linux_dsm_epyc7002/drivers/ide/ide-probe.c
Bartlomiej Zolnierkiewicz 7f612f272a ide: remove [ata_]select_t
* Use 'drive->dn & 1' in ide_init_disk().

* remove [ata_]select_t.

While at it:

* Use ATA_DEVICE_OBS define in ide_port_init_devices_data().

Acked-by: Sergei Shtylyov <sshtylyov@ru.mvista.com>
Signed-off-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
2008-10-13 21:39:40 +02:00

1847 lines
43 KiB
C

/*
* Copyright (C) 1994-1998 Linus Torvalds & authors (see below)
* Copyright (C) 2005, 2007 Bartlomiej Zolnierkiewicz
*/
/*
* Mostly written by Mark Lord <mlord@pobox.com>
* and Gadi Oxman <gadio@netvision.net.il>
* and Andre Hedrick <andre@linux-ide.org>
*
* See linux/MAINTAINERS for address of current maintainer.
*
* This is the IDE probe module, as evolved from hd.c and ide.c.
*
* -- increase WAIT_PIDENTIFY to avoid CD-ROM locking at boot
* by Andrea Arcangeli
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/major.h>
#include <linux/errno.h>
#include <linux/genhd.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/spinlock.h>
#include <linux/kmod.h>
#include <linux/pci.h>
#include <linux/scatterlist.h>
#include <asm/byteorder.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/io.h>
/**
* generic_id - add a generic drive id
* @drive: drive to make an ID block for
*
* Add a fake id field to the drive we are passed. This allows
* use to skip a ton of NULL checks (which people always miss)
* and make drive properties unconditional outside of this file
*/
static void generic_id(ide_drive_t *drive)
{
u16 *id = drive->id;
id[ATA_ID_CUR_CYLS] = id[ATA_ID_CYLS] = drive->cyl;
id[ATA_ID_CUR_HEADS] = id[ATA_ID_HEADS] = drive->head;
id[ATA_ID_CUR_SECTORS] = id[ATA_ID_SECTORS] = drive->sect;
}
static void ide_disk_init_chs(ide_drive_t *drive)
{
u16 *id = drive->id;
/* Extract geometry if we did not already have one for the drive */
if (!drive->cyl || !drive->head || !drive->sect) {
drive->cyl = drive->bios_cyl = id[ATA_ID_CYLS];
drive->head = drive->bios_head = id[ATA_ID_HEADS];
drive->sect = drive->bios_sect = id[ATA_ID_SECTORS];
}
/* Handle logical geometry translation by the drive */
if (ata_id_current_chs_valid(id)) {
drive->cyl = id[ATA_ID_CUR_CYLS];
drive->head = id[ATA_ID_CUR_HEADS];
drive->sect = id[ATA_ID_CUR_SECTORS];
}
/* Use physical geometry if what we have still makes no sense */
if (drive->head > 16 && id[ATA_ID_HEADS] && id[ATA_ID_HEADS] <= 16) {
drive->cyl = id[ATA_ID_CYLS];
drive->head = id[ATA_ID_HEADS];
drive->sect = id[ATA_ID_SECTORS];
}
}
static void ide_disk_init_mult_count(ide_drive_t *drive)
{
u16 *id = drive->id;
u8 max_multsect = id[ATA_ID_MAX_MULTSECT] & 0xff;
if (max_multsect) {
if ((max_multsect / 2) > 1)
id[ATA_ID_MULTSECT] = max_multsect | 0x100;
else
id[ATA_ID_MULTSECT] &= ~0x1ff;
drive->mult_req = id[ATA_ID_MULTSECT] & 0xff;
if (drive->mult_req)
drive->special.b.set_multmode = 1;
}
}
/**
* do_identify - identify a drive
* @drive: drive to identify
* @cmd: command used
*
* Called when we have issued a drive identify command to
* read and parse the results. This function is run with
* interrupts disabled.
*/
static inline void do_identify (ide_drive_t *drive, u8 cmd)
{
ide_hwif_t *hwif = HWIF(drive);
u16 *id = drive->id;
char *m = (char *)&id[ATA_ID_PROD];
int bswap = 1, is_cfa;
/* read 512 bytes of id info */
hwif->tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
drive->dev_flags |= IDE_DFLAG_ID_READ;
local_irq_enable();
#ifdef DEBUG
printk(KERN_INFO "%s: dumping identify data\n", drive->name);
ide_dump_identify((u8 *)id);
#endif
ide_fix_driveid(id);
/*
* ATA_CMD_ID_ATA returns little-endian info,
* ATA_CMD_ID_ATAPI *usually* returns little-endian info.
*/
if (cmd == ATA_CMD_ID_ATAPI) {
if ((m[0] == 'N' && m[1] == 'E') || /* NEC */
(m[0] == 'F' && m[1] == 'X') || /* Mitsumi */
(m[0] == 'P' && m[1] == 'i')) /* Pioneer */
/* Vertos drives may still be weird */
bswap ^= 1;
}
ide_fixstring(m, ATA_ID_PROD_LEN, bswap);
ide_fixstring((char *)&id[ATA_ID_FW_REV], ATA_ID_FW_REV_LEN, bswap);
ide_fixstring((char *)&id[ATA_ID_SERNO], ATA_ID_SERNO_LEN, bswap);
/* we depend on this a lot! */
m[ATA_ID_PROD_LEN - 1] = '\0';
if (strstr(m, "E X A B Y T E N E S T"))
goto err_misc;
printk(KERN_INFO "%s: %s, ", drive->name, m);
drive->dev_flags |= IDE_DFLAG_PRESENT;
drive->dev_flags &= ~IDE_DFLAG_DEAD;
/*
* Check for an ATAPI device
*/
if (cmd == ATA_CMD_ID_ATAPI) {
u8 type = (id[ATA_ID_CONFIG] >> 8) & 0x1f;
printk(KERN_CONT "ATAPI ");
switch (type) {
case ide_floppy:
if (!strstr(m, "CD-ROM")) {
if (!strstr(m, "oppy") &&
!strstr(m, "poyp") &&
!strstr(m, "ZIP"))
printk(KERN_CONT "cdrom or floppy?, assuming ");
if (drive->media != ide_cdrom) {
printk(KERN_CONT "FLOPPY");
drive->dev_flags |= IDE_DFLAG_REMOVABLE;
break;
}
}
/* Early cdrom models used zero */
type = ide_cdrom;
case ide_cdrom:
drive->dev_flags |= IDE_DFLAG_REMOVABLE;
#ifdef CONFIG_PPC
/* kludge for Apple PowerBook internal zip */
if (!strstr(m, "CD-ROM") && strstr(m, "ZIP")) {
printk(KERN_CONT "FLOPPY");
type = ide_floppy;
break;
}
#endif
printk(KERN_CONT "CD/DVD-ROM");
break;
case ide_tape:
printk(KERN_CONT "TAPE");
break;
case ide_optical:
printk(KERN_CONT "OPTICAL");
drive->dev_flags |= IDE_DFLAG_REMOVABLE;
break;
default:
printk(KERN_CONT "UNKNOWN (type %d)", type);
break;
}
printk(KERN_CONT " drive\n");
drive->media = type;
/* an ATAPI device ignores DRDY */
drive->ready_stat = 0;
return;
}
/*
* Not an ATAPI device: looks like a "regular" hard disk
*/
is_cfa = ata_id_is_cfa(id);
/* CF devices are *not* removable in Linux definition of the term */
if (is_cfa == 0 && (id[ATA_ID_CONFIG] & (1 << 7)))
drive->dev_flags |= IDE_DFLAG_REMOVABLE;
drive->media = ide_disk;
printk(KERN_CONT "%s DISK drive\n", is_cfa ? "CFA" : "ATA");
return;
err_misc:
kfree(id);
drive->dev_flags &= ~IDE_DFLAG_PRESENT;
return;
}
/**
* actual_try_to_identify - send ata/atapi identify
* @drive: drive to identify
* @cmd: command to use
*
* try_to_identify() sends an ATA(PI) IDENTIFY request to a drive
* and waits for a response. It also monitors irqs while this is
* happening, in hope of automatically determining which one is
* being used by the interface.
*
* Returns: 0 device was identified
* 1 device timed-out (no response to identify request)
* 2 device aborted the command (refused to identify itself)
*/
static int actual_try_to_identify (ide_drive_t *drive, u8 cmd)
{
ide_hwif_t *hwif = HWIF(drive);
struct ide_io_ports *io_ports = &hwif->io_ports;
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
int use_altstatus = 0, rc;
unsigned long timeout;
u8 s = 0, a = 0;
/* take a deep breath */
msleep(50);
if (io_ports->ctl_addr) {
a = tp_ops->read_altstatus(hwif);
s = tp_ops->read_status(hwif);
if ((a ^ s) & ~ATA_IDX)
/* ancient Seagate drives, broken interfaces */
printk(KERN_INFO "%s: probing with STATUS(0x%02x) "
"instead of ALTSTATUS(0x%02x)\n",
drive->name, s, a);
else
/* use non-intrusive polling */
use_altstatus = 1;
}
/* set features register for atapi
* identify command to be sure of reply
*/
if (cmd == ATA_CMD_ID_ATAPI) {
ide_task_t task;
memset(&task, 0, sizeof(task));
/* disable DMA & overlap */
task.tf_flags = IDE_TFLAG_OUT_FEATURE;
tp_ops->tf_load(drive, &task);
}
/* ask drive for ID */
tp_ops->exec_command(hwif, cmd);
timeout = ((cmd == ATA_CMD_ID_ATA) ? WAIT_WORSTCASE : WAIT_PIDENTIFY) / 2;
if (ide_busy_sleep(hwif, timeout, use_altstatus))
return 1;
/* wait for IRQ and ATA_DRQ */
msleep(50);
s = tp_ops->read_status(hwif);
if (OK_STAT(s, ATA_DRQ, BAD_R_STAT)) {
unsigned long flags;
/* local CPU only; some systems need this */
local_irq_save(flags);
/* drive returned ID */
do_identify(drive, cmd);
/* drive responded with ID */
rc = 0;
/* clear drive IRQ */
(void)tp_ops->read_status(hwif);
local_irq_restore(flags);
} else {
/* drive refused ID */
rc = 2;
}
return rc;
}
/**
* try_to_identify - try to identify a drive
* @drive: drive to probe
* @cmd: command to use
*
* Issue the identify command and then do IRQ probing to
* complete the identification when needed by finding the
* IRQ the drive is attached to
*/
static int try_to_identify (ide_drive_t *drive, u8 cmd)
{
ide_hwif_t *hwif = HWIF(drive);
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
int retval;
int autoprobe = 0;
unsigned long cookie = 0;
/*
* Disable device irq unless we need to
* probe for it. Otherwise we'll get spurious
* interrupts during the identify-phase that
* the irq handler isn't expecting.
*/
if (hwif->io_ports.ctl_addr) {
if (!hwif->irq) {
autoprobe = 1;
cookie = probe_irq_on();
}
tp_ops->set_irq(hwif, autoprobe);
}
retval = actual_try_to_identify(drive, cmd);
if (autoprobe) {
int irq;
tp_ops->set_irq(hwif, 0);
/* clear drive IRQ */
(void)tp_ops->read_status(hwif);
udelay(5);
irq = probe_irq_off(cookie);
if (!hwif->irq) {
if (irq > 0) {
hwif->irq = irq;
} else {
/* Mmmm.. multiple IRQs..
* don't know which was ours
*/
printk(KERN_ERR "%s: IRQ probe failed (0x%lx)\n",
drive->name, cookie);
}
}
}
return retval;
}
int ide_busy_sleep(ide_hwif_t *hwif, unsigned long timeout, int altstatus)
{
u8 stat;
timeout += jiffies;
do {
msleep(50); /* give drive a breather */
stat = altstatus ? hwif->tp_ops->read_altstatus(hwif)
: hwif->tp_ops->read_status(hwif);
if ((stat & ATA_BUSY) == 0)
return 0;
} while (time_before(jiffies, timeout));
return 1; /* drive timed-out */
}
static u8 ide_read_device(ide_drive_t *drive)
{
ide_task_t task;
memset(&task, 0, sizeof(task));
task.tf_flags = IDE_TFLAG_IN_DEVICE;
drive->hwif->tp_ops->tf_read(drive, &task);
return task.tf.device;
}
/**
* do_probe - probe an IDE device
* @drive: drive to probe
* @cmd: command to use
*
* do_probe() has the difficult job of finding a drive if it exists,
* without getting hung up if it doesn't exist, without trampling on
* ethernet cards, and without leaving any IRQs dangling to haunt us later.
*
* If a drive is "known" to exist (from CMOS or kernel parameters),
* but does not respond right away, the probe will "hang in there"
* for the maximum wait time (about 30 seconds), otherwise it will
* exit much more quickly.
*
* Returns: 0 device was identified
* 1 device timed-out (no response to identify request)
* 2 device aborted the command (refused to identify itself)
* 3 bad status from device (possible for ATAPI drives)
* 4 probe was not attempted because failure was obvious
*/
static int do_probe (ide_drive_t *drive, u8 cmd)
{
ide_hwif_t *hwif = HWIF(drive);
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
int rc;
u8 present = !!(drive->dev_flags & IDE_DFLAG_PRESENT), stat;
/* avoid waiting for inappropriate probes */
if (present && drive->media != ide_disk && cmd == ATA_CMD_ID_ATA)
return 4;
#ifdef DEBUG
printk(KERN_INFO "probing for %s: present=%d, media=%d, probetype=%s\n",
drive->name, present, drive->media,
(cmd == ATA_CMD_ID_ATA) ? "ATA" : "ATAPI");
#endif
/* needed for some systems
* (e.g. crw9624 as drive0 with disk as slave)
*/
msleep(50);
SELECT_DRIVE(drive);
msleep(50);
if (ide_read_device(drive) != drive->select && present == 0) {
if (drive->dn & 1) {
/* exit with drive0 selected */
SELECT_DRIVE(&hwif->drives[0]);
/* allow ATA_BUSY to assert & clear */
msleep(50);
}
/* no i/f present: mmm.. this should be a 4 -ml */
return 3;
}
stat = tp_ops->read_status(hwif);
if (OK_STAT(stat, ATA_DRDY, ATA_BUSY) ||
present || cmd == ATA_CMD_ID_ATAPI) {
/* send cmd and wait */
if ((rc = try_to_identify(drive, cmd))) {
/* failed: try again */
rc = try_to_identify(drive,cmd);
}
stat = tp_ops->read_status(hwif);
if (stat == (ATA_BUSY | ATA_DRDY))
return 4;
if (rc == 1 && cmd == ATA_CMD_ID_ATAPI) {
printk(KERN_ERR "%s: no response (status = 0x%02x), "
"resetting drive\n", drive->name, stat);
msleep(50);
SELECT_DRIVE(drive);
msleep(50);
tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
(void)ide_busy_sleep(hwif, WAIT_WORSTCASE, 0);
rc = try_to_identify(drive, cmd);
}
/* ensure drive IRQ is clear */
stat = tp_ops->read_status(hwif);
if (rc == 1)
printk(KERN_ERR "%s: no response (status = 0x%02x)\n",
drive->name, stat);
} else {
/* not present or maybe ATAPI */
rc = 3;
}
if (drive->dn & 1) {
/* exit with drive0 selected */
SELECT_DRIVE(&hwif->drives[0]);
msleep(50);
/* ensure drive irq is clear */
(void)tp_ops->read_status(hwif);
}
return rc;
}
/*
*
*/
static void enable_nest (ide_drive_t *drive)
{
ide_hwif_t *hwif = HWIF(drive);
const struct ide_tp_ops *tp_ops = hwif->tp_ops;
u8 stat;
printk(KERN_INFO "%s: enabling %s -- ",
hwif->name, (char *)&drive->id[ATA_ID_PROD]);
SELECT_DRIVE(drive);
msleep(50);
tp_ops->exec_command(hwif, ATA_EXABYTE_ENABLE_NEST);
if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 0)) {
printk(KERN_CONT "failed (timeout)\n");
return;
}
msleep(50);
stat = tp_ops->read_status(hwif);
if (!OK_STAT(stat, 0, BAD_STAT))
printk(KERN_CONT "failed (status = 0x%02x)\n", stat);
else
printk(KERN_CONT "success\n");
}
/**
* probe_for_drives - upper level drive probe
* @drive: drive to probe for
*
* probe_for_drive() tests for existence of a given drive using do_probe()
* and presents things to the user as needed.
*
* Returns: 0 no device was found
* 1 device was found
* (note: IDE_DFLAG_PRESENT might still be not set)
*/
static inline u8 probe_for_drive (ide_drive_t *drive)
{
char *m;
/*
* In order to keep things simple we have an id
* block for all drives at all times. If the device
* is pre ATA or refuses ATA/ATAPI identify we
* will add faked data to this.
*
* Also note that 0 everywhere means "can't do X"
*/
drive->dev_flags &= ~IDE_DFLAG_ID_READ;
drive->id = kzalloc(SECTOR_SIZE, GFP_KERNEL);
if (drive->id == NULL) {
printk(KERN_ERR "ide: out of memory for id data.\n");
return 0;
}
m = (char *)&drive->id[ATA_ID_PROD];
strcpy(m, "UNKNOWN");
/* skip probing? */
if ((drive->dev_flags & IDE_DFLAG_NOPROBE) == 0) {
retry:
/* if !(success||timed-out) */
if (do_probe(drive, ATA_CMD_ID_ATA) >= 2)
/* look for ATAPI device */
(void)do_probe(drive, ATA_CMD_ID_ATAPI);
if ((drive->dev_flags & IDE_DFLAG_PRESENT) == 0)
/* drive not found */
return 0;
if (strstr(m, "E X A B Y T E N E S T")) {
enable_nest(drive);
goto retry;
}
/* identification failed? */
if ((drive->dev_flags & IDE_DFLAG_ID_READ) == 0) {
if (drive->media == ide_disk) {
printk(KERN_INFO "%s: non-IDE drive, CHS=%d/%d/%d\n",
drive->name, drive->cyl,
drive->head, drive->sect);
} else if (drive->media == ide_cdrom) {
printk(KERN_INFO "%s: ATAPI cdrom (?)\n", drive->name);
} else {
/* nuke it */
printk(KERN_WARNING "%s: Unknown device on bus refused identification. Ignoring.\n", drive->name);
drive->dev_flags &= ~IDE_DFLAG_PRESENT;
}
}
/* drive was found */
}
if ((drive->dev_flags & IDE_DFLAG_PRESENT) == 0)
return 0;
/* The drive wasn't being helpful. Add generic info only */
if ((drive->dev_flags & IDE_DFLAG_ID_READ) == 0) {
generic_id(drive);
return 1;
}
if (drive->media == ide_disk) {
ide_disk_init_chs(drive);
ide_disk_init_mult_count(drive);
}
return !!(drive->dev_flags & IDE_DFLAG_PRESENT);
}
static void hwif_release_dev(struct device *dev)
{
ide_hwif_t *hwif = container_of(dev, ide_hwif_t, gendev);
complete(&hwif->gendev_rel_comp);
}
static int ide_register_port(ide_hwif_t *hwif)
{
int ret;
/* register with global device tree */
strlcpy(hwif->gendev.bus_id,hwif->name,BUS_ID_SIZE);
hwif->gendev.driver_data = hwif;
if (hwif->gendev.parent == NULL) {
if (hwif->dev)
hwif->gendev.parent = hwif->dev;
else
/* Would like to do = &device_legacy */
hwif->gendev.parent = NULL;
}
hwif->gendev.release = hwif_release_dev;
ret = device_register(&hwif->gendev);
if (ret < 0) {
printk(KERN_WARNING "IDE: %s: device_register error: %d\n",
__func__, ret);
goto out;
}
hwif->portdev = device_create_drvdata(ide_port_class, &hwif->gendev,
MKDEV(0, 0), hwif, hwif->name);
if (IS_ERR(hwif->portdev)) {
ret = PTR_ERR(hwif->portdev);
device_unregister(&hwif->gendev);
}
out:
return ret;
}
/**
* ide_port_wait_ready - wait for port to become ready
* @hwif: IDE port
*
* This is needed on some PPCs and a bunch of BIOS-less embedded
* platforms. Typical cases are:
*
* - The firmware hard reset the disk before booting the kernel,
* the drive is still doing it's poweron-reset sequence, that
* can take up to 30 seconds.
*
* - The firmware does nothing (or no firmware), the device is
* still in POST state (same as above actually).
*
* - Some CD/DVD/Writer combo drives tend to drive the bus during
* their reset sequence even when they are non-selected slave
* devices, thus preventing discovery of the main HD.
*
* Doing this wait-for-non-busy should not harm any existing
* configuration and fix some issues like the above.
*
* BenH.
*
* Returns 0 on success, error code (< 0) otherwise.
*/
static int ide_port_wait_ready(ide_hwif_t *hwif)
{
int unit, rc;
printk(KERN_DEBUG "Probing IDE interface %s...\n", hwif->name);
/* Let HW settle down a bit from whatever init state we
* come from */
mdelay(2);
/* Wait for BSY bit to go away, spec timeout is 30 seconds,
* I know of at least one disk who takes 31 seconds, I use 35
* here to be safe
*/
rc = ide_wait_not_busy(hwif, 35000);
if (rc)
return rc;
/* Now make sure both master & slave are ready */
for (unit = 0; unit < MAX_DRIVES; unit++) {
ide_drive_t *drive = &hwif->drives[unit];
/* Ignore disks that we will not probe for later. */
if ((drive->dev_flags & IDE_DFLAG_NOPROBE) == 0 ||
(drive->dev_flags & IDE_DFLAG_PRESENT)) {
SELECT_DRIVE(drive);
hwif->tp_ops->set_irq(hwif, 1);
mdelay(2);
rc = ide_wait_not_busy(hwif, 35000);
if (rc)
goto out;
} else
printk(KERN_DEBUG "%s: ide_wait_not_busy() skipped\n",
drive->name);
}
out:
/* Exit function with master reselected (let's be sane) */
if (unit)
SELECT_DRIVE(&hwif->drives[0]);
return rc;
}
/**
* ide_undecoded_slave - look for bad CF adapters
* @dev1: slave device
*
* Analyse the drives on the interface and attempt to decide if we
* have the same drive viewed twice. This occurs with crap CF adapters
* and PCMCIA sometimes.
*/
void ide_undecoded_slave(ide_drive_t *dev1)
{
ide_drive_t *dev0 = &dev1->hwif->drives[0];
if ((dev1->dn & 1) == 0 || (dev0->dev_flags & IDE_DFLAG_PRESENT) == 0)
return;
/* If the models don't match they are not the same product */
if (strcmp((char *)&dev0->id[ATA_ID_PROD],
(char *)&dev1->id[ATA_ID_PROD]))
return;
/* Serial numbers do not match */
if (strncmp((char *)&dev0->id[ATA_ID_SERNO],
(char *)&dev1->id[ATA_ID_SERNO], ATA_ID_SERNO_LEN))
return;
/* No serial number, thankfully very rare for CF */
if (*(char *)&dev0->id[ATA_ID_SERNO] == 0)
return;
/* Appears to be an IDE flash adapter with decode bugs */
printk(KERN_WARNING "ide-probe: ignoring undecoded slave\n");
dev1->dev_flags &= ~IDE_DFLAG_PRESENT;
}
EXPORT_SYMBOL_GPL(ide_undecoded_slave);
static int ide_probe_port(ide_hwif_t *hwif)
{
unsigned long flags;
unsigned int irqd;
int unit, rc = -ENODEV;
BUG_ON(hwif->present);
if ((hwif->drives[0].dev_flags & IDE_DFLAG_NOPROBE) &&
(hwif->drives[1].dev_flags & IDE_DFLAG_NOPROBE))
return -EACCES;
/*
* We must always disable IRQ, as probe_for_drive will assert IRQ, but
* we'll install our IRQ driver much later...
*/
irqd = hwif->irq;
if (irqd)
disable_irq(hwif->irq);
local_irq_set(flags);
if (ide_port_wait_ready(hwif) == -EBUSY)
printk(KERN_DEBUG "%s: Wait for ready failed before probe !\n", hwif->name);
/*
* Second drive should only exist if first drive was found,
* but a lot of cdrom drives are configured as single slaves.
*/
for (unit = 0; unit < MAX_DRIVES; ++unit) {
ide_drive_t *drive = &hwif->drives[unit];
(void) probe_for_drive(drive);
if (drive->dev_flags & IDE_DFLAG_PRESENT)
rc = 0;
}
local_irq_restore(flags);
/*
* Use cached IRQ number. It might be (and is...) changed by probe
* code above
*/
if (irqd)
enable_irq(irqd);
return rc;
}
static void ide_port_tune_devices(ide_hwif_t *hwif)
{
const struct ide_port_ops *port_ops = hwif->port_ops;
int unit;
for (unit = 0; unit < MAX_DRIVES; unit++) {
ide_drive_t *drive = &hwif->drives[unit];
if (drive->dev_flags & IDE_DFLAG_PRESENT) {
if (port_ops && port_ops->quirkproc)
port_ops->quirkproc(drive);
}
}
for (unit = 0; unit < MAX_DRIVES; ++unit) {
ide_drive_t *drive = &hwif->drives[unit];
if (drive->dev_flags & IDE_DFLAG_PRESENT) {
ide_set_max_pio(drive);
drive->dev_flags |= IDE_DFLAG_NICE1;
if (hwif->dma_ops)
ide_set_dma(drive);
}
}
for (unit = 0; unit < MAX_DRIVES; ++unit) {
ide_drive_t *drive = &hwif->drives[unit];
if ((hwif->host_flags & IDE_HFLAG_NO_IO_32BIT) ||
drive->id[ATA_ID_DWORD_IO])
drive->dev_flags |= IDE_DFLAG_NO_IO_32BIT;
else
drive->dev_flags &= ~IDE_DFLAG_NO_IO_32BIT;
}
}
/*
* save_match() is used to simplify logic in init_irq() below.
*
* A loophole here is that we may not know about a particular
* hwif's irq until after that hwif is actually probed/initialized..
* This could be a problem for the case where an hwif is on a
* dual interface that requires serialization (eg. cmd640) and another
* hwif using one of the same irqs is initialized beforehand.
*
* This routine detects and reports such situations, but does not fix them.
*/
static void save_match(ide_hwif_t *hwif, ide_hwif_t *new, ide_hwif_t **match)
{
ide_hwif_t *m = *match;
if (m && m->hwgroup && m->hwgroup != new->hwgroup) {
if (!new->hwgroup)
return;
printk(KERN_WARNING "%s: potential IRQ problem with %s and %s\n",
hwif->name, new->name, m->name);
}
if (!m || m->irq != hwif->irq) /* don't undo a prior perfect match */
*match = new;
}
/*
* init request queue
*/
static int ide_init_queue(ide_drive_t *drive)
{
struct request_queue *q;
ide_hwif_t *hwif = HWIF(drive);
int max_sectors = 256;
int max_sg_entries = PRD_ENTRIES;
/*
* Our default set up assumes the normal IDE case,
* that is 64K segmenting, standard PRD setup
* and LBA28. Some drivers then impose their own
* limits and LBA48 we could raise it but as yet
* do not.
*/
q = blk_init_queue_node(do_ide_request, &ide_lock, hwif_to_node(hwif));
if (!q)
return 1;
q->queuedata = drive;
blk_queue_segment_boundary(q, 0xffff);
if (hwif->rqsize < max_sectors)
max_sectors = hwif->rqsize;
blk_queue_max_sectors(q, max_sectors);
#ifdef CONFIG_PCI
/* When we have an IOMMU, we may have a problem where pci_map_sg()
* creates segments that don't completely match our boundary
* requirements and thus need to be broken up again. Because it
* doesn't align properly either, we may actually have to break up
* to more segments than what was we got in the first place, a max
* worst case is twice as many.
* This will be fixed once we teach pci_map_sg() about our boundary
* requirements, hopefully soon. *FIXME*
*/
if (!PCI_DMA_BUS_IS_PHYS)
max_sg_entries >>= 1;
#endif /* CONFIG_PCI */
blk_queue_max_hw_segments(q, max_sg_entries);
blk_queue_max_phys_segments(q, max_sg_entries);
/* assign drive queue */
drive->queue = q;
/* needs drive->queue to be set */
ide_toggle_bounce(drive, 1);
return 0;
}
static void ide_add_drive_to_hwgroup(ide_drive_t *drive)
{
ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
spin_lock_irq(&ide_lock);
if (!hwgroup->drive) {
/* first drive for hwgroup. */
drive->next = drive;
hwgroup->drive = drive;
hwgroup->hwif = HWIF(hwgroup->drive);
} else {
drive->next = hwgroup->drive->next;
hwgroup->drive->next = drive;
}
spin_unlock_irq(&ide_lock);
}
/*
* For any present drive:
* - allocate the block device queue
* - link drive into the hwgroup
*/
static void ide_port_setup_devices(ide_hwif_t *hwif)
{
int i;
mutex_lock(&ide_cfg_mtx);
for (i = 0; i < MAX_DRIVES; i++) {
ide_drive_t *drive = &hwif->drives[i];
if ((drive->dev_flags & IDE_DFLAG_PRESENT) == 0)
continue;
if (ide_init_queue(drive)) {
printk(KERN_ERR "ide: failed to init %s\n",
drive->name);
continue;
}
ide_add_drive_to_hwgroup(drive);
}
mutex_unlock(&ide_cfg_mtx);
}
static ide_hwif_t *ide_ports[MAX_HWIFS];
void ide_remove_port_from_hwgroup(ide_hwif_t *hwif)
{
ide_hwgroup_t *hwgroup = hwif->hwgroup;
ide_ports[hwif->index] = NULL;
spin_lock_irq(&ide_lock);
/*
* Remove us from the hwgroup, and free
* the hwgroup if we were the only member
*/
if (hwif->next == hwif) {
BUG_ON(hwgroup->hwif != hwif);
kfree(hwgroup);
} else {
/* There is another interface in hwgroup.
* Unlink us, and set hwgroup->drive and ->hwif to
* something sane.
*/
ide_hwif_t *g = hwgroup->hwif;
while (g->next != hwif)
g = g->next;
g->next = hwif->next;
if (hwgroup->hwif == hwif) {
/* Chose a random hwif for hwgroup->hwif.
* It's guaranteed that there are no drives
* left in the hwgroup.
*/
BUG_ON(hwgroup->drive != NULL);
hwgroup->hwif = g;
}
BUG_ON(hwgroup->hwif == hwif);
}
spin_unlock_irq(&ide_lock);
}
/*
* This routine sets up the irq for an ide interface, and creates a new
* hwgroup for the irq/hwif if none was previously assigned.
*
* Much of the code is for correctly detecting/handling irq sharing
* and irq serialization situations. This is somewhat complex because
* it handles static as well as dynamic (PCMCIA) IDE interfaces.
*/
static int init_irq (ide_hwif_t *hwif)
{
struct ide_io_ports *io_ports = &hwif->io_ports;
unsigned int index;
ide_hwgroup_t *hwgroup;
ide_hwif_t *match = NULL;
mutex_lock(&ide_cfg_mtx);
hwif->hwgroup = NULL;
/*
* Group up with any other hwifs that share our irq(s).
*/
for (index = 0; index < MAX_HWIFS; index++) {
ide_hwif_t *h = ide_ports[index];
if (h && h->hwgroup) { /* scan only initialized ports */
if (hwif->irq == h->irq) {
hwif->sharing_irq = h->sharing_irq = 1;
if (hwif->chipset != ide_pci ||
h->chipset != ide_pci) {
save_match(hwif, h, &match);
}
}
if (hwif->serialized) {
if (hwif->mate && hwif->mate->irq == h->irq)
save_match(hwif, h, &match);
}
if (h->serialized) {
if (h->mate && hwif->irq == h->mate->irq)
save_match(hwif, h, &match);
}
}
}
/*
* If we are still without a hwgroup, then form a new one
*/
if (match) {
hwgroup = match->hwgroup;
hwif->hwgroup = hwgroup;
/*
* Link us into the hwgroup.
* This must be done early, do ensure that unexpected_intr
* can find the hwif and prevent irq storms.
* No drives are attached to the new hwif, choose_drive
* can't do anything stupid (yet).
* Add ourself as the 2nd entry to the hwgroup->hwif
* linked list, the first entry is the hwif that owns
* hwgroup->handler - do not change that.
*/
spin_lock_irq(&ide_lock);
hwif->next = hwgroup->hwif->next;
hwgroup->hwif->next = hwif;
BUG_ON(hwif->next == hwif);
spin_unlock_irq(&ide_lock);
} else {
hwgroup = kmalloc_node(sizeof(*hwgroup), GFP_KERNEL|__GFP_ZERO,
hwif_to_node(hwif));
if (hwgroup == NULL)
goto out_up;
hwif->hwgroup = hwgroup;
hwgroup->hwif = hwif->next = hwif;
init_timer(&hwgroup->timer);
hwgroup->timer.function = &ide_timer_expiry;
hwgroup->timer.data = (unsigned long) hwgroup;
}
ide_ports[hwif->index] = hwif;
/*
* Allocate the irq, if not already obtained for another hwif
*/
if (!match || match->irq != hwif->irq) {
int sa = 0;
#if defined(__mc68000__)
sa = IRQF_SHARED;
#endif /* __mc68000__ */
if (hwif->chipset == ide_pci || hwif->chipset == ide_cmd646 ||
hwif->chipset == ide_ali14xx)
sa = IRQF_SHARED;
if (io_ports->ctl_addr)
hwif->tp_ops->set_irq(hwif, 1);
if (request_irq(hwif->irq,&ide_intr,sa,hwif->name,hwgroup))
goto out_unlink;
}
if (!hwif->rqsize) {
if ((hwif->host_flags & IDE_HFLAG_NO_LBA48) ||
(hwif->host_flags & IDE_HFLAG_NO_LBA48_DMA))
hwif->rqsize = 256;
else
hwif->rqsize = 65536;
}
#if !defined(__mc68000__)
printk(KERN_INFO "%s at 0x%03lx-0x%03lx,0x%03lx on irq %d", hwif->name,
io_ports->data_addr, io_ports->status_addr,
io_ports->ctl_addr, hwif->irq);
#else
printk(KERN_INFO "%s at 0x%08lx on irq %d", hwif->name,
io_ports->data_addr, hwif->irq);
#endif /* __mc68000__ */
if (match)
printk(KERN_CONT " (%sed with %s)",
hwif->sharing_irq ? "shar" : "serializ", match->name);
printk(KERN_CONT "\n");
mutex_unlock(&ide_cfg_mtx);
return 0;
out_unlink:
ide_remove_port_from_hwgroup(hwif);
out_up:
mutex_unlock(&ide_cfg_mtx);
return 1;
}
static int ata_lock(dev_t dev, void *data)
{
/* FIXME: we want to pin hwif down */
return 0;
}
static struct kobject *ata_probe(dev_t dev, int *part, void *data)
{
ide_hwif_t *hwif = data;
int unit = *part >> PARTN_BITS;
ide_drive_t *drive = &hwif->drives[unit];
if ((drive->dev_flags & IDE_DFLAG_PRESENT) == 0)
return NULL;
if (drive->media == ide_disk)
request_module("ide-disk");
if (drive->dev_flags & IDE_DFLAG_SCSI)
request_module("ide-scsi");
if (drive->media == ide_cdrom || drive->media == ide_optical)
request_module("ide-cd");
if (drive->media == ide_tape)
request_module("ide-tape");
if (drive->media == ide_floppy)
request_module("ide-floppy");
return NULL;
}
static struct kobject *exact_match(dev_t dev, int *part, void *data)
{
struct gendisk *p = data;
*part &= (1 << PARTN_BITS) - 1;
return &disk_to_dev(p)->kobj;
}
static int exact_lock(dev_t dev, void *data)
{
struct gendisk *p = data;
if (!get_disk(p))
return -1;
return 0;
}
void ide_register_region(struct gendisk *disk)
{
blk_register_region(MKDEV(disk->major, disk->first_minor),
disk->minors, NULL, exact_match, exact_lock, disk);
}
EXPORT_SYMBOL_GPL(ide_register_region);
void ide_unregister_region(struct gendisk *disk)
{
blk_unregister_region(MKDEV(disk->major, disk->first_minor),
disk->minors);
}
EXPORT_SYMBOL_GPL(ide_unregister_region);
void ide_init_disk(struct gendisk *disk, ide_drive_t *drive)
{
ide_hwif_t *hwif = drive->hwif;
unsigned int unit = drive->dn & 1;
disk->major = hwif->major;
disk->first_minor = unit << PARTN_BITS;
sprintf(disk->disk_name, "hd%c", 'a' + hwif->index * MAX_DRIVES + unit);
disk->queue = drive->queue;
}
EXPORT_SYMBOL_GPL(ide_init_disk);
static void ide_remove_drive_from_hwgroup(ide_drive_t *drive)
{
ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
if (drive == drive->next) {
/* special case: last drive from hwgroup. */
BUG_ON(hwgroup->drive != drive);
hwgroup->drive = NULL;
} else {
ide_drive_t *walk;
walk = hwgroup->drive;
while (walk->next != drive)
walk = walk->next;
walk->next = drive->next;
if (hwgroup->drive == drive) {
hwgroup->drive = drive->next;
hwgroup->hwif = hwgroup->drive->hwif;
}
}
BUG_ON(hwgroup->drive == drive);
}
static void drive_release_dev (struct device *dev)
{
ide_drive_t *drive = container_of(dev, ide_drive_t, gendev);
ide_proc_unregister_device(drive);
spin_lock_irq(&ide_lock);
ide_remove_drive_from_hwgroup(drive);
kfree(drive->id);
drive->id = NULL;
drive->dev_flags &= ~IDE_DFLAG_PRESENT;
/* Messed up locking ... */
spin_unlock_irq(&ide_lock);
blk_cleanup_queue(drive->queue);
spin_lock_irq(&ide_lock);
drive->queue = NULL;
spin_unlock_irq(&ide_lock);
complete(&drive->gendev_rel_comp);
}
static int hwif_init(ide_hwif_t *hwif)
{
int old_irq;
if (!hwif->irq) {
hwif->irq = __ide_default_irq(hwif->io_ports.data_addr);
if (!hwif->irq) {
printk(KERN_ERR "%s: disabled, no IRQ\n", hwif->name);
return 0;
}
}
if (register_blkdev(hwif->major, hwif->name))
return 0;
if (!hwif->sg_max_nents)
hwif->sg_max_nents = PRD_ENTRIES;
hwif->sg_table = kmalloc(sizeof(struct scatterlist)*hwif->sg_max_nents,
GFP_KERNEL);
if (!hwif->sg_table) {
printk(KERN_ERR "%s: unable to allocate SG table.\n", hwif->name);
goto out;
}
sg_init_table(hwif->sg_table, hwif->sg_max_nents);
if (init_irq(hwif) == 0)
goto done;
old_irq = hwif->irq;
/*
* It failed to initialise. Find the default IRQ for
* this port and try that.
*/
hwif->irq = __ide_default_irq(hwif->io_ports.data_addr);
if (!hwif->irq) {
printk(KERN_ERR "%s: disabled, unable to get IRQ %d\n",
hwif->name, old_irq);
goto out;
}
if (init_irq(hwif)) {
printk(KERN_ERR "%s: probed IRQ %d and default IRQ %d failed\n",
hwif->name, old_irq, hwif->irq);
goto out;
}
printk(KERN_WARNING "%s: probed IRQ %d failed, using default\n",
hwif->name, hwif->irq);
done:
blk_register_region(MKDEV(hwif->major, 0), MAX_DRIVES << PARTN_BITS,
THIS_MODULE, ata_probe, ata_lock, hwif);
return 1;
out:
unregister_blkdev(hwif->major, hwif->name);
return 0;
}
static void hwif_register_devices(ide_hwif_t *hwif)
{
unsigned int i;
for (i = 0; i < MAX_DRIVES; i++) {
ide_drive_t *drive = &hwif->drives[i];
struct device *dev = &drive->gendev;
int ret;
if ((drive->dev_flags & IDE_DFLAG_PRESENT) == 0)
continue;
snprintf(dev->bus_id, BUS_ID_SIZE, "%u.%u", hwif->index, i);
dev->parent = &hwif->gendev;
dev->bus = &ide_bus_type;
dev->driver_data = drive;
dev->release = drive_release_dev;
ret = device_register(dev);
if (ret < 0)
printk(KERN_WARNING "IDE: %s: device_register error: "
"%d\n", __func__, ret);
}
}
static void ide_port_init_devices(ide_hwif_t *hwif)
{
const struct ide_port_ops *port_ops = hwif->port_ops;
int i;
for (i = 0; i < MAX_DRIVES; i++) {
ide_drive_t *drive = &hwif->drives[i];
drive->dn = i + hwif->channel * 2;
if (hwif->host_flags & IDE_HFLAG_IO_32BIT)
drive->io_32bit = 1;
if (hwif->host_flags & IDE_HFLAG_UNMASK_IRQS)
drive->dev_flags |= IDE_DFLAG_UNMASK;
if (hwif->host_flags & IDE_HFLAG_NO_UNMASK_IRQS)
drive->dev_flags |= IDE_DFLAG_NO_UNMASK;
if (port_ops && port_ops->init_dev)
port_ops->init_dev(drive);
}
}
static void ide_init_port(ide_hwif_t *hwif, unsigned int port,
const struct ide_port_info *d)
{
hwif->channel = port;
if (d->chipset)
hwif->chipset = d->chipset;
if (d->init_iops)
d->init_iops(hwif);
if ((!hwif->irq && (d->host_flags & IDE_HFLAG_LEGACY_IRQS)) ||
(d->host_flags & IDE_HFLAG_FORCE_LEGACY_IRQS))
hwif->irq = port ? 15 : 14;
/* ->host_flags may be set by ->init_iops (or even earlier...) */
hwif->host_flags |= d->host_flags;
hwif->pio_mask = d->pio_mask;
if (d->tp_ops)
hwif->tp_ops = d->tp_ops;
/* ->set_pio_mode for DTC2278 is currently limited to port 0 */
if (hwif->chipset != ide_dtc2278 || hwif->channel == 0)
hwif->port_ops = d->port_ops;
hwif->swdma_mask = d->swdma_mask;
hwif->mwdma_mask = d->mwdma_mask;
hwif->ultra_mask = d->udma_mask;
if ((d->host_flags & IDE_HFLAG_NO_DMA) == 0) {
int rc;
if (d->init_dma)
rc = d->init_dma(hwif, d);
else
rc = ide_hwif_setup_dma(hwif, d);
if (rc < 0) {
printk(KERN_INFO "%s: DMA disabled\n", hwif->name);
hwif->dma_base = 0;
hwif->swdma_mask = 0;
hwif->mwdma_mask = 0;
hwif->ultra_mask = 0;
} else if (d->dma_ops)
hwif->dma_ops = d->dma_ops;
}
if ((d->host_flags & IDE_HFLAG_SERIALIZE) ||
((d->host_flags & IDE_HFLAG_SERIALIZE_DMA) && hwif->dma_base)) {
if (hwif->mate)
hwif->mate->serialized = hwif->serialized = 1;
}
if (d->host_flags & IDE_HFLAG_RQSIZE_256)
hwif->rqsize = 256;
/* call chipset specific routine for each enabled port */
if (d->init_hwif)
d->init_hwif(hwif);
}
static void ide_port_cable_detect(ide_hwif_t *hwif)
{
const struct ide_port_ops *port_ops = hwif->port_ops;
if (port_ops && port_ops->cable_detect && (hwif->ultra_mask & 0x78)) {
if (hwif->cbl != ATA_CBL_PATA40_SHORT)
hwif->cbl = port_ops->cable_detect(hwif);
}
}
static ssize_t store_delete_devices(struct device *portdev,
struct device_attribute *attr,
const char *buf, size_t n)
{
ide_hwif_t *hwif = dev_get_drvdata(portdev);
if (strncmp(buf, "1", n))
return -EINVAL;
ide_port_unregister_devices(hwif);
return n;
};
static DEVICE_ATTR(delete_devices, S_IWUSR, NULL, store_delete_devices);
static ssize_t store_scan(struct device *portdev,
struct device_attribute *attr,
const char *buf, size_t n)
{
ide_hwif_t *hwif = dev_get_drvdata(portdev);
if (strncmp(buf, "1", n))
return -EINVAL;
ide_port_unregister_devices(hwif);
ide_port_scan(hwif);
return n;
};
static DEVICE_ATTR(scan, S_IWUSR, NULL, store_scan);
static struct device_attribute *ide_port_attrs[] = {
&dev_attr_delete_devices,
&dev_attr_scan,
NULL
};
static int ide_sysfs_register_port(ide_hwif_t *hwif)
{
int i, uninitialized_var(rc);
for (i = 0; ide_port_attrs[i]; i++) {
rc = device_create_file(hwif->portdev, ide_port_attrs[i]);
if (rc)
break;
}
return rc;
}
static unsigned int ide_indexes;
/**
* ide_find_port_slot - find free port slot
* @d: IDE port info
*
* Return the new port slot index or -ENOENT if we are out of free slots.
*/
static int ide_find_port_slot(const struct ide_port_info *d)
{
int idx = -ENOENT;
u8 bootable = (d && (d->host_flags & IDE_HFLAG_NON_BOOTABLE)) ? 0 : 1;
u8 i = (d && (d->host_flags & IDE_HFLAG_QD_2ND_PORT)) ? 1 : 0;;
/*
* Claim an unassigned slot.
*
* Give preference to claiming other slots before claiming ide0/ide1,
* just in case there's another interface yet-to-be-scanned
* which uses ports 0x1f0/0x170 (the ide0/ide1 defaults).
*
* Unless there is a bootable card that does not use the standard
* ports 0x1f0/0x170 (the ide0/ide1 defaults).
*/
mutex_lock(&ide_cfg_mtx);
if (bootable) {
if ((ide_indexes | i) != (1 << MAX_HWIFS) - 1)
idx = ffz(ide_indexes | i);
} else {
if ((ide_indexes | 3) != (1 << MAX_HWIFS) - 1)
idx = ffz(ide_indexes | 3);
else if ((ide_indexes & 3) != 3)
idx = ffz(ide_indexes);
}
if (idx >= 0)
ide_indexes |= (1 << idx);
mutex_unlock(&ide_cfg_mtx);
return idx;
}
static void ide_free_port_slot(int idx)
{
mutex_lock(&ide_cfg_mtx);
ide_indexes &= ~(1 << idx);
mutex_unlock(&ide_cfg_mtx);
}
struct ide_host *ide_host_alloc_all(const struct ide_port_info *d,
hw_regs_t **hws)
{
struct ide_host *host;
int i;
host = kzalloc(sizeof(*host), GFP_KERNEL);
if (host == NULL)
return NULL;
for (i = 0; i < MAX_HWIFS; i++) {
ide_hwif_t *hwif;
int idx;
if (hws[i] == NULL)
continue;
hwif = kzalloc(sizeof(*hwif), GFP_KERNEL);
if (hwif == NULL)
continue;
idx = ide_find_port_slot(d);
if (idx < 0) {
printk(KERN_ERR "%s: no free slot for interface\n",
d ? d->name : "ide");
kfree(hwif);
continue;
}
ide_init_port_data(hwif, idx);
hwif->host = host;
host->ports[i] = hwif;
host->n_ports++;
}
if (host->n_ports == 0) {
kfree(host);
return NULL;
}
if (hws[0])
host->dev[0] = hws[0]->dev;
if (d) {
host->init_chipset = d->init_chipset;
host->host_flags = d->host_flags;
}
return host;
}
EXPORT_SYMBOL_GPL(ide_host_alloc_all);
struct ide_host *ide_host_alloc(const struct ide_port_info *d, hw_regs_t **hws)
{
hw_regs_t *hws_all[MAX_HWIFS];
int i;
for (i = 0; i < MAX_HWIFS; i++)
hws_all[i] = (i < 4) ? hws[i] : NULL;
return ide_host_alloc_all(d, hws_all);
}
EXPORT_SYMBOL_GPL(ide_host_alloc);
int ide_host_register(struct ide_host *host, const struct ide_port_info *d,
hw_regs_t **hws)
{
ide_hwif_t *hwif, *mate = NULL;
int i, j = 0;
for (i = 0; i < MAX_HWIFS; i++) {
hwif = host->ports[i];
if (hwif == NULL) {
mate = NULL;
continue;
}
ide_init_port_hw(hwif, hws[i]);
ide_port_apply_params(hwif);
if (d == NULL) {
mate = NULL;
} else {
if ((i & 1) && mate) {
hwif->mate = mate;
mate->mate = hwif;
}
mate = (i & 1) ? NULL : hwif;
ide_init_port(hwif, i & 1, d);
ide_port_cable_detect(hwif);
}
ide_port_init_devices(hwif);
}
for (i = 0; i < MAX_HWIFS; i++) {
hwif = host->ports[i];
if (hwif == NULL)
continue;
if (ide_probe_port(hwif) == 0)
hwif->present = 1;
if (hwif->chipset != ide_4drives || !hwif->mate ||
!hwif->mate->present)
ide_register_port(hwif);
if (hwif->present)
ide_port_tune_devices(hwif);
}
for (i = 0; i < MAX_HWIFS; i++) {
hwif = host->ports[i];
if (hwif == NULL)
continue;
if (hwif_init(hwif) == 0) {
printk(KERN_INFO "%s: failed to initialize IDE "
"interface\n", hwif->name);
hwif->present = 0;
continue;
}
j++;
if (hwif->present)
ide_port_setup_devices(hwif);
ide_acpi_init(hwif);
if (hwif->present)
ide_acpi_port_init_devices(hwif);
}
for (i = 0; i < MAX_HWIFS; i++) {
hwif = host->ports[i];
if (hwif == NULL)
continue;
if (hwif->chipset == ide_unknown)
hwif->chipset = ide_generic;
if (hwif->present)
hwif_register_devices(hwif);
}
for (i = 0; i < MAX_HWIFS; i++) {
hwif = host->ports[i];
if (hwif == NULL)
continue;
ide_sysfs_register_port(hwif);
ide_proc_register_port(hwif);
if (hwif->present)
ide_proc_port_register_devices(hwif);
}
return j ? 0 : -1;
}
EXPORT_SYMBOL_GPL(ide_host_register);
int ide_host_add(const struct ide_port_info *d, hw_regs_t **hws,
struct ide_host **hostp)
{
struct ide_host *host;
int rc;
host = ide_host_alloc(d, hws);
if (host == NULL)
return -ENOMEM;
rc = ide_host_register(host, d, hws);
if (rc) {
ide_host_free(host);
return rc;
}
if (hostp)
*hostp = host;
return 0;
}
EXPORT_SYMBOL_GPL(ide_host_add);
void ide_host_free(struct ide_host *host)
{
ide_hwif_t *hwif;
int i;
for (i = 0; i < MAX_HWIFS; i++) {
hwif = host->ports[i];
if (hwif == NULL)
continue;
ide_free_port_slot(hwif->index);
kfree(hwif);
}
kfree(host);
}
EXPORT_SYMBOL_GPL(ide_host_free);
void ide_host_remove(struct ide_host *host)
{
int i;
for (i = 0; i < MAX_HWIFS; i++) {
if (host->ports[i])
ide_unregister(host->ports[i]);
}
ide_host_free(host);
}
EXPORT_SYMBOL_GPL(ide_host_remove);
void ide_port_scan(ide_hwif_t *hwif)
{
ide_port_apply_params(hwif);
ide_port_cable_detect(hwif);
ide_port_init_devices(hwif);
if (ide_probe_port(hwif) < 0)
return;
hwif->present = 1;
ide_port_tune_devices(hwif);
ide_acpi_port_init_devices(hwif);
ide_port_setup_devices(hwif);
hwif_register_devices(hwif);
ide_proc_port_register_devices(hwif);
}
EXPORT_SYMBOL_GPL(ide_port_scan);
static void ide_legacy_init_one(hw_regs_t **hws, hw_regs_t *hw,
u8 port_no, const struct ide_port_info *d,
unsigned long config)
{
unsigned long base, ctl;
int irq;
if (port_no == 0) {
base = 0x1f0;
ctl = 0x3f6;
irq = 14;
} else {
base = 0x170;
ctl = 0x376;
irq = 15;
}
if (!request_region(base, 8, d->name)) {
printk(KERN_ERR "%s: I/O resource 0x%lX-0x%lX not free.\n",
d->name, base, base + 7);
return;
}
if (!request_region(ctl, 1, d->name)) {
printk(KERN_ERR "%s: I/O resource 0x%lX not free.\n",
d->name, ctl);
release_region(base, 8);
return;
}
ide_std_init_ports(hw, base, ctl);
hw->irq = irq;
hw->chipset = d->chipset;
hw->config = config;
hws[port_no] = hw;
}
int ide_legacy_device_add(const struct ide_port_info *d, unsigned long config)
{
hw_regs_t hw[2], *hws[] = { NULL, NULL, NULL, NULL };
memset(&hw, 0, sizeof(hw));
if ((d->host_flags & IDE_HFLAG_QD_2ND_PORT) == 0)
ide_legacy_init_one(hws, &hw[0], 0, d, config);
ide_legacy_init_one(hws, &hw[1], 1, d, config);
if (hws[0] == NULL && hws[1] == NULL &&
(d->host_flags & IDE_HFLAG_SINGLE))
return -ENOENT;
return ide_host_add(d, hws, NULL);
}
EXPORT_SYMBOL_GPL(ide_legacy_device_add);