mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 15:00:42 +07:00
574823bfab
The semantics of what "in core" means for the mincore() system call are somewhat unclear, but Linux has always (since 2.3.52, which is when mincore() was initially done) treated it as "page is available in page cache" rather than "page is mapped in the mapping". The problem with that traditional semantic is that it exposes a lot of system cache state that it really probably shouldn't, and that users shouldn't really even care about. So let's try to avoid that information leak by simply changing the semantics to be that mincore() counts actual mapped pages, not pages that might be cheaply mapped if they were faulted (note the "might be" part of the old semantics: being in the cache doesn't actually guarantee that you can access them without IO anyway, since things like network filesystems may have to revalidate the cache before use). In many ways the old semantics were somewhat insane even aside from the information leak issue. From the very beginning (and that beginning is a long time ago: 2.3.52 was released in March 2000, I think), the code had a comment saying Later we can get more picky about what "in core" means precisely. and this is that "later". Admittedly it is much later than is really comfortable. NOTE! This is a real semantic change, and it is for example known to change the output of "fincore", since that program literally does a mmmap without populating it, and then doing "mincore()" on that mapping that doesn't actually have any pages in it. I'm hoping that nobody actually has any workflow that cares, and the info leak is real. We may have to do something different if it turns out that people have valid reasons to want the old semantics, and if we can limit the information leak sanely. Cc: Kevin Easton <kevin@guarana.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Masatake YAMATO <yamato@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
206 lines
4.9 KiB
C
206 lines
4.9 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/mm/mincore.c
|
|
*
|
|
* Copyright (C) 1994-2006 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* The mincore() system call.
|
|
*/
|
|
#include <linux/pagemap.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/pgtable.h>
|
|
|
|
static int mincore_hugetlb(pte_t *pte, unsigned long hmask, unsigned long addr,
|
|
unsigned long end, struct mm_walk *walk)
|
|
{
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
unsigned char present;
|
|
unsigned char *vec = walk->private;
|
|
|
|
/*
|
|
* Hugepages under user process are always in RAM and never
|
|
* swapped out, but theoretically it needs to be checked.
|
|
*/
|
|
present = pte && !huge_pte_none(huge_ptep_get(pte));
|
|
for (; addr != end; vec++, addr += PAGE_SIZE)
|
|
*vec = present;
|
|
walk->private = vec;
|
|
#else
|
|
BUG();
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int mincore_unmapped_range(unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
unsigned char *vec = walk->private;
|
|
unsigned long nr = (end - addr) >> PAGE_SHIFT;
|
|
|
|
memset(vec, 0, nr);
|
|
walk->private += nr;
|
|
return 0;
|
|
}
|
|
|
|
static int mincore_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
spinlock_t *ptl;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
pte_t *ptep;
|
|
unsigned char *vec = walk->private;
|
|
int nr = (end - addr) >> PAGE_SHIFT;
|
|
|
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
|
if (ptl) {
|
|
memset(vec, 1, nr);
|
|
spin_unlock(ptl);
|
|
goto out;
|
|
}
|
|
|
|
/* We'll consider a THP page under construction to be there */
|
|
if (pmd_trans_unstable(pmd)) {
|
|
memset(vec, 1, nr);
|
|
goto out;
|
|
}
|
|
|
|
ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
|
|
for (; addr != end; ptep++, addr += PAGE_SIZE) {
|
|
pte_t pte = *ptep;
|
|
|
|
if (pte_none(pte))
|
|
*vec = 0;
|
|
else if (pte_present(pte))
|
|
*vec = 1;
|
|
else { /* pte is a swap entry */
|
|
swp_entry_t entry = pte_to_swp_entry(pte);
|
|
|
|
/*
|
|
* migration or hwpoison entries are always
|
|
* uptodate
|
|
*/
|
|
*vec = !!non_swap_entry(entry);
|
|
}
|
|
vec++;
|
|
}
|
|
pte_unmap_unlock(ptep - 1, ptl);
|
|
out:
|
|
walk->private += nr;
|
|
cond_resched();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Do a chunk of "sys_mincore()". We've already checked
|
|
* all the arguments, we hold the mmap semaphore: we should
|
|
* just return the amount of info we're asked for.
|
|
*/
|
|
static long do_mincore(unsigned long addr, unsigned long pages, unsigned char *vec)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
unsigned long end;
|
|
int err;
|
|
struct mm_walk mincore_walk = {
|
|
.pmd_entry = mincore_pte_range,
|
|
.pte_hole = mincore_unmapped_range,
|
|
.hugetlb_entry = mincore_hugetlb,
|
|
.private = vec,
|
|
};
|
|
|
|
vma = find_vma(current->mm, addr);
|
|
if (!vma || addr < vma->vm_start)
|
|
return -ENOMEM;
|
|
mincore_walk.mm = vma->vm_mm;
|
|
end = min(vma->vm_end, addr + (pages << PAGE_SHIFT));
|
|
err = walk_page_range(addr, end, &mincore_walk);
|
|
if (err < 0)
|
|
return err;
|
|
return (end - addr) >> PAGE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* The mincore(2) system call.
|
|
*
|
|
* mincore() returns the memory residency status of the pages in the
|
|
* current process's address space specified by [addr, addr + len).
|
|
* The status is returned in a vector of bytes. The least significant
|
|
* bit of each byte is 1 if the referenced page is in memory, otherwise
|
|
* it is zero.
|
|
*
|
|
* Because the status of a page can change after mincore() checks it
|
|
* but before it returns to the application, the returned vector may
|
|
* contain stale information. Only locked pages are guaranteed to
|
|
* remain in memory.
|
|
*
|
|
* return values:
|
|
* zero - success
|
|
* -EFAULT - vec points to an illegal address
|
|
* -EINVAL - addr is not a multiple of PAGE_SIZE
|
|
* -ENOMEM - Addresses in the range [addr, addr + len] are
|
|
* invalid for the address space of this process, or
|
|
* specify one or more pages which are not currently
|
|
* mapped
|
|
* -EAGAIN - A kernel resource was temporarily unavailable.
|
|
*/
|
|
SYSCALL_DEFINE3(mincore, unsigned long, start, size_t, len,
|
|
unsigned char __user *, vec)
|
|
{
|
|
long retval;
|
|
unsigned long pages;
|
|
unsigned char *tmp;
|
|
|
|
/* Check the start address: needs to be page-aligned.. */
|
|
if (start & ~PAGE_MASK)
|
|
return -EINVAL;
|
|
|
|
/* ..and we need to be passed a valid user-space range */
|
|
if (!access_ok((void __user *) start, len))
|
|
return -ENOMEM;
|
|
|
|
/* This also avoids any overflows on PAGE_ALIGN */
|
|
pages = len >> PAGE_SHIFT;
|
|
pages += (offset_in_page(len)) != 0;
|
|
|
|
if (!access_ok(vec, pages))
|
|
return -EFAULT;
|
|
|
|
tmp = (void *) __get_free_page(GFP_USER);
|
|
if (!tmp)
|
|
return -EAGAIN;
|
|
|
|
retval = 0;
|
|
while (pages) {
|
|
/*
|
|
* Do at most PAGE_SIZE entries per iteration, due to
|
|
* the temporary buffer size.
|
|
*/
|
|
down_read(¤t->mm->mmap_sem);
|
|
retval = do_mincore(start, min(pages, PAGE_SIZE), tmp);
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
if (retval <= 0)
|
|
break;
|
|
if (copy_to_user(vec, tmp, retval)) {
|
|
retval = -EFAULT;
|
|
break;
|
|
}
|
|
pages -= retval;
|
|
vec += retval;
|
|
start += retval << PAGE_SHIFT;
|
|
retval = 0;
|
|
}
|
|
free_page((unsigned long) tmp);
|
|
return retval;
|
|
}
|