mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-01 07:56:44 +07:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
626 lines
17 KiB
C
626 lines
17 KiB
C
/*
|
|
* drivers/video/asiliantfb.c
|
|
* frame buffer driver for Asiliant 69000 chip
|
|
* Copyright (C) 2001-2003 Saito.K & Jeanne
|
|
*
|
|
* from driver/video/chipsfb.c and,
|
|
*
|
|
* drivers/video/asiliantfb.c -- frame buffer device for
|
|
* Asiliant 69030 chip (formerly Intel, formerly Chips & Technologies)
|
|
* Author: apc@agelectronics.co.uk
|
|
* Copyright (C) 2000 AG Electronics
|
|
* Note: the data sheets don't seem to be available from Asiliant.
|
|
* They are available by searching developer.intel.com, but are not otherwise
|
|
* linked to.
|
|
*
|
|
* This driver should be portable with minimal effort to the 69000 display
|
|
* chip, and to the twin-display mode of the 69030.
|
|
* Contains code from Thomas Hhenleitner <th@visuelle-maschinen.de> (thanks)
|
|
*
|
|
* Derived from the CT65550 driver chipsfb.c:
|
|
* Copyright (C) 1998 Paul Mackerras
|
|
* ...which was derived from the Powermac "chips" driver:
|
|
* Copyright (C) 1997 Fabio Riccardi.
|
|
* And from the frame buffer device for Open Firmware-initialized devices:
|
|
* Copyright (C) 1997 Geert Uytterhoeven.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file COPYING in the main directory of this archive for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/fb.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <asm/io.h>
|
|
|
|
/* Built in clock of the 69030 */
|
|
static const unsigned Fref = 14318180;
|
|
|
|
#define mmio_base (p->screen_base + 0x400000)
|
|
|
|
#define mm_write_ind(num, val, ap, dp) do { \
|
|
writeb((num), mmio_base + (ap)); writeb((val), mmio_base + (dp)); \
|
|
} while (0)
|
|
|
|
static void mm_write_xr(struct fb_info *p, u8 reg, u8 data)
|
|
{
|
|
mm_write_ind(reg, data, 0x7ac, 0x7ad);
|
|
}
|
|
#define write_xr(num, val) mm_write_xr(p, num, val)
|
|
|
|
static void mm_write_fr(struct fb_info *p, u8 reg, u8 data)
|
|
{
|
|
mm_write_ind(reg, data, 0x7a0, 0x7a1);
|
|
}
|
|
#define write_fr(num, val) mm_write_fr(p, num, val)
|
|
|
|
static void mm_write_cr(struct fb_info *p, u8 reg, u8 data)
|
|
{
|
|
mm_write_ind(reg, data, 0x7a8, 0x7a9);
|
|
}
|
|
#define write_cr(num, val) mm_write_cr(p, num, val)
|
|
|
|
static void mm_write_gr(struct fb_info *p, u8 reg, u8 data)
|
|
{
|
|
mm_write_ind(reg, data, 0x79c, 0x79d);
|
|
}
|
|
#define write_gr(num, val) mm_write_gr(p, num, val)
|
|
|
|
static void mm_write_sr(struct fb_info *p, u8 reg, u8 data)
|
|
{
|
|
mm_write_ind(reg, data, 0x788, 0x789);
|
|
}
|
|
#define write_sr(num, val) mm_write_sr(p, num, val)
|
|
|
|
static void mm_write_ar(struct fb_info *p, u8 reg, u8 data)
|
|
{
|
|
readb(mmio_base + 0x7b4);
|
|
mm_write_ind(reg, data, 0x780, 0x780);
|
|
}
|
|
#define write_ar(num, val) mm_write_ar(p, num, val)
|
|
|
|
static int asiliantfb_pci_init(struct pci_dev *dp, const struct pci_device_id *);
|
|
static int asiliantfb_check_var(struct fb_var_screeninfo *var,
|
|
struct fb_info *info);
|
|
static int asiliantfb_set_par(struct fb_info *info);
|
|
static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
|
|
u_int transp, struct fb_info *info);
|
|
|
|
static struct fb_ops asiliantfb_ops = {
|
|
.owner = THIS_MODULE,
|
|
.fb_check_var = asiliantfb_check_var,
|
|
.fb_set_par = asiliantfb_set_par,
|
|
.fb_setcolreg = asiliantfb_setcolreg,
|
|
.fb_fillrect = cfb_fillrect,
|
|
.fb_copyarea = cfb_copyarea,
|
|
.fb_imageblit = cfb_imageblit,
|
|
};
|
|
|
|
/* Calculate the ratios for the dot clocks without using a single long long
|
|
* value */
|
|
static void asiliant_calc_dclk2(u32 *ppixclock, u8 *dclk2_m, u8 *dclk2_n, u8 *dclk2_div)
|
|
{
|
|
unsigned pixclock = *ppixclock;
|
|
unsigned Ftarget = 1000000 * (1000000 / pixclock);
|
|
unsigned n;
|
|
unsigned best_error = 0xffffffff;
|
|
unsigned best_m = 0xffffffff,
|
|
best_n = 0xffffffff;
|
|
unsigned ratio;
|
|
unsigned remainder;
|
|
unsigned char divisor = 0;
|
|
|
|
/* Calculate the frequency required. This is hard enough. */
|
|
ratio = 1000000 / pixclock;
|
|
remainder = 1000000 % pixclock;
|
|
Ftarget = 1000000 * ratio + (1000000 * remainder) / pixclock;
|
|
|
|
while (Ftarget < 100000000) {
|
|
divisor += 0x10;
|
|
Ftarget <<= 1;
|
|
}
|
|
|
|
ratio = Ftarget / Fref;
|
|
remainder = Ftarget % Fref;
|
|
|
|
/* This expresses the constraint that 150kHz <= Fref/n <= 5Mhz,
|
|
* together with 3 <= n <= 257. */
|
|
for (n = 3; n <= 257; n++) {
|
|
unsigned m = n * ratio + (n * remainder) / Fref;
|
|
|
|
/* 3 <= m <= 257 */
|
|
if (m >= 3 && m <= 257) {
|
|
unsigned new_error = Ftarget * n >= Fref * m ?
|
|
((Ftarget * n) - (Fref * m)) : ((Fref * m) - (Ftarget * n));
|
|
if (new_error < best_error) {
|
|
best_n = n;
|
|
best_m = m;
|
|
best_error = new_error;
|
|
}
|
|
}
|
|
/* But if VLD = 4, then 4m <= 1028 */
|
|
else if (m <= 1028) {
|
|
/* remember there are still only 8-bits of precision in m, so
|
|
* avoid over-optimistic error calculations */
|
|
unsigned new_error = Ftarget * n >= Fref * (m & ~3) ?
|
|
((Ftarget * n) - (Fref * (m & ~3))) : ((Fref * (m & ~3)) - (Ftarget * n));
|
|
if (new_error < best_error) {
|
|
best_n = n;
|
|
best_m = m;
|
|
best_error = new_error;
|
|
}
|
|
}
|
|
}
|
|
if (best_m > 257)
|
|
best_m >>= 2; /* divide m by 4, and leave VCO loop divide at 4 */
|
|
else
|
|
divisor |= 4; /* or set VCO loop divide to 1 */
|
|
*dclk2_m = best_m - 2;
|
|
*dclk2_n = best_n - 2;
|
|
*dclk2_div = divisor;
|
|
*ppixclock = pixclock;
|
|
return;
|
|
}
|
|
|
|
static void asiliant_set_timing(struct fb_info *p)
|
|
{
|
|
unsigned hd = p->var.xres / 8;
|
|
unsigned hs = (p->var.xres + p->var.right_margin) / 8;
|
|
unsigned he = (p->var.xres + p->var.right_margin + p->var.hsync_len) / 8;
|
|
unsigned ht = (p->var.left_margin + p->var.xres + p->var.right_margin + p->var.hsync_len) / 8;
|
|
unsigned vd = p->var.yres;
|
|
unsigned vs = p->var.yres + p->var.lower_margin;
|
|
unsigned ve = p->var.yres + p->var.lower_margin + p->var.vsync_len;
|
|
unsigned vt = p->var.upper_margin + p->var.yres + p->var.lower_margin + p->var.vsync_len;
|
|
unsigned wd = (p->var.xres_virtual * ((p->var.bits_per_pixel+7)/8)) / 8;
|
|
|
|
if ((p->var.xres == 640) && (p->var.yres == 480) && (p->var.pixclock == 39722)) {
|
|
write_fr(0x01, 0x02); /* LCD */
|
|
} else {
|
|
write_fr(0x01, 0x01); /* CRT */
|
|
}
|
|
|
|
write_cr(0x11, (ve - 1) & 0x0f);
|
|
write_cr(0x00, (ht - 5) & 0xff);
|
|
write_cr(0x01, hd - 1);
|
|
write_cr(0x02, hd);
|
|
write_cr(0x03, ((ht - 1) & 0x1f) | 0x80);
|
|
write_cr(0x04, hs);
|
|
write_cr(0x05, (((ht - 1) & 0x20) <<2) | (he & 0x1f));
|
|
write_cr(0x3c, (ht - 1) & 0xc0);
|
|
write_cr(0x06, (vt - 2) & 0xff);
|
|
write_cr(0x30, (vt - 2) >> 8);
|
|
write_cr(0x07, 0x00);
|
|
write_cr(0x08, 0x00);
|
|
write_cr(0x09, 0x00);
|
|
write_cr(0x10, (vs - 1) & 0xff);
|
|
write_cr(0x32, ((vs - 1) >> 8) & 0xf);
|
|
write_cr(0x11, ((ve - 1) & 0x0f) | 0x80);
|
|
write_cr(0x12, (vd - 1) & 0xff);
|
|
write_cr(0x31, ((vd - 1) & 0xf00) >> 8);
|
|
write_cr(0x13, wd & 0xff);
|
|
write_cr(0x41, (wd & 0xf00) >> 8);
|
|
write_cr(0x15, (vs - 1) & 0xff);
|
|
write_cr(0x33, ((vs - 1) >> 8) & 0xf);
|
|
write_cr(0x38, ((ht - 5) & 0x100) >> 8);
|
|
write_cr(0x16, (vt - 1) & 0xff);
|
|
write_cr(0x18, 0x00);
|
|
|
|
if (p->var.xres == 640) {
|
|
writeb(0xc7, mmio_base + 0x784); /* set misc output reg */
|
|
} else {
|
|
writeb(0x07, mmio_base + 0x784); /* set misc output reg */
|
|
}
|
|
}
|
|
|
|
static int asiliantfb_check_var(struct fb_var_screeninfo *var,
|
|
struct fb_info *p)
|
|
{
|
|
unsigned long Ftarget, ratio, remainder;
|
|
|
|
ratio = 1000000 / var->pixclock;
|
|
remainder = 1000000 % var->pixclock;
|
|
Ftarget = 1000000 * ratio + (1000000 * remainder) / var->pixclock;
|
|
|
|
/* First check the constraint that the maximum post-VCO divisor is 32,
|
|
* and the maximum Fvco is 220MHz */
|
|
if (Ftarget > 220000000 || Ftarget < 3125000) {
|
|
printk(KERN_ERR "asiliantfb dotclock must be between 3.125 and 220MHz\n");
|
|
return -ENXIO;
|
|
}
|
|
var->xres_virtual = var->xres;
|
|
var->yres_virtual = var->yres;
|
|
|
|
if (var->bits_per_pixel == 24) {
|
|
var->red.offset = 16;
|
|
var->green.offset = 8;
|
|
var->blue.offset = 0;
|
|
var->red.length = var->blue.length = var->green.length = 8;
|
|
} else if (var->bits_per_pixel == 16) {
|
|
switch (var->red.offset) {
|
|
case 11:
|
|
var->green.length = 6;
|
|
break;
|
|
case 10:
|
|
var->green.length = 5;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
var->green.offset = 5;
|
|
var->blue.offset = 0;
|
|
var->red.length = var->blue.length = 5;
|
|
} else if (var->bits_per_pixel == 8) {
|
|
var->red.offset = var->green.offset = var->blue.offset = 0;
|
|
var->red.length = var->green.length = var->blue.length = 8;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int asiliantfb_set_par(struct fb_info *p)
|
|
{
|
|
u8 dclk2_m; /* Holds m-2 value for register */
|
|
u8 dclk2_n; /* Holds n-2 value for register */
|
|
u8 dclk2_div; /* Holds divisor bitmask */
|
|
|
|
/* Set pixclock */
|
|
asiliant_calc_dclk2(&p->var.pixclock, &dclk2_m, &dclk2_n, &dclk2_div);
|
|
|
|
/* Set color depth */
|
|
if (p->var.bits_per_pixel == 24) {
|
|
write_xr(0x81, 0x16); /* 24 bit packed color mode */
|
|
write_xr(0x82, 0x00); /* Disable palettes */
|
|
write_xr(0x20, 0x20); /* 24 bit blitter mode */
|
|
} else if (p->var.bits_per_pixel == 16) {
|
|
if (p->var.red.offset == 11)
|
|
write_xr(0x81, 0x15); /* 16 bit color mode */
|
|
else
|
|
write_xr(0x81, 0x14); /* 15 bit color mode */
|
|
write_xr(0x82, 0x00); /* Disable palettes */
|
|
write_xr(0x20, 0x10); /* 16 bit blitter mode */
|
|
} else if (p->var.bits_per_pixel == 8) {
|
|
write_xr(0x0a, 0x02); /* Linear */
|
|
write_xr(0x81, 0x12); /* 8 bit color mode */
|
|
write_xr(0x82, 0x00); /* Graphics gamma enable */
|
|
write_xr(0x20, 0x00); /* 8 bit blitter mode */
|
|
}
|
|
p->fix.line_length = p->var.xres * (p->var.bits_per_pixel >> 3);
|
|
p->fix.visual = (p->var.bits_per_pixel == 8) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR;
|
|
write_xr(0xc4, dclk2_m);
|
|
write_xr(0xc5, dclk2_n);
|
|
write_xr(0xc7, dclk2_div);
|
|
/* Set up the CR registers */
|
|
asiliant_set_timing(p);
|
|
return 0;
|
|
}
|
|
|
|
static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
|
|
u_int transp, struct fb_info *p)
|
|
{
|
|
if (regno > 255)
|
|
return 1;
|
|
red >>= 8;
|
|
green >>= 8;
|
|
blue >>= 8;
|
|
|
|
/* Set hardware palete */
|
|
writeb(regno, mmio_base + 0x790);
|
|
udelay(1);
|
|
writeb(red, mmio_base + 0x791);
|
|
writeb(green, mmio_base + 0x791);
|
|
writeb(blue, mmio_base + 0x791);
|
|
|
|
if (regno < 16) {
|
|
switch(p->var.red.offset) {
|
|
case 10: /* RGB 555 */
|
|
((u32 *)(p->pseudo_palette))[regno] =
|
|
((red & 0xf8) << 7) |
|
|
((green & 0xf8) << 2) |
|
|
((blue & 0xf8) >> 3);
|
|
break;
|
|
case 11: /* RGB 565 */
|
|
((u32 *)(p->pseudo_palette))[regno] =
|
|
((red & 0xf8) << 8) |
|
|
((green & 0xfc) << 3) |
|
|
((blue & 0xf8) >> 3);
|
|
break;
|
|
case 16: /* RGB 888 */
|
|
((u32 *)(p->pseudo_palette))[regno] =
|
|
(red << 16) |
|
|
(green << 8) |
|
|
(blue);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct chips_init_reg {
|
|
unsigned char addr;
|
|
unsigned char data;
|
|
};
|
|
|
|
static struct chips_init_reg chips_init_sr[] =
|
|
{
|
|
{0x00, 0x03}, /* Reset register */
|
|
{0x01, 0x01}, /* Clocking mode */
|
|
{0x02, 0x0f}, /* Plane mask */
|
|
{0x04, 0x0e} /* Memory mode */
|
|
};
|
|
|
|
static struct chips_init_reg chips_init_gr[] =
|
|
{
|
|
{0x03, 0x00}, /* Data rotate */
|
|
{0x05, 0x00}, /* Graphics mode */
|
|
{0x06, 0x01}, /* Miscellaneous */
|
|
{0x08, 0x00} /* Bit mask */
|
|
};
|
|
|
|
static struct chips_init_reg chips_init_ar[] =
|
|
{
|
|
{0x10, 0x01}, /* Mode control */
|
|
{0x11, 0x00}, /* Overscan */
|
|
{0x12, 0x0f}, /* Memory plane enable */
|
|
{0x13, 0x00} /* Horizontal pixel panning */
|
|
};
|
|
|
|
static struct chips_init_reg chips_init_cr[] =
|
|
{
|
|
{0x0c, 0x00}, /* Start address high */
|
|
{0x0d, 0x00}, /* Start address low */
|
|
{0x40, 0x00}, /* Extended Start Address */
|
|
{0x41, 0x00}, /* Extended Start Address */
|
|
{0x14, 0x00}, /* Underline location */
|
|
{0x17, 0xe3}, /* CRT mode control */
|
|
{0x70, 0x00} /* Interlace control */
|
|
};
|
|
|
|
|
|
static struct chips_init_reg chips_init_fr[] =
|
|
{
|
|
{0x01, 0x02},
|
|
{0x03, 0x08},
|
|
{0x08, 0xcc},
|
|
{0x0a, 0x08},
|
|
{0x18, 0x00},
|
|
{0x1e, 0x80},
|
|
{0x40, 0x83},
|
|
{0x41, 0x00},
|
|
{0x48, 0x13},
|
|
{0x4d, 0x60},
|
|
{0x4e, 0x0f},
|
|
|
|
{0x0b, 0x01},
|
|
|
|
{0x21, 0x51},
|
|
{0x22, 0x1d},
|
|
{0x23, 0x5f},
|
|
{0x20, 0x4f},
|
|
{0x34, 0x00},
|
|
{0x24, 0x51},
|
|
{0x25, 0x00},
|
|
{0x27, 0x0b},
|
|
{0x26, 0x00},
|
|
{0x37, 0x80},
|
|
{0x33, 0x0b},
|
|
{0x35, 0x11},
|
|
{0x36, 0x02},
|
|
{0x31, 0xea},
|
|
{0x32, 0x0c},
|
|
{0x30, 0xdf},
|
|
{0x10, 0x0c},
|
|
{0x11, 0xe0},
|
|
{0x12, 0x50},
|
|
{0x13, 0x00},
|
|
{0x16, 0x03},
|
|
{0x17, 0xbd},
|
|
{0x1a, 0x00},
|
|
};
|
|
|
|
|
|
static struct chips_init_reg chips_init_xr[] =
|
|
{
|
|
{0xce, 0x00}, /* set default memory clock */
|
|
{0xcc, 200 }, /* MCLK ratio M */
|
|
{0xcd, 18 }, /* MCLK ratio N */
|
|
{0xce, 0x90}, /* MCLK divisor = 2 */
|
|
|
|
{0xc4, 209 },
|
|
{0xc5, 118 },
|
|
{0xc7, 32 },
|
|
{0xcf, 0x06},
|
|
{0x09, 0x01}, /* IO Control - CRT controller extensions */
|
|
{0x0a, 0x02}, /* Frame buffer mapping */
|
|
{0x0b, 0x01}, /* PCI burst write */
|
|
{0x40, 0x03}, /* Memory access control */
|
|
{0x80, 0x82}, /* Pixel pipeline configuration 0 */
|
|
{0x81, 0x12}, /* Pixel pipeline configuration 1 */
|
|
{0x82, 0x08}, /* Pixel pipeline configuration 2 */
|
|
|
|
{0xd0, 0x0f},
|
|
{0xd1, 0x01},
|
|
};
|
|
|
|
static void __devinit chips_hw_init(struct fb_info *p)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(chips_init_xr); ++i)
|
|
write_xr(chips_init_xr[i].addr, chips_init_xr[i].data);
|
|
write_xr(0x81, 0x12);
|
|
write_xr(0x82, 0x08);
|
|
write_xr(0x20, 0x00);
|
|
for (i = 0; i < ARRAY_SIZE(chips_init_sr); ++i)
|
|
write_sr(chips_init_sr[i].addr, chips_init_sr[i].data);
|
|
for (i = 0; i < ARRAY_SIZE(chips_init_gr); ++i)
|
|
write_gr(chips_init_gr[i].addr, chips_init_gr[i].data);
|
|
for (i = 0; i < ARRAY_SIZE(chips_init_ar); ++i)
|
|
write_ar(chips_init_ar[i].addr, chips_init_ar[i].data);
|
|
/* Enable video output in attribute index register */
|
|
writeb(0x20, mmio_base + 0x780);
|
|
for (i = 0; i < ARRAY_SIZE(chips_init_cr); ++i)
|
|
write_cr(chips_init_cr[i].addr, chips_init_cr[i].data);
|
|
for (i = 0; i < ARRAY_SIZE(chips_init_fr); ++i)
|
|
write_fr(chips_init_fr[i].addr, chips_init_fr[i].data);
|
|
}
|
|
|
|
static struct fb_fix_screeninfo asiliantfb_fix __devinitdata = {
|
|
.id = "Asiliant 69000",
|
|
.type = FB_TYPE_PACKED_PIXELS,
|
|
.visual = FB_VISUAL_PSEUDOCOLOR,
|
|
.accel = FB_ACCEL_NONE,
|
|
.line_length = 640,
|
|
.smem_len = 0x200000, /* 2MB */
|
|
};
|
|
|
|
static struct fb_var_screeninfo asiliantfb_var __devinitdata = {
|
|
.xres = 640,
|
|
.yres = 480,
|
|
.xres_virtual = 640,
|
|
.yres_virtual = 480,
|
|
.bits_per_pixel = 8,
|
|
.red = { .length = 8 },
|
|
.green = { .length = 8 },
|
|
.blue = { .length = 8 },
|
|
.height = -1,
|
|
.width = -1,
|
|
.vmode = FB_VMODE_NONINTERLACED,
|
|
.pixclock = 39722,
|
|
.left_margin = 48,
|
|
.right_margin = 16,
|
|
.upper_margin = 33,
|
|
.lower_margin = 10,
|
|
.hsync_len = 96,
|
|
.vsync_len = 2,
|
|
};
|
|
|
|
static int __devinit init_asiliant(struct fb_info *p, unsigned long addr)
|
|
{
|
|
int err;
|
|
|
|
p->fix = asiliantfb_fix;
|
|
p->fix.smem_start = addr;
|
|
p->var = asiliantfb_var;
|
|
p->fbops = &asiliantfb_ops;
|
|
p->flags = FBINFO_DEFAULT;
|
|
|
|
err = fb_alloc_cmap(&p->cmap, 256, 0);
|
|
if (err) {
|
|
printk(KERN_ERR "C&T 69000 fb failed to alloc cmap memory\n");
|
|
return err;
|
|
}
|
|
|
|
err = register_framebuffer(p);
|
|
if (err < 0) {
|
|
printk(KERN_ERR "C&T 69000 framebuffer failed to register\n");
|
|
fb_dealloc_cmap(&p->cmap);
|
|
return err;
|
|
}
|
|
|
|
printk(KERN_INFO "fb%d: Asiliant 69000 frame buffer (%dK RAM detected)\n",
|
|
p->node, p->fix.smem_len / 1024);
|
|
|
|
writeb(0xff, mmio_base + 0x78c);
|
|
chips_hw_init(p);
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit
|
|
asiliantfb_pci_init(struct pci_dev *dp, const struct pci_device_id *ent)
|
|
{
|
|
unsigned long addr, size;
|
|
struct fb_info *p;
|
|
int err;
|
|
|
|
if ((dp->resource[0].flags & IORESOURCE_MEM) == 0)
|
|
return -ENODEV;
|
|
addr = pci_resource_start(dp, 0);
|
|
size = pci_resource_len(dp, 0);
|
|
if (addr == 0)
|
|
return -ENODEV;
|
|
if (!request_mem_region(addr, size, "asiliantfb"))
|
|
return -EBUSY;
|
|
|
|
p = framebuffer_alloc(sizeof(u32) * 16, &dp->dev);
|
|
if (!p) {
|
|
release_mem_region(addr, size);
|
|
return -ENOMEM;
|
|
}
|
|
p->pseudo_palette = p->par;
|
|
p->par = NULL;
|
|
|
|
p->screen_base = ioremap(addr, 0x800000);
|
|
if (p->screen_base == NULL) {
|
|
release_mem_region(addr, size);
|
|
framebuffer_release(p);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pci_write_config_dword(dp, 4, 0x02800083);
|
|
writeb(3, p->screen_base + 0x400784);
|
|
|
|
err = init_asiliant(p, addr);
|
|
if (err) {
|
|
iounmap(p->screen_base);
|
|
release_mem_region(addr, size);
|
|
framebuffer_release(p);
|
|
return err;
|
|
}
|
|
|
|
pci_set_drvdata(dp, p);
|
|
return 0;
|
|
}
|
|
|
|
static void __devexit asiliantfb_remove(struct pci_dev *dp)
|
|
{
|
|
struct fb_info *p = pci_get_drvdata(dp);
|
|
|
|
unregister_framebuffer(p);
|
|
fb_dealloc_cmap(&p->cmap);
|
|
iounmap(p->screen_base);
|
|
release_mem_region(pci_resource_start(dp, 0), pci_resource_len(dp, 0));
|
|
pci_set_drvdata(dp, NULL);
|
|
framebuffer_release(p);
|
|
}
|
|
|
|
static struct pci_device_id asiliantfb_pci_tbl[] __devinitdata = {
|
|
{ PCI_VENDOR_ID_CT, PCI_DEVICE_ID_CT_69000, PCI_ANY_ID, PCI_ANY_ID },
|
|
{ 0 }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, asiliantfb_pci_tbl);
|
|
|
|
static struct pci_driver asiliantfb_driver = {
|
|
.name = "asiliantfb",
|
|
.id_table = asiliantfb_pci_tbl,
|
|
.probe = asiliantfb_pci_init,
|
|
.remove = __devexit_p(asiliantfb_remove),
|
|
};
|
|
|
|
static int __init asiliantfb_init(void)
|
|
{
|
|
if (fb_get_options("asiliantfb", NULL))
|
|
return -ENODEV;
|
|
|
|
return pci_register_driver(&asiliantfb_driver);
|
|
}
|
|
|
|
module_init(asiliantfb_init);
|
|
|
|
static void __exit asiliantfb_exit(void)
|
|
{
|
|
pci_unregister_driver(&asiliantfb_driver);
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|