mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 04:16:43 +07:00
752ade68cb
There are many code paths opencoding kvmalloc. Let's use the helper instead. The main difference to kvmalloc is that those users are usually not considering all the aspects of the memory allocator. E.g. allocation requests <= 32kB (with 4kB pages) are basically never failing and invoke OOM killer to satisfy the allocation. This sounds too disruptive for something that has a reasonable fallback - the vmalloc. On the other hand those requests might fallback to vmalloc even when the memory allocator would succeed after several more reclaim/compaction attempts previously. There is no guarantee something like that happens though. This patch converts many of those places to kv[mz]alloc* helpers because they are more conservative. Link: http://lkml.kernel.org/r/20170306103327.2766-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> # Xen bits Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Andreas Dilger <andreas.dilger@intel.com> # Lustre Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> # KVM/s390 Acked-by: Dan Williams <dan.j.williams@intel.com> # nvdim Acked-by: David Sterba <dsterba@suse.com> # btrfs Acked-by: Ilya Dryomov <idryomov@gmail.com> # Ceph Acked-by: Tariq Toukan <tariqt@mellanox.com> # mlx4 Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx5 Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Tony Luck <tony.luck@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Santosh Raspatur <santosh@chelsio.com> Cc: Hariprasad S <hariprasad@chelsio.com> Cc: Yishai Hadas <yishaih@mellanox.com> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: "Yan, Zheng" <zyan@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
465 lines
13 KiB
C
465 lines
13 KiB
C
/*
|
|
* Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/if.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <net/neighbour.h>
|
|
#include "common.h"
|
|
#include "t3cdev.h"
|
|
#include "cxgb3_defs.h"
|
|
#include "l2t.h"
|
|
#include "t3_cpl.h"
|
|
#include "firmware_exports.h"
|
|
|
|
#define VLAN_NONE 0xfff
|
|
|
|
/*
|
|
* Module locking notes: There is a RW lock protecting the L2 table as a
|
|
* whole plus a spinlock per L2T entry. Entry lookups and allocations happen
|
|
* under the protection of the table lock, individual entry changes happen
|
|
* while holding that entry's spinlock. The table lock nests outside the
|
|
* entry locks. Allocations of new entries take the table lock as writers so
|
|
* no other lookups can happen while allocating new entries. Entry updates
|
|
* take the table lock as readers so multiple entries can be updated in
|
|
* parallel. An L2T entry can be dropped by decrementing its reference count
|
|
* and therefore can happen in parallel with entry allocation but no entry
|
|
* can change state or increment its ref count during allocation as both of
|
|
* these perform lookups.
|
|
*/
|
|
|
|
static inline unsigned int vlan_prio(const struct l2t_entry *e)
|
|
{
|
|
return e->vlan >> 13;
|
|
}
|
|
|
|
static inline unsigned int arp_hash(u32 key, int ifindex,
|
|
const struct l2t_data *d)
|
|
{
|
|
return jhash_2words(key, ifindex, 0) & (d->nentries - 1);
|
|
}
|
|
|
|
static inline void neigh_replace(struct l2t_entry *e, struct neighbour *n)
|
|
{
|
|
neigh_hold(n);
|
|
if (e->neigh)
|
|
neigh_release(e->neigh);
|
|
e->neigh = n;
|
|
}
|
|
|
|
/*
|
|
* Set up an L2T entry and send any packets waiting in the arp queue. The
|
|
* supplied skb is used for the CPL_L2T_WRITE_REQ. Must be called with the
|
|
* entry locked.
|
|
*/
|
|
static int setup_l2e_send_pending(struct t3cdev *dev, struct sk_buff *skb,
|
|
struct l2t_entry *e)
|
|
{
|
|
struct cpl_l2t_write_req *req;
|
|
struct sk_buff *tmp;
|
|
|
|
if (!skb) {
|
|
skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
|
|
req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
|
|
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx));
|
|
req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) |
|
|
V_L2T_W_VLAN(e->vlan & VLAN_VID_MASK) |
|
|
V_L2T_W_PRIO(vlan_prio(e)));
|
|
memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
|
|
memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
|
|
skb->priority = CPL_PRIORITY_CONTROL;
|
|
cxgb3_ofld_send(dev, skb);
|
|
|
|
skb_queue_walk_safe(&e->arpq, skb, tmp) {
|
|
__skb_unlink(skb, &e->arpq);
|
|
cxgb3_ofld_send(dev, skb);
|
|
}
|
|
e->state = L2T_STATE_VALID;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add a packet to the an L2T entry's queue of packets awaiting resolution.
|
|
* Must be called with the entry's lock held.
|
|
*/
|
|
static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
|
|
{
|
|
__skb_queue_tail(&e->arpq, skb);
|
|
}
|
|
|
|
int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb,
|
|
struct l2t_entry *e)
|
|
{
|
|
again:
|
|
switch (e->state) {
|
|
case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
|
|
neigh_event_send(e->neigh, NULL);
|
|
spin_lock_bh(&e->lock);
|
|
if (e->state == L2T_STATE_STALE)
|
|
e->state = L2T_STATE_VALID;
|
|
spin_unlock_bh(&e->lock);
|
|
case L2T_STATE_VALID: /* fast-path, send the packet on */
|
|
return cxgb3_ofld_send(dev, skb);
|
|
case L2T_STATE_RESOLVING:
|
|
spin_lock_bh(&e->lock);
|
|
if (e->state != L2T_STATE_RESOLVING) {
|
|
/* ARP already completed */
|
|
spin_unlock_bh(&e->lock);
|
|
goto again;
|
|
}
|
|
arpq_enqueue(e, skb);
|
|
spin_unlock_bh(&e->lock);
|
|
|
|
/*
|
|
* Only the first packet added to the arpq should kick off
|
|
* resolution. However, because the alloc_skb below can fail,
|
|
* we allow each packet added to the arpq to retry resolution
|
|
* as a way of recovering from transient memory exhaustion.
|
|
* A better way would be to use a work request to retry L2T
|
|
* entries when there's no memory.
|
|
*/
|
|
if (!neigh_event_send(e->neigh, NULL)) {
|
|
skb = alloc_skb(sizeof(struct cpl_l2t_write_req),
|
|
GFP_ATOMIC);
|
|
if (!skb)
|
|
break;
|
|
|
|
spin_lock_bh(&e->lock);
|
|
if (!skb_queue_empty(&e->arpq))
|
|
setup_l2e_send_pending(dev, skb, e);
|
|
else /* we lost the race */
|
|
__kfree_skb(skb);
|
|
spin_unlock_bh(&e->lock);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(t3_l2t_send_slow);
|
|
|
|
void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e)
|
|
{
|
|
again:
|
|
switch (e->state) {
|
|
case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
|
|
neigh_event_send(e->neigh, NULL);
|
|
spin_lock_bh(&e->lock);
|
|
if (e->state == L2T_STATE_STALE) {
|
|
e->state = L2T_STATE_VALID;
|
|
}
|
|
spin_unlock_bh(&e->lock);
|
|
return;
|
|
case L2T_STATE_VALID: /* fast-path, send the packet on */
|
|
return;
|
|
case L2T_STATE_RESOLVING:
|
|
spin_lock_bh(&e->lock);
|
|
if (e->state != L2T_STATE_RESOLVING) {
|
|
/* ARP already completed */
|
|
spin_unlock_bh(&e->lock);
|
|
goto again;
|
|
}
|
|
spin_unlock_bh(&e->lock);
|
|
|
|
/*
|
|
* Only the first packet added to the arpq should kick off
|
|
* resolution. However, because the alloc_skb below can fail,
|
|
* we allow each packet added to the arpq to retry resolution
|
|
* as a way of recovering from transient memory exhaustion.
|
|
* A better way would be to use a work request to retry L2T
|
|
* entries when there's no memory.
|
|
*/
|
|
neigh_event_send(e->neigh, NULL);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(t3_l2t_send_event);
|
|
|
|
/*
|
|
* Allocate a free L2T entry. Must be called with l2t_data.lock held.
|
|
*/
|
|
static struct l2t_entry *alloc_l2e(struct l2t_data *d)
|
|
{
|
|
struct l2t_entry *end, *e, **p;
|
|
|
|
if (!atomic_read(&d->nfree))
|
|
return NULL;
|
|
|
|
/* there's definitely a free entry */
|
|
for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e)
|
|
if (atomic_read(&e->refcnt) == 0)
|
|
goto found;
|
|
|
|
for (e = &d->l2tab[1]; atomic_read(&e->refcnt); ++e) ;
|
|
found:
|
|
d->rover = e + 1;
|
|
atomic_dec(&d->nfree);
|
|
|
|
/*
|
|
* The entry we found may be an inactive entry that is
|
|
* presently in the hash table. We need to remove it.
|
|
*/
|
|
if (e->state != L2T_STATE_UNUSED) {
|
|
int hash = arp_hash(e->addr, e->ifindex, d);
|
|
|
|
for (p = &d->l2tab[hash].first; *p; p = &(*p)->next)
|
|
if (*p == e) {
|
|
*p = e->next;
|
|
break;
|
|
}
|
|
e->state = L2T_STATE_UNUSED;
|
|
}
|
|
return e;
|
|
}
|
|
|
|
/*
|
|
* Called when an L2T entry has no more users. The entry is left in the hash
|
|
* table since it is likely to be reused but we also bump nfree to indicate
|
|
* that the entry can be reallocated for a different neighbor. We also drop
|
|
* the existing neighbor reference in case the neighbor is going away and is
|
|
* waiting on our reference.
|
|
*
|
|
* Because entries can be reallocated to other neighbors once their ref count
|
|
* drops to 0 we need to take the entry's lock to avoid races with a new
|
|
* incarnation.
|
|
*/
|
|
void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e)
|
|
{
|
|
spin_lock_bh(&e->lock);
|
|
if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
|
|
if (e->neigh) {
|
|
neigh_release(e->neigh);
|
|
e->neigh = NULL;
|
|
}
|
|
}
|
|
spin_unlock_bh(&e->lock);
|
|
atomic_inc(&d->nfree);
|
|
}
|
|
|
|
EXPORT_SYMBOL(t3_l2e_free);
|
|
|
|
/*
|
|
* Update an L2T entry that was previously used for the same next hop as neigh.
|
|
* Must be called with softirqs disabled.
|
|
*/
|
|
static inline void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
|
|
{
|
|
unsigned int nud_state;
|
|
|
|
spin_lock(&e->lock); /* avoid race with t3_l2t_free */
|
|
|
|
if (neigh != e->neigh)
|
|
neigh_replace(e, neigh);
|
|
nud_state = neigh->nud_state;
|
|
if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
|
|
!(nud_state & NUD_VALID))
|
|
e->state = L2T_STATE_RESOLVING;
|
|
else if (nud_state & NUD_CONNECTED)
|
|
e->state = L2T_STATE_VALID;
|
|
else
|
|
e->state = L2T_STATE_STALE;
|
|
spin_unlock(&e->lock);
|
|
}
|
|
|
|
struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct dst_entry *dst,
|
|
struct net_device *dev, const void *daddr)
|
|
{
|
|
struct l2t_entry *e = NULL;
|
|
struct neighbour *neigh;
|
|
struct port_info *p;
|
|
struct l2t_data *d;
|
|
int hash;
|
|
u32 addr;
|
|
int ifidx;
|
|
int smt_idx;
|
|
|
|
rcu_read_lock();
|
|
neigh = dst_neigh_lookup(dst, daddr);
|
|
if (!neigh)
|
|
goto done_rcu;
|
|
|
|
addr = *(u32 *) neigh->primary_key;
|
|
ifidx = neigh->dev->ifindex;
|
|
|
|
if (!dev)
|
|
dev = neigh->dev;
|
|
p = netdev_priv(dev);
|
|
smt_idx = p->port_id;
|
|
|
|
d = L2DATA(cdev);
|
|
if (!d)
|
|
goto done_rcu;
|
|
|
|
hash = arp_hash(addr, ifidx, d);
|
|
|
|
write_lock_bh(&d->lock);
|
|
for (e = d->l2tab[hash].first; e; e = e->next)
|
|
if (e->addr == addr && e->ifindex == ifidx &&
|
|
e->smt_idx == smt_idx) {
|
|
l2t_hold(d, e);
|
|
if (atomic_read(&e->refcnt) == 1)
|
|
reuse_entry(e, neigh);
|
|
goto done_unlock;
|
|
}
|
|
|
|
/* Need to allocate a new entry */
|
|
e = alloc_l2e(d);
|
|
if (e) {
|
|
spin_lock(&e->lock); /* avoid race with t3_l2t_free */
|
|
e->next = d->l2tab[hash].first;
|
|
d->l2tab[hash].first = e;
|
|
e->state = L2T_STATE_RESOLVING;
|
|
e->addr = addr;
|
|
e->ifindex = ifidx;
|
|
e->smt_idx = smt_idx;
|
|
atomic_set(&e->refcnt, 1);
|
|
neigh_replace(e, neigh);
|
|
if (is_vlan_dev(neigh->dev))
|
|
e->vlan = vlan_dev_vlan_id(neigh->dev);
|
|
else
|
|
e->vlan = VLAN_NONE;
|
|
spin_unlock(&e->lock);
|
|
}
|
|
done_unlock:
|
|
write_unlock_bh(&d->lock);
|
|
done_rcu:
|
|
if (neigh)
|
|
neigh_release(neigh);
|
|
rcu_read_unlock();
|
|
return e;
|
|
}
|
|
|
|
EXPORT_SYMBOL(t3_l2t_get);
|
|
|
|
/*
|
|
* Called when address resolution fails for an L2T entry to handle packets
|
|
* on the arpq head. If a packet specifies a failure handler it is invoked,
|
|
* otherwise the packets is sent to the offload device.
|
|
*
|
|
* XXX: maybe we should abandon the latter behavior and just require a failure
|
|
* handler.
|
|
*/
|
|
static void handle_failed_resolution(struct t3cdev *dev, struct sk_buff_head *arpq)
|
|
{
|
|
struct sk_buff *skb, *tmp;
|
|
|
|
skb_queue_walk_safe(arpq, skb, tmp) {
|
|
struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
|
|
|
|
__skb_unlink(skb, arpq);
|
|
if (cb->arp_failure_handler)
|
|
cb->arp_failure_handler(dev, skb);
|
|
else
|
|
cxgb3_ofld_send(dev, skb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called when the host's ARP layer makes a change to some entry that is
|
|
* loaded into the HW L2 table.
|
|
*/
|
|
void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh)
|
|
{
|
|
struct sk_buff_head arpq;
|
|
struct l2t_entry *e;
|
|
struct l2t_data *d = L2DATA(dev);
|
|
u32 addr = *(u32 *) neigh->primary_key;
|
|
int ifidx = neigh->dev->ifindex;
|
|
int hash = arp_hash(addr, ifidx, d);
|
|
|
|
read_lock_bh(&d->lock);
|
|
for (e = d->l2tab[hash].first; e; e = e->next)
|
|
if (e->addr == addr && e->ifindex == ifidx) {
|
|
spin_lock(&e->lock);
|
|
goto found;
|
|
}
|
|
read_unlock_bh(&d->lock);
|
|
return;
|
|
|
|
found:
|
|
__skb_queue_head_init(&arpq);
|
|
|
|
read_unlock(&d->lock);
|
|
if (atomic_read(&e->refcnt)) {
|
|
if (neigh != e->neigh)
|
|
neigh_replace(e, neigh);
|
|
|
|
if (e->state == L2T_STATE_RESOLVING) {
|
|
if (neigh->nud_state & NUD_FAILED) {
|
|
skb_queue_splice_init(&e->arpq, &arpq);
|
|
} else if (neigh->nud_state & (NUD_CONNECTED|NUD_STALE))
|
|
setup_l2e_send_pending(dev, NULL, e);
|
|
} else {
|
|
e->state = neigh->nud_state & NUD_CONNECTED ?
|
|
L2T_STATE_VALID : L2T_STATE_STALE;
|
|
if (!ether_addr_equal(e->dmac, neigh->ha))
|
|
setup_l2e_send_pending(dev, NULL, e);
|
|
}
|
|
}
|
|
spin_unlock_bh(&e->lock);
|
|
|
|
if (!skb_queue_empty(&arpq))
|
|
handle_failed_resolution(dev, &arpq);
|
|
}
|
|
|
|
struct l2t_data *t3_init_l2t(unsigned int l2t_capacity)
|
|
{
|
|
struct l2t_data *d;
|
|
int i, size = sizeof(*d) + l2t_capacity * sizeof(struct l2t_entry);
|
|
|
|
d = kvzalloc(size, GFP_KERNEL);
|
|
if (!d)
|
|
return NULL;
|
|
|
|
d->nentries = l2t_capacity;
|
|
d->rover = &d->l2tab[1]; /* entry 0 is not used */
|
|
atomic_set(&d->nfree, l2t_capacity - 1);
|
|
rwlock_init(&d->lock);
|
|
|
|
for (i = 0; i < l2t_capacity; ++i) {
|
|
d->l2tab[i].idx = i;
|
|
d->l2tab[i].state = L2T_STATE_UNUSED;
|
|
__skb_queue_head_init(&d->l2tab[i].arpq);
|
|
spin_lock_init(&d->l2tab[i].lock);
|
|
atomic_set(&d->l2tab[i].refcnt, 0);
|
|
}
|
|
return d;
|
|
}
|