 0x0f);
}
static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
{
s16 epp;
if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
/*
* When hwp_req_data is 0, means that caller didn't read
* MSR_HWP_REQUEST, so need to read and get EPP.
*/
if (!hwp_req_data) {
epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
&hwp_req_data);
if (epp)
return epp;
}
epp = (hwp_req_data >> 24) & 0xff;
} else {
/* When there is no EPP present, HWP uses EPB settings */
epp = intel_pstate_get_epb(cpu_data);
}
return epp;
}
static int intel_pstate_set_epb(int cpu, s16 pref)
{
u64 epb;
int ret;
if (!static_cpu_has(X86_FEATURE_EPB))
return -ENXIO;
ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
if (ret)
return ret;
epb = (epb & ~0x0f) | pref;
wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
return 0;
}
/*
* EPP/EPB display strings corresponding to EPP index in the
* energy_perf_strings[]
* index String
*-------------------------------------
* 0 default
* 1 performance
* 2 balance_performance
* 3 balance_power
* 4 power
*/
static const char * const energy_perf_strings[] = {
"default",
"performance",
"balance_performance",
"balance_power",
"power",
NULL
};
static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
{
s16 epp;
int index = -EINVAL;
epp = intel_pstate_get_epp(cpu_data, 0);
if (epp < 0)
return epp;
if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
/*
* Range:
* 0x00-0x3F : Performance
* 0x40-0x7F : Balance performance
* 0x80-0xBF : Balance power
* 0xC0-0xFF : Power
* The EPP is a 8 bit value, but our ranges restrict the
* value which can be set. Here only using top two bits
* effectively.
*/
index = (epp >> 6) + 1;
} else if (static_cpu_has(X86_FEATURE_EPB)) {
/*
* Range:
* 0x00-0x03 : Performance
* 0x04-0x07 : Balance performance
* 0x08-0x0B : Balance power
* 0x0C-0x0F : Power
* The EPB is a 4 bit value, but our ranges restrict the
* value which can be set. Here only using top two bits
* effectively.
*/
index = (epp >> 2) + 1;
}
return index;
}
static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
int pref_index)
{
int epp = -EINVAL;
int ret;
if (!pref_index)
epp = cpu_data->epp_default;
mutex_lock(&intel_pstate_limits_lock);
if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
u64 value;
ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
if (ret)
goto return_pref;
value &= ~GENMASK_ULL(31, 24);
/*
* If epp is not default, convert from index into
* energy_perf_strings to epp value, by shifting 6
* bits left to use only top two bits in epp.
* The resultant epp need to shifted by 24 bits to
* epp position in MSR_HWP_REQUEST.
*/
if (epp == -EINVAL)
epp = (pref_index - 1) << 6;
value |= (u64)epp << 24;
ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
} else {
if (epp == -EINVAL)
epp = (pref_index - 1) << 2;
ret = intel_pstate_set_epb(cpu_data->cpu, epp);
}
return_pref:
mutex_unlock(&intel_pstate_limits_lock);
return ret;
}
static ssize_t show_energy_performance_available_preferences(
struct cpufreq_policy *policy, char *buf)
{
int i = 0;
int ret = 0;
while (energy_perf_strings[i] != NULL)
ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
ret += sprintf(&buf[ret], "\n");
return ret;
}
cpufreq_freq_attr_ro(energy_performance_available_preferences);
static ssize_t store_energy_performance_preference(
struct cpufreq_policy *policy, const char *buf, size_t count)
{
struct cpudata *cpu_data = all_cpu_data[policy->cpu];
char str_preference[21];
int ret, i = 0;
ret = sscanf(buf, "%20s", str_preference);
if (ret != 1)
return -EINVAL;
while (energy_perf_strings[i] != NULL) {
if (!strcmp(str_preference, energy_perf_strings[i])) {
intel_pstate_set_energy_pref_index(cpu_data, i);
return count;
}
++i;
}
return -EINVAL;
}
static ssize_t show_energy_performance_preference(
struct cpufreq_policy *policy, char *buf)
{
struct cpudata *cpu_data = all_cpu_data[policy->cpu];
int preference;
preference = intel_pstate_get_energy_pref_index(cpu_data);
if (preference < 0)
return preference;
return sprintf(buf, "%s\n", energy_perf_strings[preference]);
}
cpufreq_freq_attr_rw(energy_performance_preference);
static struct freq_attr *hwp_cpufreq_attrs[] = {
&energy_performance_preference,
&energy_performance_available_preferences,
NULL,
};
static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
{
int min, hw_min, max, hw_max, cpu, range, adj_range;
struct perf_limits *perf_limits = limits;
u64 value, cap;
for_each_cpu(cpu, policy->cpus) {
int max_perf_pct, min_perf_pct;
struct cpudata *cpu_data = all_cpu_data[cpu];
s16 epp;
if (per_cpu_limits)
perf_limits = all_cpu_data[cpu]->perf_limits;
rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
hw_min = HWP_LOWEST_PERF(cap);
if (limits->no_turbo)
hw_max = HWP_GUARANTEED_PERF(cap);
else
hw_max = HWP_HIGHEST_PERF(cap);
range = hw_max - hw_min;
max_perf_pct = perf_limits->max_perf_pct;
min_perf_pct = perf_limits->min_perf_pct;
rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
adj_range = min_perf_pct * range / 100;
min = hw_min + adj_range;
value &= ~HWP_MIN_PERF(~0L);
value |= HWP_MIN_PERF(min);
adj_range = max_perf_pct * range / 100;
max = hw_min + adj_range;
value &= ~HWP_MAX_PERF(~0L);
value |= HWP_MAX_PERF(max);
if (cpu_data->epp_policy == cpu_data->policy)
goto skip_epp;
cpu_data->epp_policy = cpu_data->policy;
if (cpu_data->epp_saved >= 0) {
epp = cpu_data->epp_saved;
cpu_data->epp_saved = -EINVAL;
goto update_epp;
}
if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
epp = intel_pstate_get_epp(cpu_data, value);
cpu_data->epp_powersave = epp;
/* If EPP read was failed, then don't try to write */
if (epp < 0)
goto skip_epp;
epp = 0;
} else {
/* skip setting EPP, when saved value is invalid */
if (cpu_data->epp_powersave < 0)
goto skip_epp;
/*
* No need to restore EPP when it is not zero. This
* means:
* - Policy is not changed
* - user has manually changed
* - Error reading EPB
*/
epp = intel_pstate_get_epp(cpu_data, value);
if (epp)
goto skip_epp;
epp = cpu_data->epp_powersave;
}
update_epp:
if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
value &= ~GENMASK_ULL(31, 24);
value |= (u64)epp << 24;
} else {
intel_pstate_set_epb(cpu, epp);
}
skip_epp:
wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
}
}
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
if (hwp_active)
intel_pstate_hwp_set(policy);
return 0;
}
static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
{
struct cpudata *cpu_data = all_cpu_data[policy->cpu];
if (!hwp_active)
return 0;
cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
return 0;
}
static int intel_pstate_resume(struct cpufreq_policy *policy)
{
int ret;
if (!hwp_active)
return 0;
mutex_lock(&intel_pstate_limits_lock);
all_cpu_data[policy->cpu]->epp_policy = 0;
ret = intel_pstate_hwp_set_policy(policy);
mutex_unlock(&intel_pstate_limits_lock);
return ret;
}
static void intel_pstate_update_policies(void)
__releases(&intel_pstate_limits_lock)
__acquires(&intel_pstate_limits_lock)
{
struct perf_limits *saved_limits = limits;
int cpu;
mutex_unlock(&intel_pstate_limits_lock);
for_each_possible_cpu(cpu)
cpufreq_update_policy(cpu);
mutex_lock(&intel_pstate_limits_lock);
limits = saved_limits;
}
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
*(u32 *)data = val;
intel_pstate_reset_all_pid();
return 0;
}
static int pid_param_get(void *data, u64 *val)
{
*val = *(u32 *)data;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
static struct dentry *debugfs_parent;
struct pid_param {
char *name;
void *value;
struct dentry *dentry;
};
static struct pid_param pid_files[] = {
{"sample_rate_ms", &pid_params.sample_rate_ms, },
{"d_gain_pct", &pid_params.d_gain_pct, },
{"i_gain_pct", &pid_params.i_gain_pct, },
{"deadband", &pid_params.deadband, },
{"setpoint", &pid_params.setpoint, },
{"p_gain_pct", &pid_params.p_gain_pct, },
{NULL, NULL, }
};
static void intel_pstate_debug_expose_params(void)
{
int i;
debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
if (IS_ERR_OR_NULL(debugfs_parent))
return;
for (i = 0; pid_files[i].name; i++) {
struct dentry *dentry;
dentry = debugfs_create_file(pid_files[i].name, 0660,
debugfs_parent, pid_files[i].value,
&fops_pid_param);
if (!IS_ERR(dentry))
pid_files[i].dentry = dentry;
}
}
static void intel_pstate_debug_hide_params(void)
{
int i;
if (IS_ERR_OR_NULL(debugfs_parent))
return;
for (i = 0; pid_files[i].name; i++) {
debugfs_remove(pid_files[i].dentry);
pid_files[i].dentry = NULL;
}
debugfs_remove(debugfs_parent);
debugfs_parent = NULL;
}
/************************** debugfs end ************************/
/************************** sysfs begin ************************/
#define show_one(file_name, object) \
static ssize_t show_##file_name \
(struct kobject *kobj, struct attribute *attr, char *buf) \
{ \
return sprintf(buf, "%u\n", limits->object); \
}
static ssize_t intel_pstate_show_status(char *buf);
static int intel_pstate_update_status(const char *buf, size_t size);
static ssize_t show_status(struct kobject *kobj,
struct attribute *attr, char *buf)
{
ssize_t ret;
mutex_lock(&intel_pstate_driver_lock);
ret = intel_pstate_show_status(buf);
mutex_unlock(&intel_pstate_driver_lock);
return ret;
}
static ssize_t store_status(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
char *p = memchr(buf, '\n', count);
int ret;
mutex_lock(&intel_pstate_driver_lock);
ret = intel_pstate_update_status(buf, p ? p - buf : count);
mutex_unlock(&intel_pstate_driver_lock);
return ret < 0 ? ret : count;
}
static ssize_t show_turbo_pct(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct cpudata *cpu;
int total, no_turbo, turbo_pct;
uint32_t turbo_fp;
mutex_lock(&intel_pstate_driver_lock);
if (!driver_registered) {
mutex_unlock(&intel_pstate_driver_lock);
return -EAGAIN;
}
cpu = all_cpu_data[0];
total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
turbo_fp = div_fp(no_turbo, total);
turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
mutex_unlock(&intel_pstate_driver_lock);
return sprintf(buf, "%u\n", turbo_pct);
}
static ssize_t show_num_pstates(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct cpudata *cpu;
int total;
mutex_lock(&intel_pstate_driver_lock);
if (!driver_registered) {
mutex_unlock(&intel_pstate_driver_lock);
return -EAGAIN;
}
cpu = all_cpu_data[0];
total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
mutex_unlock(&intel_pstate_driver_lock);
return sprintf(buf, "%u\n", total);
}
static ssize_t show_no_turbo(struct kobject *kobj,
struct attribute *attr, char *buf)
{
ssize_t ret;
mutex_lock(&intel_pstate_driver_lock);
if (!driver_registered) {
mutex_unlock(&intel_pstate_driver_lock);
return -EAGAIN;
}
update_turbo_state();
if (limits->turbo_disabled)
ret = sprintf(buf, "%u\n", limits->turbo_disabled);
else
ret = sprintf(buf, "%u\n", limits->no_turbo);
mutex_unlock(&intel_pstate_driver_lock);
return ret;
}
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
mutex_lock(&intel_pstate_driver_lock);
if (!driver_registered) {
mutex_unlock(&intel_pstate_driver_lock);
return -EAGAIN;
}
mutex_lock(&intel_pstate_limits_lock);
update_turbo_state();
if (limits->turbo_disabled) {
pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
mutex_unlock(&intel_pstate_limits_lock);
mutex_unlock(&intel_pstate_driver_lock);
return -EPERM;
}
limits->no_turbo = clamp_t(int, input, 0, 1);
intel_pstate_update_policies();
mutex_unlock(&intel_pstate_limits_lock);
mutex_unlock(&intel_pstate_driver_lock);
return count;
}
static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
mutex_lock(&intel_pstate_driver_lock);
if (!driver_registered) {
mutex_unlock(&intel_pstate_driver_lock);
return -EAGAIN;
}
mutex_lock(&intel_pstate_limits_lock);
limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
limits->max_perf_pct = min(limits->max_policy_pct,
limits->max_sysfs_pct);
limits->max_perf_pct = max(limits->min_policy_pct,
limits->max_perf_pct);
limits->max_perf_pct = max(limits->min_perf_pct,
limits->max_perf_pct);
limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
intel_pstate_update_policies();
mutex_unlock(&intel_pstate_limits_lock);
mutex_unlock(&intel_pstate_driver_lock);
return count;
}
static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
mutex_lock(&intel_pstate_driver_lock);
if (!driver_registered) {
mutex_unlock(&intel_pstate_driver_lock);
return -EAGAIN;
}
mutex_lock(&intel_pstate_limits_lock);
limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
limits->min_perf_pct = max(limits->min_policy_pct,
limits->min_sysfs_pct);
limits->min_perf_pct = min(limits->max_policy_pct,
limits->min_perf_pct);
limits->min_perf_pct = min(limits->max_perf_pct,
limits->min_perf_pct);
limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
intel_pstate_update_policies();
mutex_unlock(&intel_pstate_limits_lock);
mutex_unlock(&intel_pstate_driver_lock);
return count;
}
show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);
define_one_global_rw(status);
define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
define_one_global_ro(turbo_pct);
define_one_global_ro(num_pstates);
static struct attribute *intel_pstate_attributes[] = {
&status.attr,
&no_turbo.attr,
&turbo_pct.attr,
&num_pstates.attr,
NULL
};
static struct attribute_group intel_pstate_attr_group = {
.attrs = intel_pstate_attributes,
};
static void __init intel_pstate_sysfs_expose_params(void)
{
struct kobject *intel_pstate_kobject;
int rc;
intel_pstate_kobject = kobject_create_and_add("intel_pstate",
&cpu_subsys.dev_root->kobj);
if (WARN_ON(!intel_pstate_kobject))
return;
rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
if (WARN_ON(rc))
return;
/*
* If per cpu limits are enforced there are no global limits, so
* return without creating max/min_perf_pct attributes
*/
if (per_cpu_limits)
return;
rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
WARN_ON(rc);
rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
WARN_ON(rc);
}
/************************** sysfs end ************************/
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
{
/* First disable HWP notification interrupt as we don't process them */
if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
cpudata->epp_policy = 0;
if (cpudata->epp_default == -EINVAL)
cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
}
#define MSR_IA32_POWER_CTL_BIT_EE 19
/* Disable energy efficiency optimization */
static void intel_pstate_disable_ee(int cpu)
{
u64 power_ctl;
int ret;
ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
if (ret)
return;
if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
pr_info("Disabling energy efficiency optimization\n");
power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
}
}
static int atom_get_min_pstate(void)
{
u64 value;
rdmsrl(ATOM_RATIOS, value);
return (value >> 8) & 0x7F;
}
static int atom_get_max_pstate(void)
{
u64 value;
rdmsrl(ATOM_RATIOS, value);
return (value >> 16) & 0x7F;
}
static int atom_get_turbo_pstate(void)
{
u64 value;
rdmsrl(ATOM_TURBO_RATIOS, value);
return value & 0x7F;
}
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
{
u64 val;
int32_t vid_fp;
u32 vid;
val = (u64)pstate << 8;
if (limits->no_turbo && !limits->turbo_disabled)
val |= (u64)1 << 32;
vid_fp = cpudata->vid.min + mul_fp(
int_tofp(pstate - cpudata->pstate.min_pstate),
cpudata->vid.ratio);
vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
vid = ceiling_fp(vid_fp);
if (pstate > cpudata->pstate.max_pstate)
vid = cpudata->vid.turbo;
return val | vid;
}
static int silvermont_get_scaling(void)
{
u64 value;
int i;
/* Defined in Table 35-6 from SDM (Sept 2015) */
static int silvermont_freq_table[] = {
83300, 100000, 133300, 116700, 80000};
rdmsrl(MSR_FSB_FREQ, value);
i = value & 0x7;
WARN_ON(i > 4);
return silvermont_freq_table[i];
}
static int airmont_get_scaling(void)
{
u64 value;
int i;
/* Defined in Table 35-10 from SDM (Sept 2015) */
static int airmont_freq_table[] = {
83300, 100000, 133300, 116700, 80000,
93300, 90000, 88900, 87500};
rdmsrl(MSR_FSB_FREQ, value);
i = value & 0xF;
WARN_ON(i > 8);
return airmont_freq_table[i];
}
static void atom_get_vid(struct cpudata *cpudata)
{
u64 value;
rdmsrl(ATOM_VIDS, value);
cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
cpudata->vid.ratio = div_fp(
cpudata->vid.max - cpudata->vid.min,
int_tofp(cpudata->pstate.max_pstate -
cpudata->pstate.min_pstate));
rdmsrl(ATOM_TURBO_VIDS, value);
cpudata->vid.turbo = value & 0x7f;
}
static int core_get_min_pstate(void)
{
u64 value;
rdmsrl(MSR_PLATFORM_INFO, value);
return (value >> 40) & 0xFF;
}
static int core_get_max_pstate_physical(void)
{
u64 value;
rdmsrl(MSR_PLATFORM_INFO, value);
return (value >> 8) & 0xFF;
}
static int core_get_tdp_ratio(u64 plat_info)
{
/* Check how many TDP levels present */
if (plat_info & 0x600000000) {
u64 tdp_ctrl;
u64 tdp_ratio;
int tdp_msr;
int err;
/* Get the TDP level (0, 1, 2) to get ratios */
err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
if (err)
return err;
/* TDP MSR are continuous starting at 0x648 */
tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
err = rdmsrl_safe(tdp_msr, &tdp_ratio);
if (err)
return err;
/* For level 1 and 2, bits[23:16] contain the ratio */
if (tdp_ctrl & 0x03)
tdp_ratio >>= 16;
tdp_ratio &= 0xff; /* ratios are only 8 bits long */
pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
return (int)tdp_ratio;
}
return -ENXIO;
}
static int core_get_max_pstate(void)
{
u64 tar;
u64 plat_info;
int max_pstate;
int tdp_ratio;
int err;
rdmsrl(MSR_PLATFORM_INFO, plat_info);
max_pstate = (plat_info >> 8) & 0xFF;
tdp_ratio = core_get_tdp_ratio(plat_info);
if (tdp_ratio <= 0)
return max_pstate;
if (hwp_active) {
/* Turbo activation ratio is not used on HWP platforms */
return tdp_ratio;
}
err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
if (!err) {
int tar_levels;
/* Do some sanity checking for safety */
tar_levels = tar & 0xff;
if (tdp_ratio - 1 == tar_levels) {
max_pstate = tar_levels;
pr_debug("max_pstate=TAC %x\n", max_pstate);
}
}
return max_pstate;
}
static int core_get_turbo_pstate(void)
{
u64 value;
int nont, ret;
rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
nont = core_get_max_pstate();
ret = (value) & 255;
if (ret <= nont)
ret = nont;
return ret;
}
static inline int core_get_scaling(void)
{
return 100000;
}
static u64 core_get_val(struct cpudata *cpudata, int pstate)
{
u64 val;
val = (u64)pstate << 8;
if (limits->no_turbo && !limits->turbo_disabled)
val |= (u64)1 << 32;
return val;
}
static int knl_get_turbo_pstate(void)
{
u64 value;
int nont, ret;
rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
nont = core_get_max_pstate();
ret = (((value) >> 8) & 0xFF);
if (ret <= nont)
ret = nont;
return ret;
}
static struct cpu_defaults core_params = {
.pid_policy = {
.sample_rate_ms = 10,
.deadband = 0,
.setpoint = 97,
.p_gain_pct = 20,
.d_gain_pct = 0,
.i_gain_pct = 0,
},
.funcs = {
.get_max = core_get_max_pstate,
.get_max_physical = core_get_max_pstate_physical,
.get_min = core_get_min_pstate,
.get_turbo = core_get_turbo_pstate,
.get_scaling = core_get_scaling,
.get_val = core_get_val,
.get_target_pstate = get_target_pstate_use_performance,
},
};
static const struct cpu_defaults silvermont_params = {
.pid_policy = {
.sample_rate_ms = 10,
.deadband = 0,
.setpoint = 60,
.p_gain_pct = 14,
.d_gain_pct = 0,
.i_gain_pct = 4,
},
.funcs = {
.get_max = atom_get_max_pstate,
.get_max_physical = atom_get_max_pstate,
.get_min = atom_get_min_pstate,
.get_turbo = atom_get_turbo_pstate,
.get_val = atom_get_val,
.get_scaling = silvermont_get_scaling,
.get_vid = atom_get_vid,
.get_target_pstate = get_target_pstate_use_cpu_load,
},
};
static const struct cpu_defaults airmont_params = {
.pid_policy = {
.sample_rate_ms = 10,
.deadband = 0,
.setpoint = 60,
.p_gain_pct = 14,
.d_gain_pct = 0,
.i_gain_pct = 4,
},
.funcs = {
.get_max = atom_get_max_pstate,
.get_max_physical = atom_get_max_pstate,
.get_min = atom_get_min_pstate,
.get_turbo = atom_get_turbo_pstate,
.get_val = atom_get_val,
.get_scaling = airmont_get_scaling,
.get_vid = atom_get_vid,
.get_target_pstate = get_target_pstate_use_cpu_load,
},
};
static const struct cpu_defaults knl_params = {
.pid_policy = {
.sample_rate_ms = 10,
.deadband = 0,
.setpoint = 97,
.p_gain_pct = 20,
.d_gain_pct = 0,
.i_gain_pct = 0,
},
.funcs = {
.get_max = core_get_max_pstate,
.get_max_physical = core_get_max_pstate_physical,
.get_min = core_get_min_pstate,
.get_turbo = knl_get_turbo_pstate,
.get_scaling = core_get_scaling,
.get_val = core_get_val,
.get_target_pstate = get_target_pstate_use_performance,
},
};
static const struct cpu_defaults bxt_params = {
.pid_policy = {
.sample_rate_ms = 10,
.deadband = 0,
.setpoint = 60,
.p_gain_pct = 14,
.d_gain_pct = 0,
.i_gain_pct = 4,
},
.funcs = {
.get_max = core_get_max_pstate,
.get_max_physical = core_get_max_pstate_physical,
.get_min = core_get_min_pstate,
.get_turbo = core_get_turbo_pstate,
.get_scaling = core_get_scaling,
.get_val = core_get_val,
.get_target_pstate = get_target_pstate_use_cpu_load,
},
};
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
int max_perf = cpu->pstate.turbo_pstate;
int max_perf_adj;
int min_perf;
struct perf_limits *perf_limits = limits;
if (limits->no_turbo || limits->turbo_disabled)
max_perf = cpu->pstate.max_pstate;
if (per_cpu_limits)
perf_limits = cpu->perf_limits;
/*
* performance can be limited by user through sysfs, by cpufreq
* policy, or by cpu specific default values determined through
* experimentation.
*/
max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
*max = clamp_t(int, max_perf_adj,
cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
}
static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
{
trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
cpu->pstate.current_pstate = pstate;
/*
* Generally, there is no guarantee that this code will always run on
* the CPU being updated, so force the register update to run on the
* right CPU.
*/
wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
pstate_funcs.get_val(cpu, pstate));
}
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
}
static void intel_pstate_max_within_limits(struct cpudata *cpu)
{
int min_pstate, max_pstate;
update_turbo_state();
intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
intel_pstate_set_pstate(cpu, max_pstate);
}
static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
cpu->pstate.min_pstate = pstate_funcs.get_min();
cpu->pstate.max_pstate = pstate_funcs.get_max();
cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
cpu->pstate.scaling = pstate_funcs.get_scaling();
cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
if (pstate_funcs.get_vid)
pstate_funcs.get_vid(cpu);
intel_pstate_set_min_pstate(cpu);
}
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
{
struct sample *sample = &cpu->sample;
sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
}
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
{
u64 aperf, mperf;
unsigned long flags;
u64 tsc;
local_irq_save(flags);
rdmsrl(MSR_IA32_APERF, aperf);
rdmsrl(MSR_IA32_MPERF, mperf);
tsc = rdtsc();
if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
local_irq_restore(flags);
return false;
}
local_irq_restore(flags);
cpu->last_sample_time = cpu->sample.time;
cpu->sample.time = time;
cpu->sample.aperf = aperf;
cpu->sample.mperf = mperf;
cpu->sample.tsc = tsc;
cpu->sample.aperf -= cpu->prev_aperf;
cpu->sample.mperf -= cpu->prev_mperf;
cpu->sample.tsc -= cpu->prev_tsc;
cpu->prev_aperf = aperf;
cpu->prev_mperf = mperf;
cpu->prev_tsc = tsc;
/*
* First time this function is invoked in a given cycle, all of the
* previous sample data fields are equal to zero or stale and they must
* be populated with meaningful numbers for things to work, so assume
* that sample.time will always be reset before setting the utilization
* update hook and make the caller skip the sample then.
*/
return !!cpu->last_sample_time;
}
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
return mul_ext_fp(cpu->sample.core_avg_perf,
cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
}
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
return mul_ext_fp(cpu->pstate.max_pstate_physical,
cpu->sample.core_avg_perf);
}
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
struct sample *sample = &cpu->sample;
int32_t busy_frac, boost;
int target, avg_pstate;
busy_frac = div_fp(sample->mperf, sample->tsc);
boost = cpu->iowait_boost;
cpu->iowait_boost >>= 1;
if (busy_frac < boost)
busy_frac = boost;
sample->busy_scaled = busy_frac * 100;
target = limits->no_turbo || limits->turbo_disabled ?
cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
target += target >> 2;
target = mul_fp(target, busy_frac);
if (target < cpu->pstate.min_pstate)
target = cpu->pstate.min_pstate;
/*
* If the average P-state during the previous cycle was higher than the
* current target, add 50% of the difference to the target to reduce
* possible performance oscillations and offset possible performance
* loss related to moving the workload from one CPU to another within
* a package/module.
*/
avg_pstate = get_avg_pstate(cpu);
if (avg_pstate > target)
target += (avg_pstate - target) >> 1;
return target;
}
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
{
int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
u64 duration_ns;
/*
* perf_scaled is the ratio of the average P-state during the last
* sampling period to the P-state requested last time (in percent).
*
* That measures the system's response to the previous P-state
* selection.
*/
max_pstate = cpu->pstate.max_pstate_physical;
current_pstate = cpu->pstate.current_pstate;
perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
div_fp(100 * max_pstate, current_pstate));
/*
* Since our utilization update callback will not run unless we are
* in C0, check if the actual elapsed time is significantly greater (3x)
* than our sample interval. If it is, then we were idle for a long
* enough period of time to adjust our performance metric.
*/
duration_ns = cpu->sample.time - cpu->last_sample_time;
if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
perf_scaled = mul_fp(perf_scaled, sample_ratio);
} else {
sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
if (sample_ratio < int_tofp(1))
perf_scaled = 0;
}
cpu->sample.busy_scaled = perf_scaled;
return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
}
static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
{
int max_perf, min_perf;
intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
pstate = clamp_t(int, pstate, min_perf, max_perf);
return pstate;
}
static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
if (pstate == cpu->pstate.current_pstate)
return;
cpu->pstate.current_pstate = pstate;
wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
int from, target_pstate;
struct sample *sample;
from = cpu->pstate.current_pstate;
target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
update_turbo_state();
target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
intel_pstate_update_pstate(cpu, target_pstate);
sample = &cpu->sample;
trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
fp_toint(sample->busy_scaled),
from,
cpu->pstate.current_pstate,
sample->mperf,
sample->aperf,
sample->tsc,
get_avg_frequency(cpu),
fp_toint(cpu->iowait_boost * 100));
}
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
unsigned int flags)
{
struct cpudata *cpu = container_of(data, struct cpudata, update_util);
u64 delta_ns;
if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
if (flags & SCHED_CPUFREQ_IOWAIT) {
cpu->iowait_boost = int_tofp(1);
} else if (cpu->iowait_boost) {
/* Clear iowait_boost if the CPU may have been idle. */
delta_ns = time - cpu->last_update;
if (delta_ns > TICK_NSEC)
cpu->iowait_boost = 0;
}
cpu->last_update = time;
}
delta_ns = time - cpu->sample.time;
if ((s64)delta_ns >= pid_params.sample_rate_ns) {
bool sample_taken = intel_pstate_sample(cpu, time);
if (sample_taken) {
intel_pstate_calc_avg_perf(cpu);
if (!hwp_active)
intel_pstate_adjust_busy_pstate(cpu);
}
}
}
#define ICPU(model, policy) \
{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
(unsigned long)&policy }
static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
ICPU(INTEL_FAM6_SANDYBRIDGE, core_params),
ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params),
ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params),
ICPU(INTEL_FAM6_IVYBRIDGE, core_params),
ICPU(INTEL_FAM6_HASWELL_CORE, core_params),
ICPU(INTEL_FAM6_BROADWELL_CORE, core_params),
ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params),
ICPU(INTEL_FAM6_HASWELL_X, core_params),
ICPU(INTEL_FAM6_HASWELL_ULT, core_params),
ICPU(INTEL_FAM6_HASWELL_GT3E, core_params),
ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params),
ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params),
ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params),
ICPU(INTEL_FAM6_BROADWELL_X, core_params),
ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params),
ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params),
ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params),
ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params),
{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
ICPU(INTEL_FAM6_BROADWELL_X, core_params),
ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
{}
};
static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
{}
};
static int intel_pstate_init_cpu(unsigned int cpunum)
{
struct cpudata *cpu;
cpu = all_cpu_data[cpunum];
if (!cpu) {
unsigned int size = sizeof(struct cpudata);
if (per_cpu_limits)
size += sizeof(struct perf_limits);
cpu = kzalloc(size, GFP_KERNEL);
if (!cpu)
return -ENOMEM;
all_cpu_data[cpunum] = cpu;
if (per_cpu_limits)
cpu->perf_limits = (struct perf_limits *)(cpu + 1);
cpu->epp_default = -EINVAL;
cpu->epp_powersave = -EINVAL;
cpu->epp_saved = -EINVAL;
}
cpu = all_cpu_data[cpunum];
cpu->cpu = cpunum;
if (hwp_active) {
const struct x86_cpu_id *id;
id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
if (id)
intel_pstate_disable_ee(cpunum);
intel_pstate_hwp_enable(cpu);
pid_params.sample_rate_ms = 50;
pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
}
intel_pstate_get_cpu_pstates(cpu);
intel_pstate_busy_pid_reset(cpu);
pr_debug("controlling: cpu %d\n", cpunum);
return 0;
}
static unsigned int intel_pstate_get(unsigned int cpu_num)
{
struct cpudata *cpu = all_cpu_data[cpu_num];
return cpu ? get_avg_frequency(cpu) : 0;
}
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
{
struct cpudata *cpu = all_cpu_data[cpu_num];
if (cpu->update_util_set)
return;
/* Prevent intel_pstate_update_util() from using stale data. */
cpu->sample.time = 0;
cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
intel_pstate_update_util);
cpu->update_util_set = true;
}
static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
struct cpudata *cpu_data = all_cpu_data[cpu];
if (!cpu_data->update_util_set)
return;
cpufreq_remove_update_util_hook(cpu);
cpu_data->update_util_set = false;
synchronize_sched();
}
static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
struct perf_limits *limits)
{
limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
policy->cpuinfo.max_freq);
limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
if (policy->max == policy->min) {
limits->min_policy_pct = limits->max_policy_pct;
} else {
limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
policy->cpuinfo.max_freq);
limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
0, 100);
}
/* Normalize user input to [min_policy_pct, max_policy_pct] */
limits->min_perf_pct = max(limits->min_policy_pct,
limits->min_sysfs_pct);
limits->min_perf_pct = min(limits->max_policy_pct,
limits->min_perf_pct);
limits->max_perf_pct = min(limits->max_policy_pct,
limits->max_sysfs_pct);
limits->max_perf_pct = max(limits->min_policy_pct,
limits->max_perf_pct);
/* Make sure min_perf_pct <= max_perf_pct */
limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
limits->max_perf_pct, limits->min_perf_pct);
}
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
struct cpudata *cpu;
struct perf_limits *perf_limits = NULL;
if (!policy->cpuinfo.max_freq)
return -ENODEV;
pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
policy->cpuinfo.max_freq, policy->max);
cpu = all_cpu_data[policy->cpu];
cpu->policy = policy->policy;
if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
policy->max < policy->cpuinfo.max_freq &&
policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
pr_debug("policy->max > max non turbo frequency\n");
policy->max = policy->cpuinfo.max_freq;
}
if (per_cpu_limits)
perf_limits = cpu->perf_limits;
mutex_lock(&intel_pstate_limits_lock);
if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
if (!perf_limits) {
limits = &performance_limits;
perf_limits = limits;
}
if (policy->max >= policy->cpuinfo.max_freq &&
!limits->no_turbo) {
pr_debug("set performance\n");
intel_pstate_set_performance_limits(perf_limits);
goto out;
}
} else {
pr_debug("set powersave\n");
if (!perf_limits) {
limits = &powersave_limits;
perf_limits = limits;
}
}
intel_pstate_update_perf_limits(policy, perf_limits);
out:
if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
/*
* NOHZ_FULL CPUs need this as the governor callback may not
* be invoked on them.
*/
intel_pstate_clear_update_util_hook(policy->cpu);
intel_pstate_max_within_limits(cpu);
}
intel_pstate_set_update_util_hook(policy->cpu);
intel_pstate_hwp_set_policy(policy);
mutex_unlock(&intel_pstate_limits_lock);
return 0;
}
static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
struct perf_limits *perf_limits;
if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
perf_limits = &performance_limits;
else
perf_limits = &powersave_limits;
update_turbo_state();
policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
perf_limits->no_turbo ?
cpu->pstate.max_freq :
cpu->pstate.turbo_freq;
cpufreq_verify_within_cpu_limits(policy);
if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
policy->policy != CPUFREQ_POLICY_PERFORMANCE)
return -EINVAL;
/* When per-CPU limits are used, sysfs limits are not used */
if (!per_cpu_limits) {
unsigned int max_freq, min_freq;
max_freq = policy->cpuinfo.max_freq *
perf_limits->max_sysfs_pct / 100;
min_freq = policy->cpuinfo.max_freq *
perf_limits->min_sysfs_pct / 100;
cpufreq_verify_within_limits(policy, min_freq, max_freq);
}
return 0;
}
static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
}
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
{
pr_debug("CPU %d exiting\n", policy->cpu);
intel_pstate_clear_update_util_hook(policy->cpu);
if (hwp_active)
intel_pstate_hwp_save_state(policy);
else
intel_cpufreq_stop_cpu(policy);
}
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
intel_pstate_exit_perf_limits(policy);
policy->fast_switch_possible = false;
return 0;
}
static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
{
struct cpudata *cpu;
int rc;
rc = intel_pstate_init_cpu(policy->cpu);
if (rc)
return rc;
cpu = all_cpu_data[policy->cpu];
/*
* We need sane value in the cpu->perf_limits, so inherit from global
* perf_limits limits, which are seeded with values based on the
* CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
*/
if (per_cpu_limits)
memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
/* cpuinfo and default policy values */
policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
update_turbo_state();
policy->cpuinfo.max_freq = limits->turbo_disabled ?
cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
policy->cpuinfo.max_freq *= cpu->pstate.scaling;
intel_pstate_init_acpi_perf_limits(policy);
cpumask_set_cpu(policy->cpu, policy->cpus);
policy->fast_switch_possible = true;
return 0;
}
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
{
int ret = __intel_pstate_cpu_init(policy);
if (ret)
return ret;
policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
policy->policy = CPUFREQ_POLICY_PERFORMANCE;
else
policy->policy = CPUFREQ_POLICY_POWERSAVE;
return 0;
}
static struct cpufreq_driver intel_pstate = {
.flags = CPUFREQ_CONST_LOOPS,
.verify = intel_pstate_verify_policy,
.setpolicy = intel_pstate_set_policy,
.suspend = intel_pstate_hwp_save_state,
.resume = intel_pstate_resume,
.get = intel_pstate_get,
.init = intel_pstate_cpu_init,
.exit = intel_pstate_cpu_exit,
.stop_cpu = intel_pstate_stop_cpu,
.name = "intel_pstate",
};
static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
update_turbo_state();
policy->cpuinfo.max_freq = limits->turbo_disabled ?
cpu->pstate.max_freq : cpu->pstate.turbo_freq;
cpufreq_verify_within_cpu_limits(policy);
return 0;
}
static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
struct cpufreq_policy *policy,
unsigned int target_freq)
{
unsigned int max_freq;
update_turbo_state();
max_freq = limits->no_turbo || limits->turbo_disabled ?
cpu->pstate.max_freq : cpu->pstate.turbo_freq;
policy->cpuinfo.max_freq = max_freq;
if (policy->max > max_freq)
policy->max = max_freq;
if (target_freq > max_freq)
target_freq = max_freq;
return target_freq;
}
static int intel_cpufreq_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
struct cpufreq_freqs freqs;
int target_pstate;
freqs.old = policy->cur;
freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
cpufreq_freq_transition_begin(policy, &freqs);
switch (relation) {
case CPUFREQ_RELATION_L:
target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
break;
case CPUFREQ_RELATION_H:
target_pstate = freqs.new / cpu->pstate.scaling;
break;
default:
target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
break;
}
target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
if (target_pstate != cpu->pstate.current_pstate) {
cpu->pstate.current_pstate = target_pstate;
wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
pstate_funcs.get_val(cpu, target_pstate));
}
freqs.new = target_pstate * cpu->pstate.scaling;
cpufreq_freq_transition_end(policy, &freqs, false);
return 0;
}
static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct cpudata *cpu = all_cpu_data[policy->cpu];
int target_pstate;
target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
intel_pstate_update_pstate(cpu, target_pstate);
return target_pstate * cpu->pstate.scaling;
}
static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
{
int ret = __intel_pstate_cpu_init(policy);
if (ret)
return ret;
policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
/* This reflects the intel_pstate_get_cpu_pstates() setting. */
policy->cur = policy->cpuinfo.min_freq;
return 0;
}
static struct cpufreq_driver intel_cpufreq = {
.flags = CPUFREQ_CONST_LOOPS,
.verify = intel_cpufreq_verify_policy,
.target = intel_cpufreq_target,
.fast_switch = intel_cpufreq_fast_switch,
.init = intel_cpufreq_cpu_init,
.exit = intel_pstate_cpu_exit,
.stop_cpu = intel_cpufreq_stop_cpu,
.name = "intel_cpufreq",
};
static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
static void intel_pstate_driver_cleanup(void)
{
unsigned int cpu;
get_online_cpus();
for_each_online_cpu(cpu) {
if (all_cpu_data[cpu]) {
if (intel_pstate_driver == &intel_pstate)
intel_pstate_clear_update_util_hook(cpu);
kfree(all_cpu_data[cpu]);
all_cpu_data[cpu] = NULL;
}
}
put_online_cpus();
}
static int intel_pstate_register_driver(void)
{
int ret;
intel_pstate_init_limits(&powersave_limits);
intel_pstate_set_performance_limits(&performance_limits);
if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE) &&
intel_pstate_driver == &intel_pstate)
limits = &performance_limits;
else
limits = &powersave_limits;
ret = cpufreq_register_driver(intel_pstate_driver);
if (ret) {
intel_pstate_driver_cleanup();
return ret;
}
mutex_lock(&intel_pstate_limits_lock);
driver_registered = true;
mutex_unlock(&intel_pstate_limits_lock);
if (intel_pstate_driver == &intel_pstate && !hwp_active &&
pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
intel_pstate_debug_expose_params();
return 0;
}
static int intel_pstate_unregister_driver(void)
{
if (hwp_active)
return -EBUSY;
if (intel_pstate_driver == &intel_pstate && !hwp_active &&
pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
intel_pstate_debug_hide_params();
mutex_lock(&intel_pstate_limits_lock);
driver_registered = false;
mutex_unlock(&intel_pstate_limits_lock);
cpufreq_unregister_driver(intel_pstate_driver);
intel_pstate_driver_cleanup();
return 0;
}
static ssize_t intel_pstate_show_status(char *buf)
{
if (!driver_registered)
return sprintf(buf, "off\n");
return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
"active" : "passive");
}
static int intel_pstate_update_status(const char *buf, size_t size)
{
int ret;
if (size == 3 && !strncmp(buf, "off", size))
return driver_registered ?
intel_pstate_unregister_driver() : -EINVAL;
if (size == 6 && !strncmp(buf, "active", size)) {
if (driver_registered) {
if (intel_pstate_driver == &intel_pstate)
return 0;
ret = intel_pstate_unregister_driver();
if (ret)
return ret;
}
intel_pstate_driver = &intel_pstate;
return intel_pstate_register_driver();
}
if (size == 7 && !strncmp(buf, "passive", size)) {
if (driver_registered) {
if (intel_pstate_driver != &intel_pstate)
return 0;
ret = intel_pstate_unregister_driver();
if (ret)
return ret;
}
intel_pstate_driver = &intel_cpufreq;
return intel_pstate_register_driver();
}
return -EINVAL;
}
static int no_load __initdata;
static int no_hwp __initdata;
static int hwp_only __initdata;
static unsigned int force_load __initdata;
static int __init intel_pstate_msrs_not_valid(void)
{
if (!pstate_funcs.get_max() ||
!pstate_funcs.get_min() ||
!pstate_funcs.get_turbo())
return -ENODEV;
return 0;
}
static void __init copy_pid_params(struct pstate_adjust_policy *policy)
{
pid_params.sample_rate_ms = policy->sample_rate_ms;
pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
pid_params.p_gain_pct = policy->p_gain_pct;
pid_params.i_gain_pct = policy->i_gain_pct;
pid_params.d_gain_pct = policy->d_gain_pct;
pid_params.deadband = policy->deadband;
pid_params.setpoint = policy->setpoint;
}
#ifdef CONFIG_ACPI
static void intel_pstate_use_acpi_profile(void)
{
if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
pstate_funcs.get_target_pstate =
get_target_pstate_use_cpu_load;
}
#else
static void intel_pstate_use_acpi_profile(void)
{
}
#endif
static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
{
pstate_funcs.get_max = funcs->get_max;
pstate_funcs.get_max_physical = funcs->get_max_physical;
pstate_funcs.get_min = funcs->get_min;
pstate_funcs.get_turbo = funcs->get_turbo;
pstate_funcs.get_scaling = funcs->get_scaling;
pstate_funcs.get_val = funcs->get_val;
pstate_funcs.get_vid = funcs->get_vid;
pstate_funcs.get_target_pstate = funcs->get_target_pstate;
intel_pstate_use_acpi_profile();
}
#ifdef CONFIG_ACPI
static bool __init intel_pstate_no_acpi_pss(void)
{
int i;
for_each_possible_cpu(i) {
acpi_status status;
union acpi_object *pss;
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_processor *pr = per_cpu(processors, i);
if (!pr)
continue;
status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
if (ACPI_FAILURE(status))
continue;
pss = buffer.pointer;
if (pss && pss->type == ACPI_TYPE_PACKAGE) {
kfree(pss);
return false;
}
kfree(pss);
}
return true;
}
static bool __init intel_pstate_has_acpi_ppc(void)
{
int i;
for_each_possible_cpu(i) {
struct acpi_processor *pr = per_cpu(processors, i);
if (!pr)
continue;
if (acpi_has_method(pr->handle, "_PPC"))
return true;
}
return false;
}
enum {
PSS,
PPC,
};
struct hw_vendor_info {
u16 valid;
char oem_id[ACPI_OEM_ID_SIZE];
char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
int oem_pwr_table;
};
/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] __initdata = {
{1, "HP ", "ProLiant", PSS},
{1, "ORACLE", "X4-2 ", PPC},
{1, "ORACLE", "X4-2L ", PPC},
{1, "ORACLE", "X4-2B ", PPC},
{1, "ORACLE", "X3-2 ", PPC},
{1, "ORACLE", "X3-2L ", PPC},
{1, "ORACLE", "X3-2B ", PPC},
{1, "ORACLE", "X4470M2 ", PPC},
{1, "ORACLE", "X4270M3 ", PPC},
{1, "ORACLE", "X4270M2 ", PPC},
{1, "ORACLE", "X4170M2 ", PPC},
{1, "ORACLE", "X4170 M3", PPC},
{1, "ORACLE", "X4275 M3", PPC},
{1, "ORACLE", "X6-2 ", PPC},
{1, "ORACLE", "Sudbury ", PPC},
{0, "", ""},
};
static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
{
struct acpi_table_header hdr;
struct hw_vendor_info *v_info;
const struct x86_cpu_id *id;
u64 misc_pwr;
id = x86_match_cpu(intel_pstate_cpu_oob_ids);
if (id) {
rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
if ( misc_pwr & (1 << 8))
return true;
}
if (acpi_disabled ||
ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
return false;
for (v_info = vendor_info; v_info->valid; v_info++) {
if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
!strncmp(hdr.oem_table_id, v_info->oem_table_id,
ACPI_OEM_TABLE_ID_SIZE))
switch (v_info->oem_pwr_table) {
case PSS:
return intel_pstate_no_acpi_pss();
case PPC:
return intel_pstate_has_acpi_ppc() &&
(!force_load);
}
}
return false;
}
static void intel_pstate_request_control_from_smm(void)
{
/*
* It may be unsafe to request P-states control from SMM if _PPC support
* has not been enabled.
*/
if (acpi_ppc)
acpi_processor_pstate_control();
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
static inline void intel_pstate_request_control_from_smm(void) {}
#endif /* CONFIG_ACPI */
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
{}
};
static int __init intel_pstate_init(void)
{
const struct x86_cpu_id *id;
struct cpu_defaults *cpu_def;
int rc = 0;
if (no_load)
return -ENODEV;
if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
copy_cpu_funcs(&core_params.funcs);
hwp_active++;
intel_pstate.attr = hwp_cpufreq_attrs;
goto hwp_cpu_matched;
}
id = x86_match_cpu(intel_pstate_cpu_ids);
if (!id)
return -ENODEV;
cpu_def = (struct cpu_defaults *)id->driver_data;
copy_pid_params(&cpu_def->pid_policy);
copy_cpu_funcs(&cpu_def->funcs);
if (intel_pstate_msrs_not_valid())
return -ENODEV;
hwp_cpu_matched:
/*
* The Intel pstate driver will be ignored if the platform
* firmware has its own power management modes.
*/
if (intel_pstate_platform_pwr_mgmt_exists())
return -ENODEV;
if (!hwp_active && hwp_only)
return -ENOTSUPP;
pr_info("Intel P-state driver initializing\n");
all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
if (!all_cpu_data)
return -ENOMEM;
intel_pstate_request_control_from_smm();
intel_pstate_sysfs_expose_params();
mutex_lock(&intel_pstate_driver_lock);
rc = intel_pstate_register_driver();
mutex_unlock(&intel_pstate_driver_lock);
if (rc)
return rc;
if (hwp_active)
pr_info("HWP enabled\n");
return 0;
}
device_initcall(intel_pstate_init);
static int __init intel_pstate_setup(char *str)
{
if (!str)
return -EINVAL;
if (!strcmp(str, "disable")) {
no_load = 1;
} else if (!strcmp(str, "passive")) {
pr_info("Passive mode enabled\n");
intel_pstate_driver = &intel_cpufreq;
no_hwp = 1;
}
if (!strcmp(str, "no_hwp")) {
pr_info("HWP disabled\n");
no_hwp = 1;
}
if (!strcmp(str, "force"))
force_load = 1;
if (!strcmp(str, "hwp_only"))
hwp_only = 1;
if (!strcmp(str, "per_cpu_perf_limits"))
per_cpu_limits = true;
#ifdef CONFIG_ACPI
if (!strcmp(str, "support_acpi_ppc"))
acpi_ppc = true;
#endif
return 0;
}
early_param("intel_pstate", intel_pstate_setup);
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");