linux_dsm_epyc7002/drivers/mtd/nand/alauda.c
Márton Németh b3acd638a2 mtd: nand: make USB device id constant
The id_table field of the struct usb_device_id is constant in <linux/usb.h>
so it is worth to make alauda_table also constant.

The semantic match that finds this kind of pattern is as follows:
(http://coccinelle.lip6.fr/)

// <smpl>
@r@
disable decl_init,const_decl_init;
identifier I1, I2, x;
@@
	struct I1 {
	  ...
	  const struct I2 *x;
	  ...
	};
@s@
identifier r.I1, y;
identifier r.x, E;
@@
	struct I1 y = {
	  .x = E,
	};
@c@
identifier r.I2;
identifier s.E;
@@
	const struct I2 E[] = ... ;
@depends on !c@
identifier r.I2;
identifier s.E;
@@
+	const
	struct I2 E[] = ...;
// </smpl>

Signed-off-by: Márton Németh <nm127@freemail.hu>
Cc: Julia Lawall <julia@diku.dk>
Cc: cocci@diku.dk
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2010-02-25 11:26:31 +00:00

734 lines
16 KiB
C

/*
* MTD driver for Alauda chips
*
* Copyright (C) 2007 Joern Engel <joern@logfs.org>
*
* Based on drivers/usb/usb-skeleton.c which is:
* Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@kroah.com)
* and on drivers/usb/storage/alauda.c, which is:
* (c) 2005 Daniel Drake <dsd@gentoo.org>
*
* Idea and initial work by Arnd Bergmann <arnd@arndb.de>
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/kref.h>
#include <linux/usb.h>
#include <linux/mutex.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand_ecc.h>
/* Control commands */
#define ALAUDA_GET_XD_MEDIA_STATUS 0x08
#define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a
#define ALAUDA_GET_XD_MEDIA_SIG 0x86
/* Common prefix */
#define ALAUDA_BULK_CMD 0x40
/* The two ports */
#define ALAUDA_PORT_XD 0x00
#define ALAUDA_PORT_SM 0x01
/* Bulk commands */
#define ALAUDA_BULK_READ_PAGE 0x84
#define ALAUDA_BULK_READ_OOB 0x85 /* don't use, there's a chip bug */
#define ALAUDA_BULK_READ_BLOCK 0x94
#define ALAUDA_BULK_ERASE_BLOCK 0xa3
#define ALAUDA_BULK_WRITE_PAGE 0xa4
#define ALAUDA_BULK_WRITE_BLOCK 0xb4
#define ALAUDA_BULK_RESET_MEDIA 0xe0
/* Address shifting */
#define PBA_LO(pba) ((pba & 0xF) << 5)
#define PBA_HI(pba) (pba >> 3)
#define PBA_ZONE(pba) (pba >> 11)
#define TIMEOUT HZ
static const struct usb_device_id alauda_table[] = {
{ USB_DEVICE(0x0584, 0x0008) }, /* Fujifilm DPC-R1 */
{ USB_DEVICE(0x07b4, 0x010a) }, /* Olympus MAUSB-10 */
{ }
};
MODULE_DEVICE_TABLE(usb, alauda_table);
struct alauda_card {
u8 id; /* id byte */
u8 chipshift; /* 1<<chipshift total size */
u8 pageshift; /* 1<<pageshift page size */
u8 blockshift; /* 1<<blockshift block size */
};
struct alauda {
struct usb_device *dev;
struct usb_interface *interface;
struct mtd_info *mtd;
struct alauda_card *card;
struct mutex card_mutex;
u32 pagemask;
u32 bytemask;
u32 blockmask;
unsigned int write_out;
unsigned int bulk_in;
unsigned int bulk_out;
u8 port;
struct kref kref;
};
static struct alauda_card alauda_card_ids[] = {
/* NAND flash */
{ 0x6e, 20, 8, 12}, /* 1 MB */
{ 0xe8, 20, 8, 12}, /* 1 MB */
{ 0xec, 20, 8, 12}, /* 1 MB */
{ 0x64, 21, 8, 12}, /* 2 MB */
{ 0xea, 21, 8, 12}, /* 2 MB */
{ 0x6b, 22, 9, 13}, /* 4 MB */
{ 0xe3, 22, 9, 13}, /* 4 MB */
{ 0xe5, 22, 9, 13}, /* 4 MB */
{ 0xe6, 23, 9, 13}, /* 8 MB */
{ 0x73, 24, 9, 14}, /* 16 MB */
{ 0x75, 25, 9, 14}, /* 32 MB */
{ 0x76, 26, 9, 14}, /* 64 MB */
{ 0x79, 27, 9, 14}, /* 128 MB */
{ 0x71, 28, 9, 14}, /* 256 MB */
/* MASK ROM */
{ 0x5d, 21, 9, 13}, /* 2 MB */
{ 0xd5, 22, 9, 13}, /* 4 MB */
{ 0xd6, 23, 9, 13}, /* 8 MB */
{ 0x57, 24, 9, 13}, /* 16 MB */
{ 0x58, 25, 9, 13}, /* 32 MB */
{ }
};
static struct alauda_card *get_card(u8 id)
{
struct alauda_card *card;
for (card = alauda_card_ids; card->id; card++)
if (card->id == id)
return card;
return NULL;
}
static void alauda_delete(struct kref *kref)
{
struct alauda *al = container_of(kref, struct alauda, kref);
if (al->mtd) {
del_mtd_device(al->mtd);
kfree(al->mtd);
}
usb_put_dev(al->dev);
kfree(al);
}
static int alauda_get_media_status(struct alauda *al, void *buf)
{
int ret;
mutex_lock(&al->card_mutex);
ret = usb_control_msg(al->dev, usb_rcvctrlpipe(al->dev, 0),
ALAUDA_GET_XD_MEDIA_STATUS, 0xc0, 0, 1, buf, 2, HZ);
mutex_unlock(&al->card_mutex);
return ret;
}
static int alauda_ack_media(struct alauda *al)
{
int ret;
mutex_lock(&al->card_mutex);
ret = usb_control_msg(al->dev, usb_sndctrlpipe(al->dev, 0),
ALAUDA_ACK_XD_MEDIA_CHANGE, 0x40, 0, 1, NULL, 0, HZ);
mutex_unlock(&al->card_mutex);
return ret;
}
static int alauda_get_media_signatures(struct alauda *al, void *buf)
{
int ret;
mutex_lock(&al->card_mutex);
ret = usb_control_msg(al->dev, usb_rcvctrlpipe(al->dev, 0),
ALAUDA_GET_XD_MEDIA_SIG, 0xc0, 0, 0, buf, 4, HZ);
mutex_unlock(&al->card_mutex);
return ret;
}
static void alauda_reset(struct alauda *al)
{
u8 command[] = {
ALAUDA_BULK_CMD, ALAUDA_BULK_RESET_MEDIA, 0, 0,
0, 0, 0, 0, al->port
};
mutex_lock(&al->card_mutex);
usb_bulk_msg(al->dev, al->bulk_out, command, 9, NULL, HZ);
mutex_unlock(&al->card_mutex);
}
static void correct_data(void *buf, void *read_ecc,
int *corrected, int *uncorrected)
{
u8 calc_ecc[3];
int err;
nand_calculate_ecc(NULL, buf, calc_ecc);
err = nand_correct_data(NULL, buf, read_ecc, calc_ecc);
if (err) {
if (err > 0)
(*corrected)++;
else
(*uncorrected)++;
}
}
struct alauda_sg_request {
struct urb *urb[3];
struct completion comp;
};
static void alauda_complete(struct urb *urb)
{
struct completion *comp = urb->context;
if (comp)
complete(comp);
}
static int __alauda_read_page(struct mtd_info *mtd, loff_t from, void *buf,
void *oob)
{
struct alauda_sg_request sg;
struct alauda *al = mtd->priv;
u32 pba = from >> al->card->blockshift;
u32 page = (from >> al->card->pageshift) & al->pagemask;
u8 command[] = {
ALAUDA_BULK_CMD, ALAUDA_BULK_READ_PAGE, PBA_HI(pba),
PBA_ZONE(pba), 0, PBA_LO(pba) + page, 1, 0, al->port
};
int i, err;
for (i=0; i<3; i++)
sg.urb[i] = NULL;
err = -ENOMEM;
for (i=0; i<3; i++) {
sg.urb[i] = usb_alloc_urb(0, GFP_NOIO);
if (!sg.urb[i])
goto out;
}
init_completion(&sg.comp);
usb_fill_bulk_urb(sg.urb[0], al->dev, al->bulk_out, command, 9,
alauda_complete, NULL);
usb_fill_bulk_urb(sg.urb[1], al->dev, al->bulk_in, buf, mtd->writesize,
alauda_complete, NULL);
usb_fill_bulk_urb(sg.urb[2], al->dev, al->bulk_in, oob, 16,
alauda_complete, &sg.comp);
mutex_lock(&al->card_mutex);
for (i=0; i<3; i++) {
err = usb_submit_urb(sg.urb[i], GFP_NOIO);
if (err)
goto cancel;
}
if (!wait_for_completion_timeout(&sg.comp, TIMEOUT)) {
err = -ETIMEDOUT;
cancel:
for (i=0; i<3; i++) {
usb_kill_urb(sg.urb[i]);
}
}
mutex_unlock(&al->card_mutex);
out:
usb_free_urb(sg.urb[0]);
usb_free_urb(sg.urb[1]);
usb_free_urb(sg.urb[2]);
return err;
}
static int alauda_read_page(struct mtd_info *mtd, loff_t from,
void *buf, u8 *oob, int *corrected, int *uncorrected)
{
int err;
err = __alauda_read_page(mtd, from, buf, oob);
if (err)
return err;
correct_data(buf, oob+13, corrected, uncorrected);
correct_data(buf+256, oob+8, corrected, uncorrected);
return 0;
}
static int alauda_write_page(struct mtd_info *mtd, loff_t to, void *buf,
void *oob)
{
struct alauda_sg_request sg;
struct alauda *al = mtd->priv;
u32 pba = to >> al->card->blockshift;
u32 page = (to >> al->card->pageshift) & al->pagemask;
u8 command[] = {
ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_PAGE, PBA_HI(pba),
PBA_ZONE(pba), 0, PBA_LO(pba) + page, 32, 0, al->port
};
int i, err;
for (i=0; i<3; i++)
sg.urb[i] = NULL;
err = -ENOMEM;
for (i=0; i<3; i++) {
sg.urb[i] = usb_alloc_urb(0, GFP_NOIO);
if (!sg.urb[i])
goto out;
}
init_completion(&sg.comp);
usb_fill_bulk_urb(sg.urb[0], al->dev, al->bulk_out, command, 9,
alauda_complete, NULL);
usb_fill_bulk_urb(sg.urb[1], al->dev, al->write_out, buf,mtd->writesize,
alauda_complete, NULL);
usb_fill_bulk_urb(sg.urb[2], al->dev, al->write_out, oob, 16,
alauda_complete, &sg.comp);
mutex_lock(&al->card_mutex);
for (i=0; i<3; i++) {
err = usb_submit_urb(sg.urb[i], GFP_NOIO);
if (err)
goto cancel;
}
if (!wait_for_completion_timeout(&sg.comp, TIMEOUT)) {
err = -ETIMEDOUT;
cancel:
for (i=0; i<3; i++) {
usb_kill_urb(sg.urb[i]);
}
}
mutex_unlock(&al->card_mutex);
out:
usb_free_urb(sg.urb[0]);
usb_free_urb(sg.urb[1]);
usb_free_urb(sg.urb[2]);
return err;
}
static int alauda_erase_block(struct mtd_info *mtd, loff_t ofs)
{
struct alauda_sg_request sg;
struct alauda *al = mtd->priv;
u32 pba = ofs >> al->card->blockshift;
u8 command[] = {
ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, al->port
};
u8 buf[2];
int i, err;
for (i=0; i<2; i++)
sg.urb[i] = NULL;
err = -ENOMEM;
for (i=0; i<2; i++) {
sg.urb[i] = usb_alloc_urb(0, GFP_NOIO);
if (!sg.urb[i])
goto out;
}
init_completion(&sg.comp);
usb_fill_bulk_urb(sg.urb[0], al->dev, al->bulk_out, command, 9,
alauda_complete, NULL);
usb_fill_bulk_urb(sg.urb[1], al->dev, al->bulk_in, buf, 2,
alauda_complete, &sg.comp);
mutex_lock(&al->card_mutex);
for (i=0; i<2; i++) {
err = usb_submit_urb(sg.urb[i], GFP_NOIO);
if (err)
goto cancel;
}
if (!wait_for_completion_timeout(&sg.comp, TIMEOUT)) {
err = -ETIMEDOUT;
cancel:
for (i=0; i<2; i++) {
usb_kill_urb(sg.urb[i]);
}
}
mutex_unlock(&al->card_mutex);
out:
usb_free_urb(sg.urb[0]);
usb_free_urb(sg.urb[1]);
return err;
}
static int alauda_read_oob(struct mtd_info *mtd, loff_t from, void *oob)
{
static u8 ignore_buf[512]; /* write only */
return __alauda_read_page(mtd, from, ignore_buf, oob);
}
static int alauda_isbad(struct mtd_info *mtd, loff_t ofs)
{
u8 oob[16];
int err;
err = alauda_read_oob(mtd, ofs, oob);
if (err)
return err;
/* A block is marked bad if two or more bits are zero */
return hweight8(oob[5]) >= 7 ? 0 : 1;
}
static int alauda_bounce_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct alauda *al = mtd->priv;
void *bounce_buf;
int err, corrected=0, uncorrected=0;
bounce_buf = kmalloc(mtd->writesize, GFP_KERNEL);
if (!bounce_buf)
return -ENOMEM;
*retlen = len;
while (len) {
u8 oob[16];
size_t byte = from & al->bytemask;
size_t cplen = min(len, mtd->writesize - byte);
err = alauda_read_page(mtd, from, bounce_buf, oob,
&corrected, &uncorrected);
if (err)
goto out;
memcpy(buf, bounce_buf + byte, cplen);
buf += cplen;
from += cplen;
len -= cplen;
}
err = 0;
if (corrected)
err = -EUCLEAN;
if (uncorrected)
err = -EBADMSG;
out:
kfree(bounce_buf);
return err;
}
static int alauda_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct alauda *al = mtd->priv;
int err, corrected=0, uncorrected=0;
if ((from & al->bytemask) || (len & al->bytemask))
return alauda_bounce_read(mtd, from, len, retlen, buf);
*retlen = len;
while (len) {
u8 oob[16];
err = alauda_read_page(mtd, from, buf, oob,
&corrected, &uncorrected);
if (err)
return err;
buf += mtd->writesize;
from += mtd->writesize;
len -= mtd->writesize;
}
err = 0;
if (corrected)
err = -EUCLEAN;
if (uncorrected)
err = -EBADMSG;
return err;
}
static int alauda_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct alauda *al = mtd->priv;
int err;
if ((to & al->bytemask) || (len & al->bytemask))
return -EINVAL;
*retlen = len;
while (len) {
u32 page = (to >> al->card->pageshift) & al->pagemask;
u8 oob[16] = { 'h', 'e', 'l', 'l', 'o', 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
/* don't write to bad blocks */
if (page == 0) {
err = alauda_isbad(mtd, to);
if (err) {
return -EIO;
}
}
nand_calculate_ecc(mtd, buf, &oob[13]);
nand_calculate_ecc(mtd, buf+256, &oob[8]);
err = alauda_write_page(mtd, to, (void*)buf, oob);
if (err)
return err;
buf += mtd->writesize;
to += mtd->writesize;
len -= mtd->writesize;
}
return 0;
}
static int __alauda_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct alauda *al = mtd->priv;
u32 ofs = instr->addr;
u32 len = instr->len;
int err;
if ((ofs & al->blockmask) || (len & al->blockmask))
return -EINVAL;
while (len) {
/* don't erase bad blocks */
err = alauda_isbad(mtd, ofs);
if (err > 0)
err = -EIO;
if (err < 0)
return err;
err = alauda_erase_block(mtd, ofs);
if (err < 0)
return err;
ofs += mtd->erasesize;
len -= mtd->erasesize;
}
return 0;
}
static int alauda_erase(struct mtd_info *mtd, struct erase_info *instr)
{
int err;
err = __alauda_erase(mtd, instr);
instr->state = err ? MTD_ERASE_FAILED : MTD_ERASE_DONE;
mtd_erase_callback(instr);
return err;
}
static int alauda_init_media(struct alauda *al)
{
u8 buf[4], *b0=buf, *b1=buf+1;
struct alauda_card *card;
struct mtd_info *mtd;
int err;
mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
if (!mtd)
return -ENOMEM;
for (;;) {
err = alauda_get_media_status(al, buf);
if (err < 0)
goto error;
if (*b0 & 0x10)
break;
msleep(20);
}
err = alauda_ack_media(al);
if (err)
goto error;
msleep(10);
err = alauda_get_media_status(al, buf);
if (err < 0)
goto error;
if (*b0 != 0x14) {
/* media not ready */
err = -EIO;
goto error;
}
err = alauda_get_media_signatures(al, buf);
if (err < 0)
goto error;
card = get_card(*b1);
if (!card) {
printk(KERN_ERR"Alauda: unknown card id %02x\n", *b1);
err = -EIO;
goto error;
}
printk(KERN_INFO"pagesize=%x\nerasesize=%x\nsize=%xMiB\n",
1<<card->pageshift, 1<<card->blockshift,
1<<(card->chipshift-20));
al->card = card;
al->pagemask = (1 << (card->blockshift - card->pageshift)) - 1;
al->bytemask = (1 << card->pageshift) - 1;
al->blockmask = (1 << card->blockshift) - 1;
mtd->name = "alauda";
mtd->size = 1<<card->chipshift;
mtd->erasesize = 1<<card->blockshift;
mtd->writesize = 1<<card->pageshift;
mtd->type = MTD_NANDFLASH;
mtd->flags = MTD_CAP_NANDFLASH;
mtd->read = alauda_read;
mtd->write = alauda_write;
mtd->erase = alauda_erase;
mtd->block_isbad = alauda_isbad;
mtd->priv = al;
mtd->owner = THIS_MODULE;
err = add_mtd_device(mtd);
if (err) {
err = -ENFILE;
goto error;
}
al->mtd = mtd;
alauda_reset(al); /* no clue whether this is necessary */
return 0;
error:
kfree(mtd);
return err;
}
static int alauda_check_media(struct alauda *al)
{
u8 buf[2], *b0 = buf, *b1 = buf+1;
int err;
err = alauda_get_media_status(al, buf);
if (err < 0)
return err;
if ((*b1 & 0x01) == 0) {
/* door open */
return -EIO;
}
if ((*b0 & 0x80) || ((*b0 & 0x1F) == 0x10)) {
/* no media ? */
return -EIO;
}
if (*b0 & 0x08) {
/* media change ? */
return alauda_init_media(al);
}
return 0;
}
static int alauda_probe(struct usb_interface *interface,
const struct usb_device_id *id)
{
struct alauda *al;
struct usb_host_interface *iface;
struct usb_endpoint_descriptor *ep,
*ep_in=NULL, *ep_out=NULL, *ep_wr=NULL;
int i, err = -ENOMEM;
al = kzalloc(2*sizeof(*al), GFP_KERNEL);
if (!al)
goto error;
kref_init(&al->kref);
usb_set_intfdata(interface, al);
al->dev = usb_get_dev(interface_to_usbdev(interface));
al->interface = interface;
iface = interface->cur_altsetting;
for (i = 0; i < iface->desc.bNumEndpoints; ++i) {
ep = &iface->endpoint[i].desc;
if (usb_endpoint_is_bulk_in(ep)) {
ep_in = ep;
} else if (usb_endpoint_is_bulk_out(ep)) {
if (i==0)
ep_wr = ep;
else
ep_out = ep;
}
}
err = -EIO;
if (!ep_wr || !ep_in || !ep_out)
goto error;
al->write_out = usb_sndbulkpipe(al->dev,
usb_endpoint_num(ep_wr));
al->bulk_in = usb_rcvbulkpipe(al->dev,
usb_endpoint_num(ep_in));
al->bulk_out = usb_sndbulkpipe(al->dev,
usb_endpoint_num(ep_out));
/* second device is identical up to now */
memcpy(al+1, al, sizeof(*al));
mutex_init(&al[0].card_mutex);
mutex_init(&al[1].card_mutex);
al[0].port = ALAUDA_PORT_XD;
al[1].port = ALAUDA_PORT_SM;
dev_info(&interface->dev, "alauda probed\n");
alauda_check_media(al);
alauda_check_media(al+1);
return 0;
error:
if (al)
kref_put(&al->kref, alauda_delete);
return err;
}
static void alauda_disconnect(struct usb_interface *interface)
{
struct alauda *al;
al = usb_get_intfdata(interface);
usb_set_intfdata(interface, NULL);
/* FIXME: prevent more I/O from starting */
/* decrement our usage count */
if (al)
kref_put(&al->kref, alauda_delete);
dev_info(&interface->dev, "alauda gone");
}
static struct usb_driver alauda_driver = {
.name = "alauda",
.probe = alauda_probe,
.disconnect = alauda_disconnect,
.id_table = alauda_table,
};
static int __init alauda_init(void)
{
return usb_register(&alauda_driver);
}
static void __exit alauda_exit(void)
{
usb_deregister(&alauda_driver);
}
module_init(alauda_init);
module_exit(alauda_exit);
MODULE_LICENSE("GPL");