mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
fe56b9e6a8
The Qlogic Everest Driver is the backend module for the QL4xxx ethernet products by Qlogic. This module serves two main purposes: 1. It's responsible to contain all the common code that will be shared between the various drivers that would be used with said line of products. Flows such as chip initialization and de-initialization fall under this category. 2. It would abstract the protocol-specific HW & FW components, allowing the protocol drivers to have a clean APIs which is detached in its slowpath configuration from the actual HSI. This adds a very basic module without any protocol-specific bits. I.e., this adds a basic implementation that almost entirely falls under the first category. Signed-off-by: Yuval Mintz <Yuval.Mintz@qlogic.com> Signed-off-by: Ariel Elior <Ariel.Elior@qlogic.com> Signed-off-by: David S. Miller <davem@davemloft.net>
540 lines
13 KiB
C
540 lines
13 KiB
C
/* QLogic qed NIC Driver
|
|
* Copyright (c) 2015 QLogic Corporation
|
|
*
|
|
* This software is available under the terms of the GNU General Public License
|
|
* (GPL) Version 2, available from the file COPYING in the main directory of
|
|
* this source tree.
|
|
*/
|
|
|
|
#ifndef _QED_CHAIN_H
|
|
#define _QED_CHAIN_H
|
|
|
|
#include <linux/types.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/qed/common_hsi.h>
|
|
|
|
/* dma_addr_t manip */
|
|
#define DMA_LO_LE(x) cpu_to_le32(lower_32_bits(x))
|
|
#define DMA_HI_LE(x) cpu_to_le32(upper_32_bits(x))
|
|
|
|
#define HILO_GEN(hi, lo, type) ((((type)(hi)) << 32) + (lo))
|
|
#define HILO_DMA(hi, lo) HILO_GEN(hi, lo, dma_addr_t)
|
|
#define HILO_64(hi, lo) HILO_GEN((le32_to_cpu(hi)), (le32_to_cpu(lo)), u64)
|
|
#define HILO_DMA_REGPAIR(regpair) (HILO_DMA(regpair.hi, regpair.lo))
|
|
#define HILO_64_REGPAIR(regpair) (HILO_64(regpair.hi, regpair.lo))
|
|
|
|
enum qed_chain_mode {
|
|
/* Each Page contains a next pointer at its end */
|
|
QED_CHAIN_MODE_NEXT_PTR,
|
|
|
|
/* Chain is a single page (next ptr) is unrequired */
|
|
QED_CHAIN_MODE_SINGLE,
|
|
|
|
/* Page pointers are located in a side list */
|
|
QED_CHAIN_MODE_PBL,
|
|
};
|
|
|
|
enum qed_chain_use_mode {
|
|
QED_CHAIN_USE_TO_PRODUCE, /* Chain starts empty */
|
|
QED_CHAIN_USE_TO_CONSUME, /* Chain starts full */
|
|
QED_CHAIN_USE_TO_CONSUME_PRODUCE, /* Chain starts empty */
|
|
};
|
|
|
|
struct qed_chain_next {
|
|
struct regpair next_phys;
|
|
void *next_virt;
|
|
};
|
|
|
|
struct qed_chain_pbl {
|
|
dma_addr_t p_phys_table;
|
|
void *p_virt_table;
|
|
u16 prod_page_idx;
|
|
u16 cons_page_idx;
|
|
};
|
|
|
|
struct qed_chain {
|
|
void *p_virt_addr;
|
|
dma_addr_t p_phys_addr;
|
|
void *p_prod_elem;
|
|
void *p_cons_elem;
|
|
u16 page_cnt;
|
|
enum qed_chain_mode mode;
|
|
enum qed_chain_use_mode intended_use; /* used to produce/consume */
|
|
u16 capacity; /*< number of _usable_ elements */
|
|
u16 size; /* number of elements */
|
|
u16 prod_idx;
|
|
u16 cons_idx;
|
|
u16 elem_per_page;
|
|
u16 elem_per_page_mask;
|
|
u16 elem_unusable;
|
|
u16 usable_per_page;
|
|
u16 elem_size;
|
|
u16 next_page_mask;
|
|
struct qed_chain_pbl pbl;
|
|
};
|
|
|
|
#define QED_CHAIN_PBL_ENTRY_SIZE (8)
|
|
#define QED_CHAIN_PAGE_SIZE (0x1000)
|
|
#define ELEMS_PER_PAGE(elem_size) (QED_CHAIN_PAGE_SIZE / (elem_size))
|
|
|
|
#define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode) \
|
|
((mode == QED_CHAIN_MODE_NEXT_PTR) ? \
|
|
(1 + ((sizeof(struct qed_chain_next) - 1) / \
|
|
(elem_size))) : 0)
|
|
|
|
#define USABLE_ELEMS_PER_PAGE(elem_size, mode) \
|
|
((u32)(ELEMS_PER_PAGE(elem_size) - \
|
|
UNUSABLE_ELEMS_PER_PAGE(elem_size, mode)))
|
|
|
|
#define QED_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode) \
|
|
DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode))
|
|
|
|
/* Accessors */
|
|
static inline u16 qed_chain_get_prod_idx(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->prod_idx;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_cons_idx(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->cons_idx;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_elem_left(struct qed_chain *p_chain)
|
|
{
|
|
u16 used;
|
|
|
|
/* we don't need to trancate upon assignmet, as we assign u32->u16 */
|
|
used = ((u32)0x10000u + (u32)(p_chain->prod_idx)) -
|
|
(u32)p_chain->cons_idx;
|
|
if (p_chain->mode == QED_CHAIN_MODE_NEXT_PTR)
|
|
used -= (used / p_chain->elem_per_page);
|
|
|
|
return p_chain->capacity - used;
|
|
}
|
|
|
|
static inline u8 qed_chain_is_full(struct qed_chain *p_chain)
|
|
{
|
|
return qed_chain_get_elem_left(p_chain) == p_chain->capacity;
|
|
}
|
|
|
|
static inline u8 qed_chain_is_empty(struct qed_chain *p_chain)
|
|
{
|
|
return qed_chain_get_elem_left(p_chain) == 0;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_elem_per_page(
|
|
struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->elem_per_page;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_usable_per_page(
|
|
struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->usable_per_page;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_unusable_per_page(
|
|
struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->elem_unusable;
|
|
}
|
|
|
|
static inline u16 qed_chain_get_size(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->size;
|
|
}
|
|
|
|
static inline dma_addr_t
|
|
qed_chain_get_pbl_phys(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->pbl.p_phys_table;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_advance_page -
|
|
*
|
|
* Advance the next element accros pages for a linked chain
|
|
*
|
|
* @param p_chain
|
|
* @param p_next_elem
|
|
* @param idx_to_inc
|
|
* @param page_to_inc
|
|
*/
|
|
static inline void
|
|
qed_chain_advance_page(struct qed_chain *p_chain,
|
|
void **p_next_elem,
|
|
u16 *idx_to_inc,
|
|
u16 *page_to_inc)
|
|
|
|
{
|
|
switch (p_chain->mode) {
|
|
case QED_CHAIN_MODE_NEXT_PTR:
|
|
{
|
|
struct qed_chain_next *p_next = *p_next_elem;
|
|
*p_next_elem = p_next->next_virt;
|
|
*idx_to_inc += p_chain->elem_unusable;
|
|
break;
|
|
}
|
|
case QED_CHAIN_MODE_SINGLE:
|
|
*p_next_elem = p_chain->p_virt_addr;
|
|
break;
|
|
|
|
case QED_CHAIN_MODE_PBL:
|
|
/* It is assumed pages are sequential, next element needs
|
|
* to change only when passing going back to first from last.
|
|
*/
|
|
if (++(*page_to_inc) == p_chain->page_cnt) {
|
|
*page_to_inc = 0;
|
|
*p_next_elem = p_chain->p_virt_addr;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define is_unusable_idx(p, idx) \
|
|
(((p)->idx & (p)->elem_per_page_mask) == (p)->usable_per_page)
|
|
|
|
#define is_unusable_next_idx(p, idx) \
|
|
((((p)->idx + 1) & (p)->elem_per_page_mask) == (p)->usable_per_page)
|
|
|
|
#define test_ans_skip(p, idx) \
|
|
do { \
|
|
if (is_unusable_idx(p, idx)) { \
|
|
(p)->idx += (p)->elem_unusable; \
|
|
} \
|
|
} while (0)
|
|
|
|
/**
|
|
* @brief qed_chain_return_multi_produced -
|
|
*
|
|
* A chain in which the driver "Produces" elements should use this API
|
|
* to indicate previous produced elements are now consumed.
|
|
*
|
|
* @param p_chain
|
|
* @param num
|
|
*/
|
|
static inline void
|
|
qed_chain_return_multi_produced(struct qed_chain *p_chain,
|
|
u16 num)
|
|
{
|
|
p_chain->cons_idx += num;
|
|
test_ans_skip(p_chain, cons_idx);
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_return_produced -
|
|
*
|
|
* A chain in which the driver "Produces" elements should use this API
|
|
* to indicate previous produced elements are now consumed.
|
|
*
|
|
* @param p_chain
|
|
*/
|
|
static inline void qed_chain_return_produced(struct qed_chain *p_chain)
|
|
{
|
|
p_chain->cons_idx++;
|
|
test_ans_skip(p_chain, cons_idx);
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_produce -
|
|
*
|
|
* A chain in which the driver "Produces" elements should use this to get
|
|
* a pointer to the next element which can be "Produced". It's driver
|
|
* responsibility to validate that the chain has room for new element.
|
|
*
|
|
* @param p_chain
|
|
*
|
|
* @return void*, a pointer to next element
|
|
*/
|
|
static inline void *qed_chain_produce(struct qed_chain *p_chain)
|
|
{
|
|
void *ret = NULL;
|
|
|
|
if ((p_chain->prod_idx & p_chain->elem_per_page_mask) ==
|
|
p_chain->next_page_mask) {
|
|
qed_chain_advance_page(p_chain, &p_chain->p_prod_elem,
|
|
&p_chain->prod_idx,
|
|
&p_chain->pbl.prod_page_idx);
|
|
}
|
|
|
|
ret = p_chain->p_prod_elem;
|
|
p_chain->prod_idx++;
|
|
p_chain->p_prod_elem = (void *)(((u8 *)p_chain->p_prod_elem) +
|
|
p_chain->elem_size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_get_capacity -
|
|
*
|
|
* Get the maximum number of BDs in chain
|
|
*
|
|
* @param p_chain
|
|
* @param num
|
|
*
|
|
* @return u16, number of unusable BDs
|
|
*/
|
|
static inline u16 qed_chain_get_capacity(struct qed_chain *p_chain)
|
|
{
|
|
return p_chain->capacity;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_recycle_consumed -
|
|
*
|
|
* Returns an element which was previously consumed;
|
|
* Increments producers so they could be written to FW.
|
|
*
|
|
* @param p_chain
|
|
*/
|
|
static inline void
|
|
qed_chain_recycle_consumed(struct qed_chain *p_chain)
|
|
{
|
|
test_ans_skip(p_chain, prod_idx);
|
|
p_chain->prod_idx++;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_consume -
|
|
*
|
|
* A Chain in which the driver utilizes data written by a different source
|
|
* (i.e., FW) should use this to access passed buffers.
|
|
*
|
|
* @param p_chain
|
|
*
|
|
* @return void*, a pointer to the next buffer written
|
|
*/
|
|
static inline void *qed_chain_consume(struct qed_chain *p_chain)
|
|
{
|
|
void *ret = NULL;
|
|
|
|
if ((p_chain->cons_idx & p_chain->elem_per_page_mask) ==
|
|
p_chain->next_page_mask) {
|
|
qed_chain_advance_page(p_chain, &p_chain->p_cons_elem,
|
|
&p_chain->cons_idx,
|
|
&p_chain->pbl.cons_page_idx);
|
|
}
|
|
|
|
ret = p_chain->p_cons_elem;
|
|
p_chain->cons_idx++;
|
|
p_chain->p_cons_elem = (void *)(((u8 *)p_chain->p_cons_elem) +
|
|
p_chain->elem_size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_reset - Resets the chain to its start state
|
|
*
|
|
* @param p_chain pointer to a previously allocted chain
|
|
*/
|
|
static inline void qed_chain_reset(struct qed_chain *p_chain)
|
|
{
|
|
int i;
|
|
|
|
p_chain->prod_idx = 0;
|
|
p_chain->cons_idx = 0;
|
|
p_chain->p_cons_elem = p_chain->p_virt_addr;
|
|
p_chain->p_prod_elem = p_chain->p_virt_addr;
|
|
|
|
if (p_chain->mode == QED_CHAIN_MODE_PBL) {
|
|
p_chain->pbl.prod_page_idx = p_chain->page_cnt - 1;
|
|
p_chain->pbl.cons_page_idx = p_chain->page_cnt - 1;
|
|
}
|
|
|
|
switch (p_chain->intended_use) {
|
|
case QED_CHAIN_USE_TO_CONSUME_PRODUCE:
|
|
case QED_CHAIN_USE_TO_PRODUCE:
|
|
/* Do nothing */
|
|
break;
|
|
|
|
case QED_CHAIN_USE_TO_CONSUME:
|
|
/* produce empty elements */
|
|
for (i = 0; i < p_chain->capacity; i++)
|
|
qed_chain_recycle_consumed(p_chain);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_init - Initalizes a basic chain struct
|
|
*
|
|
* @param p_chain
|
|
* @param p_virt_addr
|
|
* @param p_phys_addr physical address of allocated buffer's beginning
|
|
* @param page_cnt number of pages in the allocated buffer
|
|
* @param elem_size size of each element in the chain
|
|
* @param intended_use
|
|
* @param mode
|
|
*/
|
|
static inline void qed_chain_init(struct qed_chain *p_chain,
|
|
void *p_virt_addr,
|
|
dma_addr_t p_phys_addr,
|
|
u16 page_cnt,
|
|
u8 elem_size,
|
|
enum qed_chain_use_mode intended_use,
|
|
enum qed_chain_mode mode)
|
|
{
|
|
/* chain fixed parameters */
|
|
p_chain->p_virt_addr = p_virt_addr;
|
|
p_chain->p_phys_addr = p_phys_addr;
|
|
p_chain->elem_size = elem_size;
|
|
p_chain->page_cnt = page_cnt;
|
|
p_chain->mode = mode;
|
|
|
|
p_chain->intended_use = intended_use;
|
|
p_chain->elem_per_page = ELEMS_PER_PAGE(elem_size);
|
|
p_chain->usable_per_page =
|
|
USABLE_ELEMS_PER_PAGE(elem_size, mode);
|
|
p_chain->capacity = p_chain->usable_per_page * page_cnt;
|
|
p_chain->size = p_chain->elem_per_page * page_cnt;
|
|
p_chain->elem_per_page_mask = p_chain->elem_per_page - 1;
|
|
|
|
p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode);
|
|
|
|
p_chain->next_page_mask = (p_chain->usable_per_page &
|
|
p_chain->elem_per_page_mask);
|
|
|
|
if (mode == QED_CHAIN_MODE_NEXT_PTR) {
|
|
struct qed_chain_next *p_next;
|
|
u16 i;
|
|
|
|
for (i = 0; i < page_cnt - 1; i++) {
|
|
/* Increment mem_phy to the next page. */
|
|
p_phys_addr += QED_CHAIN_PAGE_SIZE;
|
|
|
|
/* Initialize the physical address of the next page. */
|
|
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
|
|
elem_size *
|
|
p_chain->
|
|
usable_per_page);
|
|
|
|
p_next->next_phys.lo = DMA_LO_LE(p_phys_addr);
|
|
p_next->next_phys.hi = DMA_HI_LE(p_phys_addr);
|
|
|
|
/* Initialize the virtual address of the next page. */
|
|
p_next->next_virt = (void *)((u8 *)p_virt_addr +
|
|
QED_CHAIN_PAGE_SIZE);
|
|
|
|
/* Move to the next page. */
|
|
p_virt_addr = p_next->next_virt;
|
|
}
|
|
|
|
/* Last page's next should point to beginning of the chain */
|
|
p_next = (struct qed_chain_next *)((u8 *)p_virt_addr +
|
|
elem_size *
|
|
p_chain->usable_per_page);
|
|
|
|
p_next->next_phys.lo = DMA_LO_LE(p_chain->p_phys_addr);
|
|
p_next->next_phys.hi = DMA_HI_LE(p_chain->p_phys_addr);
|
|
p_next->next_virt = p_chain->p_virt_addr;
|
|
}
|
|
qed_chain_reset(p_chain);
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_pbl_init - Initalizes a basic pbl chain
|
|
* struct
|
|
* @param p_chain
|
|
* @param p_virt_addr virtual address of allocated buffer's beginning
|
|
* @param p_phys_addr physical address of allocated buffer's beginning
|
|
* @param page_cnt number of pages in the allocated buffer
|
|
* @param elem_size size of each element in the chain
|
|
* @param use_mode
|
|
* @param p_phys_pbl pointer to a pre-allocated side table
|
|
* which will hold physical page addresses.
|
|
* @param p_virt_pbl pointer to a pre allocated side table
|
|
* which will hold virtual page addresses.
|
|
*/
|
|
static inline void
|
|
qed_chain_pbl_init(struct qed_chain *p_chain,
|
|
void *p_virt_addr,
|
|
dma_addr_t p_phys_addr,
|
|
u16 page_cnt,
|
|
u8 elem_size,
|
|
enum qed_chain_use_mode use_mode,
|
|
dma_addr_t p_phys_pbl,
|
|
dma_addr_t *p_virt_pbl)
|
|
{
|
|
dma_addr_t *p_pbl_dma = p_virt_pbl;
|
|
int i;
|
|
|
|
qed_chain_init(p_chain, p_virt_addr, p_phys_addr, page_cnt,
|
|
elem_size, use_mode, QED_CHAIN_MODE_PBL);
|
|
|
|
p_chain->pbl.p_phys_table = p_phys_pbl;
|
|
p_chain->pbl.p_virt_table = p_virt_pbl;
|
|
|
|
/* Fill the PBL with physical addresses*/
|
|
for (i = 0; i < page_cnt; i++) {
|
|
*p_pbl_dma = p_phys_addr;
|
|
p_phys_addr += QED_CHAIN_PAGE_SIZE;
|
|
p_pbl_dma++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_set_prod - sets the prod to the given
|
|
* value
|
|
*
|
|
* @param prod_idx
|
|
* @param p_prod_elem
|
|
*/
|
|
static inline void qed_chain_set_prod(struct qed_chain *p_chain,
|
|
u16 prod_idx,
|
|
void *p_prod_elem)
|
|
{
|
|
p_chain->prod_idx = prod_idx;
|
|
p_chain->p_prod_elem = p_prod_elem;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_get_elem -
|
|
*
|
|
* get a pointer to an element represented by absolute idx
|
|
*
|
|
* @param p_chain
|
|
* @assumption p_chain->size is a power of 2
|
|
*
|
|
* @return void*, a pointer to next element
|
|
*/
|
|
static inline void *qed_chain_sge_get_elem(struct qed_chain *p_chain,
|
|
u16 idx)
|
|
{
|
|
void *ret = NULL;
|
|
|
|
if (idx >= p_chain->size)
|
|
return NULL;
|
|
|
|
ret = (u8 *)p_chain->p_virt_addr + p_chain->elem_size * idx;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief qed_chain_sge_inc_cons_prod
|
|
*
|
|
* for sge chains, producer isn't increased serially, the ring
|
|
* is expected to be full at all times. Once elements are
|
|
* consumed, they are immediately produced.
|
|
*
|
|
* @param p_chain
|
|
* @param cnt
|
|
*
|
|
* @return inline void
|
|
*/
|
|
static inline void
|
|
qed_chain_sge_inc_cons_prod(struct qed_chain *p_chain,
|
|
u16 cnt)
|
|
{
|
|
p_chain->prod_idx += cnt;
|
|
p_chain->cons_idx += cnt;
|
|
}
|
|
|
|
#endif
|