linux_dsm_epyc7002/fs/nfs/inode.c
Alexey Dobriyan 51cc50685a SL*B: drop kmem cache argument from constructor
Kmem cache passed to constructor is only needed for constructors that are
themselves multiplexeres.  Nobody uses this "feature", nor does anybody uses
passed kmem cache in non-trivial way, so pass only pointer to object.

Non-trivial places are:
	arch/powerpc/mm/init_64.c
	arch/powerpc/mm/hugetlbpage.c

This is flag day, yes.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Matt Mackall <mpm@selenic.com>
[akpm@linux-foundation.org: fix arch/powerpc/mm/hugetlbpage.c]
[akpm@linux-foundation.org: fix mm/slab.c]
[akpm@linux-foundation.org: fix ubifs]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-26 12:00:07 -07:00

1394 lines
37 KiB
C

/*
* linux/fs/nfs/inode.c
*
* Copyright (C) 1992 Rick Sladkey
*
* nfs inode and superblock handling functions
*
* Modularised by Alan Cox <Alan.Cox@linux.org>, while hacking some
* experimental NFS changes. Modularisation taken straight from SYS5 fs.
*
* Change to nfs_read_super() to permit NFS mounts to multi-homed hosts.
* J.S.Peatfield@damtp.cam.ac.uk
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/time.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/stat.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/sunrpc/clnt.h>
#include <linux/sunrpc/stats.h>
#include <linux/sunrpc/metrics.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_mount.h>
#include <linux/nfs4_mount.h>
#include <linux/lockd/bind.h>
#include <linux/smp_lock.h>
#include <linux/seq_file.h>
#include <linux/mount.h>
#include <linux/nfs_idmap.h>
#include <linux/vfs.h>
#include <linux/inet.h>
#include <linux/nfs_xdr.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include "nfs4_fs.h"
#include "callback.h"
#include "delegation.h"
#include "iostat.h"
#include "internal.h"
#define NFSDBG_FACILITY NFSDBG_VFS
#define NFS_64_BIT_INODE_NUMBERS_ENABLED 1
/* Default is to see 64-bit inode numbers */
static int enable_ino64 = NFS_64_BIT_INODE_NUMBERS_ENABLED;
static void nfs_invalidate_inode(struct inode *);
static int nfs_update_inode(struct inode *, struct nfs_fattr *);
static struct kmem_cache * nfs_inode_cachep;
static inline unsigned long
nfs_fattr_to_ino_t(struct nfs_fattr *fattr)
{
return nfs_fileid_to_ino_t(fattr->fileid);
}
/**
* nfs_compat_user_ino64 - returns the user-visible inode number
* @fileid: 64-bit fileid
*
* This function returns a 32-bit inode number if the boot parameter
* nfs.enable_ino64 is zero.
*/
u64 nfs_compat_user_ino64(u64 fileid)
{
int ino;
if (enable_ino64)
return fileid;
ino = fileid;
if (sizeof(ino) < sizeof(fileid))
ino ^= fileid >> (sizeof(fileid)-sizeof(ino)) * 8;
return ino;
}
int nfs_write_inode(struct inode *inode, int sync)
{
int ret;
if (sync) {
ret = filemap_fdatawait(inode->i_mapping);
if (ret == 0)
ret = nfs_commit_inode(inode, FLUSH_SYNC);
} else
ret = nfs_commit_inode(inode, 0);
if (ret >= 0)
return 0;
__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
return ret;
}
void nfs_clear_inode(struct inode *inode)
{
/*
* The following should never happen...
*/
BUG_ON(nfs_have_writebacks(inode));
BUG_ON(!list_empty(&NFS_I(inode)->open_files));
nfs_zap_acl_cache(inode);
nfs_access_zap_cache(inode);
}
/**
* nfs_sync_mapping - helper to flush all mmapped dirty data to disk
*/
int nfs_sync_mapping(struct address_space *mapping)
{
int ret;
if (mapping->nrpages == 0)
return 0;
unmap_mapping_range(mapping, 0, 0, 0);
ret = filemap_write_and_wait(mapping);
if (ret != 0)
goto out;
ret = nfs_wb_all(mapping->host);
out:
return ret;
}
/*
* Invalidate the local caches
*/
static void nfs_zap_caches_locked(struct inode *inode)
{
struct nfs_inode *nfsi = NFS_I(inode);
int mode = inode->i_mode;
nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE);
nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
nfsi->attrtimeo_timestamp = jiffies;
memset(NFS_COOKIEVERF(inode), 0, sizeof(NFS_COOKIEVERF(inode)));
if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))
nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL|NFS_INO_REVAL_PAGECACHE;
else
nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL|NFS_INO_REVAL_PAGECACHE;
}
void nfs_zap_caches(struct inode *inode)
{
spin_lock(&inode->i_lock);
nfs_zap_caches_locked(inode);
spin_unlock(&inode->i_lock);
}
void nfs_zap_mapping(struct inode *inode, struct address_space *mapping)
{
if (mapping->nrpages != 0) {
spin_lock(&inode->i_lock);
NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
spin_unlock(&inode->i_lock);
}
}
void nfs_zap_acl_cache(struct inode *inode)
{
void (*clear_acl_cache)(struct inode *);
clear_acl_cache = NFS_PROTO(inode)->clear_acl_cache;
if (clear_acl_cache != NULL)
clear_acl_cache(inode);
spin_lock(&inode->i_lock);
NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_ACL;
spin_unlock(&inode->i_lock);
}
void nfs_invalidate_atime(struct inode *inode)
{
spin_lock(&inode->i_lock);
NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
spin_unlock(&inode->i_lock);
}
/*
* Invalidate, but do not unhash, the inode.
* NB: must be called with inode->i_lock held!
*/
static void nfs_invalidate_inode(struct inode *inode)
{
set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
nfs_zap_caches_locked(inode);
}
struct nfs_find_desc {
struct nfs_fh *fh;
struct nfs_fattr *fattr;
};
/*
* In NFSv3 we can have 64bit inode numbers. In order to support
* this, and re-exported directories (also seen in NFSv2)
* we are forced to allow 2 different inodes to have the same
* i_ino.
*/
static int
nfs_find_actor(struct inode *inode, void *opaque)
{
struct nfs_find_desc *desc = (struct nfs_find_desc *)opaque;
struct nfs_fh *fh = desc->fh;
struct nfs_fattr *fattr = desc->fattr;
if (NFS_FILEID(inode) != fattr->fileid)
return 0;
if (nfs_compare_fh(NFS_FH(inode), fh))
return 0;
if (is_bad_inode(inode) || NFS_STALE(inode))
return 0;
return 1;
}
static int
nfs_init_locked(struct inode *inode, void *opaque)
{
struct nfs_find_desc *desc = (struct nfs_find_desc *)opaque;
struct nfs_fattr *fattr = desc->fattr;
set_nfs_fileid(inode, fattr->fileid);
nfs_copy_fh(NFS_FH(inode), desc->fh);
return 0;
}
/* Don't use READDIRPLUS on directories that we believe are too large */
#define NFS_LIMIT_READDIRPLUS (8*PAGE_SIZE)
/*
* This is our front-end to iget that looks up inodes by file handle
* instead of inode number.
*/
struct inode *
nfs_fhget(struct super_block *sb, struct nfs_fh *fh, struct nfs_fattr *fattr)
{
struct nfs_find_desc desc = {
.fh = fh,
.fattr = fattr
};
struct inode *inode = ERR_PTR(-ENOENT);
unsigned long hash;
if ((fattr->valid & NFS_ATTR_FATTR) == 0)
goto out_no_inode;
if (!fattr->nlink) {
printk("NFS: Buggy server - nlink == 0!\n");
goto out_no_inode;
}
hash = nfs_fattr_to_ino_t(fattr);
inode = iget5_locked(sb, hash, nfs_find_actor, nfs_init_locked, &desc);
if (inode == NULL) {
inode = ERR_PTR(-ENOMEM);
goto out_no_inode;
}
if (inode->i_state & I_NEW) {
struct nfs_inode *nfsi = NFS_I(inode);
unsigned long now = jiffies;
/* We set i_ino for the few things that still rely on it,
* such as stat(2) */
inode->i_ino = hash;
/* We can't support update_atime(), since the server will reset it */
inode->i_flags |= S_NOATIME|S_NOCMTIME;
inode->i_mode = fattr->mode;
/* Why so? Because we want revalidate for devices/FIFOs, and
* that's precisely what we have in nfs_file_inode_operations.
*/
inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->file_inode_ops;
if (S_ISREG(inode->i_mode)) {
inode->i_fop = &nfs_file_operations;
inode->i_data.a_ops = &nfs_file_aops;
inode->i_data.backing_dev_info = &NFS_SB(sb)->backing_dev_info;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = NFS_SB(sb)->nfs_client->rpc_ops->dir_inode_ops;
inode->i_fop = &nfs_dir_operations;
if (nfs_server_capable(inode, NFS_CAP_READDIRPLUS)
&& fattr->size <= NFS_LIMIT_READDIRPLUS)
set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
/* Deal with crossing mountpoints */
if (!nfs_fsid_equal(&NFS_SB(sb)->fsid, &fattr->fsid)) {
if (fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL)
inode->i_op = &nfs_referral_inode_operations;
else
inode->i_op = &nfs_mountpoint_inode_operations;
inode->i_fop = NULL;
set_bit(NFS_INO_MOUNTPOINT, &nfsi->flags);
}
} else if (S_ISLNK(inode->i_mode))
inode->i_op = &nfs_symlink_inode_operations;
else
init_special_inode(inode, inode->i_mode, fattr->rdev);
nfsi->read_cache_jiffies = fattr->time_start;
nfsi->last_updated = now;
nfsi->cache_change_attribute = now;
inode->i_atime = fattr->atime;
inode->i_mtime = fattr->mtime;
inode->i_ctime = fattr->ctime;
if (fattr->valid & NFS_ATTR_FATTR_V4)
nfsi->change_attr = fattr->change_attr;
inode->i_size = nfs_size_to_loff_t(fattr->size);
inode->i_nlink = fattr->nlink;
inode->i_uid = fattr->uid;
inode->i_gid = fattr->gid;
if (fattr->valid & (NFS_ATTR_FATTR_V3 | NFS_ATTR_FATTR_V4)) {
/*
* report the blocks in 512byte units
*/
inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used);
} else {
inode->i_blocks = fattr->du.nfs2.blocks;
}
nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
nfsi->attrtimeo_timestamp = now;
memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf));
nfsi->access_cache = RB_ROOT;
unlock_new_inode(inode);
} else
nfs_refresh_inode(inode, fattr);
dprintk("NFS: nfs_fhget(%s/%Ld ct=%d)\n",
inode->i_sb->s_id,
(long long)NFS_FILEID(inode),
atomic_read(&inode->i_count));
out:
return inode;
out_no_inode:
dprintk("nfs_fhget: iget failed with error %ld\n", PTR_ERR(inode));
goto out;
}
#define NFS_VALID_ATTRS (ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_SIZE|ATTR_ATIME|ATTR_ATIME_SET|ATTR_MTIME|ATTR_MTIME_SET|ATTR_FILE)
int
nfs_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = dentry->d_inode;
struct nfs_fattr fattr;
int error;
nfs_inc_stats(inode, NFSIOS_VFSSETATTR);
/* skip mode change if it's just for clearing setuid/setgid */
if (attr->ia_valid & (ATTR_KILL_SUID | ATTR_KILL_SGID))
attr->ia_valid &= ~ATTR_MODE;
if (attr->ia_valid & ATTR_SIZE) {
if (!S_ISREG(inode->i_mode) || attr->ia_size == i_size_read(inode))
attr->ia_valid &= ~ATTR_SIZE;
}
/* Optimization: if the end result is no change, don't RPC */
attr->ia_valid &= NFS_VALID_ATTRS;
if ((attr->ia_valid & ~ATTR_FILE) == 0)
return 0;
/* Write all dirty data */
if (S_ISREG(inode->i_mode)) {
filemap_write_and_wait(inode->i_mapping);
nfs_wb_all(inode);
}
/*
* Return any delegations if we're going to change ACLs
*/
if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0)
nfs_inode_return_delegation(inode);
error = NFS_PROTO(inode)->setattr(dentry, &fattr, attr);
if (error == 0)
nfs_refresh_inode(inode, &fattr);
return error;
}
/**
* nfs_vmtruncate - unmap mappings "freed" by truncate() syscall
* @inode: inode of the file used
* @offset: file offset to start truncating
*
* This is a copy of the common vmtruncate, but with the locking
* corrected to take into account the fact that NFS requires
* inode->i_size to be updated under the inode->i_lock.
*/
static int nfs_vmtruncate(struct inode * inode, loff_t offset)
{
if (i_size_read(inode) < offset) {
unsigned long limit;
limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
if (limit != RLIM_INFINITY && offset > limit)
goto out_sig;
if (offset > inode->i_sb->s_maxbytes)
goto out_big;
spin_lock(&inode->i_lock);
i_size_write(inode, offset);
spin_unlock(&inode->i_lock);
} else {
struct address_space *mapping = inode->i_mapping;
/*
* truncation of in-use swapfiles is disallowed - it would
* cause subsequent swapout to scribble on the now-freed
* blocks.
*/
if (IS_SWAPFILE(inode))
return -ETXTBSY;
spin_lock(&inode->i_lock);
i_size_write(inode, offset);
spin_unlock(&inode->i_lock);
/*
* unmap_mapping_range is called twice, first simply for
* efficiency so that truncate_inode_pages does fewer
* single-page unmaps. However after this first call, and
* before truncate_inode_pages finishes, it is possible for
* private pages to be COWed, which remain after
* truncate_inode_pages finishes, hence the second
* unmap_mapping_range call must be made for correctness.
*/
unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
truncate_inode_pages(mapping, offset);
unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
}
return 0;
out_sig:
send_sig(SIGXFSZ, current, 0);
out_big:
return -EFBIG;
}
/**
* nfs_setattr_update_inode - Update inode metadata after a setattr call.
* @inode: pointer to struct inode
* @attr: pointer to struct iattr
*
* Note: we do this in the *proc.c in order to ensure that
* it works for things like exclusive creates too.
*/
void nfs_setattr_update_inode(struct inode *inode, struct iattr *attr)
{
if ((attr->ia_valid & (ATTR_MODE|ATTR_UID|ATTR_GID)) != 0) {
if ((attr->ia_valid & ATTR_MODE) != 0) {
int mode = attr->ia_mode & S_IALLUGO;
mode |= inode->i_mode & ~S_IALLUGO;
inode->i_mode = mode;
}
if ((attr->ia_valid & ATTR_UID) != 0)
inode->i_uid = attr->ia_uid;
if ((attr->ia_valid & ATTR_GID) != 0)
inode->i_gid = attr->ia_gid;
spin_lock(&inode->i_lock);
NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
spin_unlock(&inode->i_lock);
}
if ((attr->ia_valid & ATTR_SIZE) != 0) {
nfs_inc_stats(inode, NFSIOS_SETATTRTRUNC);
nfs_vmtruncate(inode, attr->ia_size);
}
}
static int nfs_wait_schedule(void *word)
{
if (signal_pending(current))
return -ERESTARTSYS;
schedule();
return 0;
}
/*
* Wait for the inode to get unlocked.
*/
static int nfs_wait_on_inode(struct inode *inode)
{
struct nfs_inode *nfsi = NFS_I(inode);
int error;
error = wait_on_bit_lock(&nfsi->flags, NFS_INO_REVALIDATING,
nfs_wait_schedule, TASK_KILLABLE);
return error;
}
static void nfs_wake_up_inode(struct inode *inode)
{
struct nfs_inode *nfsi = NFS_I(inode);
clear_bit(NFS_INO_REVALIDATING, &nfsi->flags);
smp_mb__after_clear_bit();
wake_up_bit(&nfsi->flags, NFS_INO_REVALIDATING);
}
int nfs_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
{
struct inode *inode = dentry->d_inode;
int need_atime = NFS_I(inode)->cache_validity & NFS_INO_INVALID_ATIME;
int err;
/*
* Flush out writes to the server in order to update c/mtime.
*
* Hold the i_mutex to suspend application writes temporarily;
* this prevents long-running writing applications from blocking
* nfs_wb_nocommit.
*/
if (S_ISREG(inode->i_mode)) {
mutex_lock(&inode->i_mutex);
nfs_wb_nocommit(inode);
mutex_unlock(&inode->i_mutex);
}
/*
* We may force a getattr if the user cares about atime.
*
* Note that we only have to check the vfsmount flags here:
* - NFS always sets S_NOATIME by so checking it would give a
* bogus result
* - NFS never sets MS_NOATIME or MS_NODIRATIME so there is
* no point in checking those.
*/
if ((mnt->mnt_flags & MNT_NOATIME) ||
((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
need_atime = 0;
if (need_atime)
err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
else
err = nfs_revalidate_inode(NFS_SERVER(inode), inode);
if (!err) {
generic_fillattr(inode, stat);
stat->ino = nfs_compat_user_ino64(NFS_FILEID(inode));
}
return err;
}
static struct nfs_open_context *alloc_nfs_open_context(struct vfsmount *mnt, struct dentry *dentry, struct rpc_cred *cred)
{
struct nfs_open_context *ctx;
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
if (ctx != NULL) {
ctx->path.dentry = dget(dentry);
ctx->path.mnt = mntget(mnt);
ctx->cred = get_rpccred(cred);
ctx->state = NULL;
ctx->lockowner = current->files;
ctx->flags = 0;
ctx->error = 0;
ctx->dir_cookie = 0;
atomic_set(&ctx->count, 1);
}
return ctx;
}
struct nfs_open_context *get_nfs_open_context(struct nfs_open_context *ctx)
{
if (ctx != NULL)
atomic_inc(&ctx->count);
return ctx;
}
static void __put_nfs_open_context(struct nfs_open_context *ctx, int wait)
{
struct inode *inode;
if (ctx == NULL)
return;
inode = ctx->path.dentry->d_inode;
if (!atomic_dec_and_lock(&ctx->count, &inode->i_lock))
return;
list_del(&ctx->list);
spin_unlock(&inode->i_lock);
if (ctx->state != NULL) {
if (wait)
nfs4_close_sync(&ctx->path, ctx->state, ctx->mode);
else
nfs4_close_state(&ctx->path, ctx->state, ctx->mode);
}
if (ctx->cred != NULL)
put_rpccred(ctx->cred);
path_put(&ctx->path);
kfree(ctx);
}
void put_nfs_open_context(struct nfs_open_context *ctx)
{
__put_nfs_open_context(ctx, 0);
}
static void put_nfs_open_context_sync(struct nfs_open_context *ctx)
{
__put_nfs_open_context(ctx, 1);
}
/*
* Ensure that mmap has a recent RPC credential for use when writing out
* shared pages
*/
static void nfs_file_set_open_context(struct file *filp, struct nfs_open_context *ctx)
{
struct inode *inode = filp->f_path.dentry->d_inode;
struct nfs_inode *nfsi = NFS_I(inode);
filp->private_data = get_nfs_open_context(ctx);
spin_lock(&inode->i_lock);
list_add(&ctx->list, &nfsi->open_files);
spin_unlock(&inode->i_lock);
}
/*
* Given an inode, search for an open context with the desired characteristics
*/
struct nfs_open_context *nfs_find_open_context(struct inode *inode, struct rpc_cred *cred, int mode)
{
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs_open_context *pos, *ctx = NULL;
spin_lock(&inode->i_lock);
list_for_each_entry(pos, &nfsi->open_files, list) {
if (cred != NULL && pos->cred != cred)
continue;
if ((pos->mode & mode) == mode) {
ctx = get_nfs_open_context(pos);
break;
}
}
spin_unlock(&inode->i_lock);
return ctx;
}
static void nfs_file_clear_open_context(struct file *filp)
{
struct inode *inode = filp->f_path.dentry->d_inode;
struct nfs_open_context *ctx = nfs_file_open_context(filp);
if (ctx) {
filp->private_data = NULL;
spin_lock(&inode->i_lock);
list_move_tail(&ctx->list, &NFS_I(inode)->open_files);
spin_unlock(&inode->i_lock);
put_nfs_open_context_sync(ctx);
}
}
/*
* These allocate and release file read/write context information.
*/
int nfs_open(struct inode *inode, struct file *filp)
{
struct nfs_open_context *ctx;
struct rpc_cred *cred;
cred = rpc_lookup_cred();
if (IS_ERR(cred))
return PTR_ERR(cred);
ctx = alloc_nfs_open_context(filp->f_path.mnt, filp->f_path.dentry, cred);
put_rpccred(cred);
if (ctx == NULL)
return -ENOMEM;
ctx->mode = filp->f_mode;
nfs_file_set_open_context(filp, ctx);
put_nfs_open_context(ctx);
return 0;
}
int nfs_release(struct inode *inode, struct file *filp)
{
nfs_file_clear_open_context(filp);
return 0;
}
/*
* This function is called whenever some part of NFS notices that
* the cached attributes have to be refreshed.
*/
int
__nfs_revalidate_inode(struct nfs_server *server, struct inode *inode)
{
int status = -ESTALE;
struct nfs_fattr fattr;
struct nfs_inode *nfsi = NFS_I(inode);
dfprintk(PAGECACHE, "NFS: revalidating (%s/%Ld)\n",
inode->i_sb->s_id, (long long)NFS_FILEID(inode));
nfs_inc_stats(inode, NFSIOS_INODEREVALIDATE);
if (is_bad_inode(inode))
goto out_nowait;
if (NFS_STALE(inode))
goto out_nowait;
status = nfs_wait_on_inode(inode);
if (status < 0)
goto out;
status = -ESTALE;
if (NFS_STALE(inode))
goto out;
status = NFS_PROTO(inode)->getattr(server, NFS_FH(inode), &fattr);
if (status != 0) {
dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Ld) getattr failed, error=%d\n",
inode->i_sb->s_id,
(long long)NFS_FILEID(inode), status);
if (status == -ESTALE) {
nfs_zap_caches(inode);
if (!S_ISDIR(inode->i_mode))
set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
}
goto out;
}
spin_lock(&inode->i_lock);
status = nfs_update_inode(inode, &fattr);
if (status) {
spin_unlock(&inode->i_lock);
dfprintk(PAGECACHE, "nfs_revalidate_inode: (%s/%Ld) refresh failed, error=%d\n",
inode->i_sb->s_id,
(long long)NFS_FILEID(inode), status);
goto out;
}
spin_unlock(&inode->i_lock);
if (nfsi->cache_validity & NFS_INO_INVALID_ACL)
nfs_zap_acl_cache(inode);
dfprintk(PAGECACHE, "NFS: (%s/%Ld) revalidation complete\n",
inode->i_sb->s_id,
(long long)NFS_FILEID(inode));
out:
nfs_wake_up_inode(inode);
out_nowait:
return status;
}
int nfs_attribute_timeout(struct inode *inode)
{
struct nfs_inode *nfsi = NFS_I(inode);
if (nfs_have_delegation(inode, FMODE_READ))
return 0;
/*
* Special case: if the attribute timeout is set to 0, then always
* treat the cache as having expired (unless holding
* a delegation).
*/
if (nfsi->attrtimeo == 0)
return 1;
return !time_in_range(jiffies, nfsi->read_cache_jiffies, nfsi->read_cache_jiffies + nfsi->attrtimeo);
}
/**
* nfs_revalidate_inode - Revalidate the inode attributes
* @server - pointer to nfs_server struct
* @inode - pointer to inode struct
*
* Updates inode attribute information by retrieving the data from the server.
*/
int nfs_revalidate_inode(struct nfs_server *server, struct inode *inode)
{
if (!(NFS_I(inode)->cache_validity & NFS_INO_INVALID_ATTR)
&& !nfs_attribute_timeout(inode))
return NFS_STALE(inode) ? -ESTALE : 0;
return __nfs_revalidate_inode(server, inode);
}
static int nfs_invalidate_mapping_nolock(struct inode *inode, struct address_space *mapping)
{
struct nfs_inode *nfsi = NFS_I(inode);
if (mapping->nrpages != 0) {
int ret = invalidate_inode_pages2(mapping);
if (ret < 0)
return ret;
}
spin_lock(&inode->i_lock);
nfsi->cache_validity &= ~NFS_INO_INVALID_DATA;
if (S_ISDIR(inode->i_mode))
memset(nfsi->cookieverf, 0, sizeof(nfsi->cookieverf));
spin_unlock(&inode->i_lock);
nfs_inc_stats(inode, NFSIOS_DATAINVALIDATE);
dfprintk(PAGECACHE, "NFS: (%s/%Ld) data cache invalidated\n",
inode->i_sb->s_id, (long long)NFS_FILEID(inode));
return 0;
}
static int nfs_invalidate_mapping(struct inode *inode, struct address_space *mapping)
{
int ret = 0;
mutex_lock(&inode->i_mutex);
if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_DATA) {
ret = nfs_sync_mapping(mapping);
if (ret == 0)
ret = nfs_invalidate_mapping_nolock(inode, mapping);
}
mutex_unlock(&inode->i_mutex);
return ret;
}
/**
* nfs_revalidate_mapping_nolock - Revalidate the pagecache
* @inode - pointer to host inode
* @mapping - pointer to mapping
*/
int nfs_revalidate_mapping_nolock(struct inode *inode, struct address_space *mapping)
{
struct nfs_inode *nfsi = NFS_I(inode);
int ret = 0;
if ((nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
|| nfs_attribute_timeout(inode) || NFS_STALE(inode)) {
ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
if (ret < 0)
goto out;
}
if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
ret = nfs_invalidate_mapping_nolock(inode, mapping);
out:
return ret;
}
/**
* nfs_revalidate_mapping - Revalidate the pagecache
* @inode - pointer to host inode
* @mapping - pointer to mapping
*
* This version of the function will take the inode->i_mutex and attempt to
* flush out all dirty data if it needs to invalidate the page cache.
*/
int nfs_revalidate_mapping(struct inode *inode, struct address_space *mapping)
{
struct nfs_inode *nfsi = NFS_I(inode);
int ret = 0;
if ((nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
|| nfs_attribute_timeout(inode) || NFS_STALE(inode)) {
ret = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
if (ret < 0)
goto out;
}
if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
ret = nfs_invalidate_mapping(inode, mapping);
out:
return ret;
}
static void nfs_wcc_update_inode(struct inode *inode, struct nfs_fattr *fattr)
{
struct nfs_inode *nfsi = NFS_I(inode);
if ((fattr->valid & NFS_ATTR_WCC_V4) != 0 &&
nfsi->change_attr == fattr->pre_change_attr) {
nfsi->change_attr = fattr->change_attr;
if (S_ISDIR(inode->i_mode))
nfsi->cache_validity |= NFS_INO_INVALID_DATA;
}
/* If we have atomic WCC data, we may update some attributes */
if ((fattr->valid & NFS_ATTR_WCC) != 0) {
if (timespec_equal(&inode->i_ctime, &fattr->pre_ctime))
memcpy(&inode->i_ctime, &fattr->ctime, sizeof(inode->i_ctime));
if (timespec_equal(&inode->i_mtime, &fattr->pre_mtime)) {
memcpy(&inode->i_mtime, &fattr->mtime, sizeof(inode->i_mtime));
if (S_ISDIR(inode->i_mode))
nfsi->cache_validity |= NFS_INO_INVALID_DATA;
}
if (i_size_read(inode) == nfs_size_to_loff_t(fattr->pre_size) &&
nfsi->npages == 0)
i_size_write(inode, nfs_size_to_loff_t(fattr->size));
}
}
/**
* nfs_check_inode_attributes - verify consistency of the inode attribute cache
* @inode - pointer to inode
* @fattr - updated attributes
*
* Verifies the attribute cache. If we have just changed the attributes,
* so that fattr carries weak cache consistency data, then it may
* also update the ctime/mtime/change_attribute.
*/
static int nfs_check_inode_attributes(struct inode *inode, struct nfs_fattr *fattr)
{
struct nfs_inode *nfsi = NFS_I(inode);
loff_t cur_size, new_isize;
unsigned long invalid = 0;
/* Has the inode gone and changed behind our back? */
if (nfsi->fileid != fattr->fileid
|| (inode->i_mode & S_IFMT) != (fattr->mode & S_IFMT)) {
return -EIO;
}
/* Do atomic weak cache consistency updates */
nfs_wcc_update_inode(inode, fattr);
if ((fattr->valid & NFS_ATTR_FATTR_V4) != 0 &&
nfsi->change_attr != fattr->change_attr)
invalid |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE;
/* Verify a few of the more important attributes */
if (!timespec_equal(&inode->i_mtime, &fattr->mtime))
invalid |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE;
cur_size = i_size_read(inode);
new_isize = nfs_size_to_loff_t(fattr->size);
if (cur_size != new_isize && nfsi->npages == 0)
invalid |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE;
/* Have any file permissions changed? */
if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO)
|| inode->i_uid != fattr->uid
|| inode->i_gid != fattr->gid)
invalid |= NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ACCESS | NFS_INO_INVALID_ACL;
/* Has the link count changed? */
if (inode->i_nlink != fattr->nlink)
invalid |= NFS_INO_INVALID_ATTR;
if (!timespec_equal(&inode->i_atime, &fattr->atime))
invalid |= NFS_INO_INVALID_ATIME;
if (invalid != 0)
nfsi->cache_validity |= invalid;
else
nfsi->cache_validity &= ~(NFS_INO_INVALID_ATTR
| NFS_INO_INVALID_ATIME
| NFS_INO_REVAL_PAGECACHE);
nfsi->read_cache_jiffies = fattr->time_start;
return 0;
}
/**
* nfs_refresh_inode - try to update the inode attribute cache
* @inode - pointer to inode
* @fattr - updated attributes
*
* Check that an RPC call that returned attributes has not overlapped with
* other recent updates of the inode metadata, then decide whether it is
* safe to do a full update of the inode attributes, or whether just to
* call nfs_check_inode_attributes.
*/
int nfs_refresh_inode(struct inode *inode, struct nfs_fattr *fattr)
{
struct nfs_inode *nfsi = NFS_I(inode);
int status;
if ((fattr->valid & NFS_ATTR_FATTR) == 0)
return 0;
spin_lock(&inode->i_lock);
if (time_after(fattr->time_start, nfsi->last_updated))
status = nfs_update_inode(inode, fattr);
else
status = nfs_check_inode_attributes(inode, fattr);
spin_unlock(&inode->i_lock);
return status;
}
/**
* nfs_post_op_update_inode - try to update the inode attribute cache
* @inode - pointer to inode
* @fattr - updated attributes
*
* After an operation that has changed the inode metadata, mark the
* attribute cache as being invalid, then try to update it.
*
* NB: if the server didn't return any post op attributes, this
* function will force the retrieval of attributes before the next
* NFS request. Thus it should be used only for operations that
* are expected to change one or more attributes, to avoid
* unnecessary NFS requests and trips through nfs_update_inode().
*/
int nfs_post_op_update_inode(struct inode *inode, struct nfs_fattr *fattr)
{
struct nfs_inode *nfsi = NFS_I(inode);
spin_lock(&inode->i_lock);
nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE;
if (S_ISDIR(inode->i_mode))
nfsi->cache_validity |= NFS_INO_INVALID_DATA;
spin_unlock(&inode->i_lock);
return nfs_refresh_inode(inode, fattr);
}
/**
* nfs_post_op_update_inode_force_wcc - try to update the inode attribute cache
* @inode - pointer to inode
* @fattr - updated attributes
*
* After an operation that has changed the inode metadata, mark the
* attribute cache as being invalid, then try to update it. Fake up
* weak cache consistency data, if none exist.
*
* This function is mainly designed to be used by the ->write_done() functions.
*/
int nfs_post_op_update_inode_force_wcc(struct inode *inode, struct nfs_fattr *fattr)
{
if ((fattr->valid & NFS_ATTR_FATTR_V4) != 0 &&
(fattr->valid & NFS_ATTR_WCC_V4) == 0) {
fattr->pre_change_attr = NFS_I(inode)->change_attr;
fattr->valid |= NFS_ATTR_WCC_V4;
}
if ((fattr->valid & NFS_ATTR_FATTR) != 0 &&
(fattr->valid & NFS_ATTR_WCC) == 0) {
memcpy(&fattr->pre_ctime, &inode->i_ctime, sizeof(fattr->pre_ctime));
memcpy(&fattr->pre_mtime, &inode->i_mtime, sizeof(fattr->pre_mtime));
fattr->pre_size = i_size_read(inode);
fattr->valid |= NFS_ATTR_WCC;
}
return nfs_post_op_update_inode(inode, fattr);
}
/*
* Many nfs protocol calls return the new file attributes after
* an operation. Here we update the inode to reflect the state
* of the server's inode.
*
* This is a bit tricky because we have to make sure all dirty pages
* have been sent off to the server before calling invalidate_inode_pages.
* To make sure no other process adds more write requests while we try
* our best to flush them, we make them sleep during the attribute refresh.
*
* A very similar scenario holds for the dir cache.
*/
static int nfs_update_inode(struct inode *inode, struct nfs_fattr *fattr)
{
struct nfs_server *server;
struct nfs_inode *nfsi = NFS_I(inode);
loff_t cur_isize, new_isize;
unsigned long invalid = 0;
unsigned long now = jiffies;
dfprintk(VFS, "NFS: %s(%s/%ld ct=%d info=0x%x)\n",
__func__, inode->i_sb->s_id, inode->i_ino,
atomic_read(&inode->i_count), fattr->valid);
if (nfsi->fileid != fattr->fileid)
goto out_fileid;
/*
* Make sure the inode's type hasn't changed.
*/
if ((inode->i_mode & S_IFMT) != (fattr->mode & S_IFMT))
goto out_changed;
server = NFS_SERVER(inode);
/* Update the fsid? */
if (S_ISDIR(inode->i_mode) &&
!nfs_fsid_equal(&server->fsid, &fattr->fsid) &&
!test_bit(NFS_INO_MOUNTPOINT, &nfsi->flags))
server->fsid = fattr->fsid;
/*
* Update the read time so we don't revalidate too often.
*/
nfsi->read_cache_jiffies = fattr->time_start;
nfsi->cache_validity &= ~(NFS_INO_INVALID_ATTR | NFS_INO_INVALID_ATIME
| NFS_INO_REVAL_PAGECACHE);
/* Do atomic weak cache consistency updates */
nfs_wcc_update_inode(inode, fattr);
/* More cache consistency checks */
if (!(fattr->valid & NFS_ATTR_FATTR_V4)) {
/* NFSv2/v3: Check if the mtime agrees */
if (!timespec_equal(&inode->i_mtime, &fattr->mtime)) {
dprintk("NFS: mtime change on server for file %s/%ld\n",
inode->i_sb->s_id, inode->i_ino);
invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA;
if (S_ISDIR(inode->i_mode))
nfs_force_lookup_revalidate(inode);
}
/* If ctime has changed we should definitely clear access+acl caches */
if (!timespec_equal(&inode->i_ctime, &fattr->ctime))
invalid |= NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
} else if (nfsi->change_attr != fattr->change_attr) {
dprintk("NFS: change_attr change on server for file %s/%ld\n",
inode->i_sb->s_id, inode->i_ino);
invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
if (S_ISDIR(inode->i_mode))
nfs_force_lookup_revalidate(inode);
}
/* Check if our cached file size is stale */
new_isize = nfs_size_to_loff_t(fattr->size);
cur_isize = i_size_read(inode);
if (new_isize != cur_isize) {
/* Do we perhaps have any outstanding writes, or has
* the file grown beyond our last write? */
if (nfsi->npages == 0 || new_isize > cur_isize) {
i_size_write(inode, new_isize);
invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA;
}
dprintk("NFS: isize change on server for file %s/%ld\n",
inode->i_sb->s_id, inode->i_ino);
}
memcpy(&inode->i_mtime, &fattr->mtime, sizeof(inode->i_mtime));
memcpy(&inode->i_ctime, &fattr->ctime, sizeof(inode->i_ctime));
memcpy(&inode->i_atime, &fattr->atime, sizeof(inode->i_atime));
nfsi->change_attr = fattr->change_attr;
if ((inode->i_mode & S_IALLUGO) != (fattr->mode & S_IALLUGO) ||
inode->i_uid != fattr->uid ||
inode->i_gid != fattr->gid)
invalid |= NFS_INO_INVALID_ATTR|NFS_INO_INVALID_ACCESS|NFS_INO_INVALID_ACL;
inode->i_mode = fattr->mode;
inode->i_nlink = fattr->nlink;
inode->i_uid = fattr->uid;
inode->i_gid = fattr->gid;
if (fattr->valid & (NFS_ATTR_FATTR_V3 | NFS_ATTR_FATTR_V4)) {
/*
* report the blocks in 512byte units
*/
inode->i_blocks = nfs_calc_block_size(fattr->du.nfs3.used);
} else {
inode->i_blocks = fattr->du.nfs2.blocks;
}
/* Update attrtimeo value if we're out of the unstable period */
if (invalid & NFS_INO_INVALID_ATTR) {
nfs_inc_stats(inode, NFSIOS_ATTRINVALIDATE);
nfsi->attrtimeo = NFS_MINATTRTIMEO(inode);
nfsi->attrtimeo_timestamp = now;
nfsi->last_updated = now;
} else {
if (!time_in_range(now, nfsi->attrtimeo_timestamp, nfsi->attrtimeo_timestamp + nfsi->attrtimeo)) {
if ((nfsi->attrtimeo <<= 1) > NFS_MAXATTRTIMEO(inode))
nfsi->attrtimeo = NFS_MAXATTRTIMEO(inode);
nfsi->attrtimeo_timestamp = now;
}
/*
* Avoid jiffy wraparound issues with nfsi->last_updated
*/
if (!time_in_range(nfsi->last_updated, nfsi->read_cache_jiffies, now))
nfsi->last_updated = nfsi->read_cache_jiffies;
}
invalid &= ~NFS_INO_INVALID_ATTR;
/* Don't invalidate the data if we were to blame */
if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
|| S_ISLNK(inode->i_mode)))
invalid &= ~NFS_INO_INVALID_DATA;
if (!nfs_have_delegation(inode, FMODE_READ) ||
(nfsi->cache_validity & NFS_INO_REVAL_FORCED))
nfsi->cache_validity |= invalid;
nfsi->cache_validity &= ~NFS_INO_REVAL_FORCED;
return 0;
out_changed:
/*
* Big trouble! The inode has become a different object.
*/
printk(KERN_DEBUG "%s: inode %ld mode changed, %07o to %07o\n",
__func__, inode->i_ino, inode->i_mode, fattr->mode);
out_err:
/*
* No need to worry about unhashing the dentry, as the
* lookup validation will know that the inode is bad.
* (But we fall through to invalidate the caches.)
*/
nfs_invalidate_inode(inode);
return -ESTALE;
out_fileid:
printk(KERN_ERR "NFS: server %s error: fileid changed\n"
"fsid %s: expected fileid 0x%Lx, got 0x%Lx\n",
NFS_SERVER(inode)->nfs_client->cl_hostname, inode->i_sb->s_id,
(long long)nfsi->fileid, (long long)fattr->fileid);
goto out_err;
}
#ifdef CONFIG_NFS_V4
/*
* Clean out any remaining NFSv4 state that might be left over due
* to open() calls that passed nfs_atomic_lookup, but failed to call
* nfs_open().
*/
void nfs4_clear_inode(struct inode *inode)
{
/* If we are holding a delegation, return it! */
nfs_inode_return_delegation_noreclaim(inode);
/* First call standard NFS clear_inode() code */
nfs_clear_inode(inode);
}
#endif
struct inode *nfs_alloc_inode(struct super_block *sb)
{
struct nfs_inode *nfsi;
nfsi = (struct nfs_inode *)kmem_cache_alloc(nfs_inode_cachep, GFP_KERNEL);
if (!nfsi)
return NULL;
nfsi->flags = 0UL;
nfsi->cache_validity = 0UL;
#ifdef CONFIG_NFS_V3_ACL
nfsi->acl_access = ERR_PTR(-EAGAIN);
nfsi->acl_default = ERR_PTR(-EAGAIN);
#endif
#ifdef CONFIG_NFS_V4
nfsi->nfs4_acl = NULL;
#endif /* CONFIG_NFS_V4 */
return &nfsi->vfs_inode;
}
void nfs_destroy_inode(struct inode *inode)
{
kmem_cache_free(nfs_inode_cachep, NFS_I(inode));
}
static inline void nfs4_init_once(struct nfs_inode *nfsi)
{
#ifdef CONFIG_NFS_V4
INIT_LIST_HEAD(&nfsi->open_states);
nfsi->delegation = NULL;
nfsi->delegation_state = 0;
init_rwsem(&nfsi->rwsem);
#endif
}
static void init_once(void *foo)
{
struct nfs_inode *nfsi = (struct nfs_inode *) foo;
inode_init_once(&nfsi->vfs_inode);
INIT_LIST_HEAD(&nfsi->open_files);
INIT_LIST_HEAD(&nfsi->access_cache_entry_lru);
INIT_LIST_HEAD(&nfsi->access_cache_inode_lru);
INIT_RADIX_TREE(&nfsi->nfs_page_tree, GFP_ATOMIC);
nfsi->ncommit = 0;
nfsi->npages = 0;
atomic_set(&nfsi->silly_count, 1);
INIT_HLIST_HEAD(&nfsi->silly_list);
init_waitqueue_head(&nfsi->waitqueue);
nfs4_init_once(nfsi);
}
static int __init nfs_init_inodecache(void)
{
nfs_inode_cachep = kmem_cache_create("nfs_inode_cache",
sizeof(struct nfs_inode),
0, (SLAB_RECLAIM_ACCOUNT|
SLAB_MEM_SPREAD),
init_once);
if (nfs_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void nfs_destroy_inodecache(void)
{
kmem_cache_destroy(nfs_inode_cachep);
}
struct workqueue_struct *nfsiod_workqueue;
/*
* start up the nfsiod workqueue
*/
static int nfsiod_start(void)
{
struct workqueue_struct *wq;
dprintk("RPC: creating workqueue nfsiod\n");
wq = create_singlethread_workqueue("nfsiod");
if (wq == NULL)
return -ENOMEM;
nfsiod_workqueue = wq;
return 0;
}
/*
* Destroy the nfsiod workqueue
*/
static void nfsiod_stop(void)
{
struct workqueue_struct *wq;
wq = nfsiod_workqueue;
if (wq == NULL)
return;
nfsiod_workqueue = NULL;
destroy_workqueue(wq);
}
/*
* Initialize NFS
*/
static int __init init_nfs_fs(void)
{
int err;
err = nfsiod_start();
if (err)
goto out6;
err = nfs_fs_proc_init();
if (err)
goto out5;
err = nfs_init_nfspagecache();
if (err)
goto out4;
err = nfs_init_inodecache();
if (err)
goto out3;
err = nfs_init_readpagecache();
if (err)
goto out2;
err = nfs_init_writepagecache();
if (err)
goto out1;
err = nfs_init_directcache();
if (err)
goto out0;
#ifdef CONFIG_PROC_FS
rpc_proc_register(&nfs_rpcstat);
#endif
if ((err = register_nfs_fs()) != 0)
goto out;
return 0;
out:
#ifdef CONFIG_PROC_FS
rpc_proc_unregister("nfs");
#endif
nfs_destroy_directcache();
out0:
nfs_destroy_writepagecache();
out1:
nfs_destroy_readpagecache();
out2:
nfs_destroy_inodecache();
out3:
nfs_destroy_nfspagecache();
out4:
nfs_fs_proc_exit();
out5:
nfsiod_stop();
out6:
return err;
}
static void __exit exit_nfs_fs(void)
{
nfs_destroy_directcache();
nfs_destroy_writepagecache();
nfs_destroy_readpagecache();
nfs_destroy_inodecache();
nfs_destroy_nfspagecache();
#ifdef CONFIG_PROC_FS
rpc_proc_unregister("nfs");
#endif
unregister_nfs_fs();
nfs_fs_proc_exit();
nfsiod_stop();
}
/* Not quite true; I just maintain it */
MODULE_AUTHOR("Olaf Kirch <okir@monad.swb.de>");
MODULE_LICENSE("GPL");
module_param(enable_ino64, bool, 0644);
module_init(init_nfs_fs)
module_exit(exit_nfs_fs)