mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 16:56:12 +07:00
2a1ed07718
A platform_driver does not need to set an owner, it will be populated by the driver core. Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
1651 lines
52 KiB
C
1651 lines
52 KiB
C
/*
|
|
* abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
/*
|
|
* This driver supports the sensor part of the first and second revision of
|
|
* the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
|
|
* of lack of specs the CPU/RAM voltage & frequency control is not supported!
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/err.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/hwmon.h>
|
|
#include <linux/hwmon-sysfs.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/io.h>
|
|
|
|
/* Banks */
|
|
#define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */
|
|
#define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */
|
|
#define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */
|
|
#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */
|
|
/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
|
|
#define ABIT_UGURU_MAX_BANK1_SENSORS 16
|
|
/*
|
|
* Warning if you increase one of the 2 MAX defines below to 10 or higher you
|
|
* should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
|
|
*/
|
|
/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
|
|
#define ABIT_UGURU_MAX_BANK2_SENSORS 6
|
|
/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
|
|
#define ABIT_UGURU_MAX_PWMS 5
|
|
/* uGuru sensor bank 1 flags */ /* Alarm if: */
|
|
#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */
|
|
#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */
|
|
#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */
|
|
#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */
|
|
#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */
|
|
#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */
|
|
/* uGuru sensor bank 2 flags */ /* Alarm if: */
|
|
#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */
|
|
/* uGuru sensor bank common flags */
|
|
#define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */
|
|
#define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */
|
|
/* uGuru fan PWM (speed control) flags */
|
|
#define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */
|
|
/* Values used for conversion */
|
|
#define ABIT_UGURU_FAN_MAX 15300 /* RPM */
|
|
/* Bank1 sensor types */
|
|
#define ABIT_UGURU_IN_SENSOR 0
|
|
#define ABIT_UGURU_TEMP_SENSOR 1
|
|
#define ABIT_UGURU_NC 2
|
|
/*
|
|
* In many cases we need to wait for the uGuru to reach a certain status, most
|
|
* of the time it will reach this status within 30 - 90 ISA reads, and thus we
|
|
* can best busy wait. This define gives the total amount of reads to try.
|
|
*/
|
|
#define ABIT_UGURU_WAIT_TIMEOUT 125
|
|
/*
|
|
* However sometimes older versions of the uGuru seem to be distracted and they
|
|
* do not respond for a long time. To handle this we sleep before each of the
|
|
* last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
|
|
*/
|
|
#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5
|
|
/*
|
|
* Normally all expected status in abituguru_ready, are reported after the
|
|
* first read, but sometimes not and we need to poll.
|
|
*/
|
|
#define ABIT_UGURU_READY_TIMEOUT 5
|
|
/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
|
|
#define ABIT_UGURU_MAX_RETRIES 3
|
|
#define ABIT_UGURU_RETRY_DELAY (HZ/5)
|
|
/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
|
|
#define ABIT_UGURU_MAX_TIMEOUTS 2
|
|
/* utility macros */
|
|
#define ABIT_UGURU_NAME "abituguru"
|
|
#define ABIT_UGURU_DEBUG(level, format, arg...) \
|
|
do { \
|
|
if (level <= verbose) \
|
|
pr_debug(format , ## arg); \
|
|
} while (0)
|
|
|
|
/* Macros to help calculate the sysfs_names array length */
|
|
/*
|
|
* sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
|
|
* in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
|
|
*/
|
|
#define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
|
|
/*
|
|
* sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
|
|
* temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
|
|
*/
|
|
#define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16)
|
|
/*
|
|
* sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
|
|
* fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
|
|
*/
|
|
#define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14)
|
|
/*
|
|
* sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
|
|
* pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
|
|
*/
|
|
#define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22)
|
|
/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
|
|
#define ABITUGURU_SYSFS_NAMES_LENGTH ( \
|
|
ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
|
|
ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
|
|
ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
|
|
|
|
/*
|
|
* All the macros below are named identical to the oguru and oguru2 programs
|
|
* reverse engineered by Olle Sandberg, hence the names might not be 100%
|
|
* logical. I could come up with better names, but I prefer keeping the names
|
|
* identical so that this driver can be compared with his work more easily.
|
|
*/
|
|
/* Two i/o-ports are used by uGuru */
|
|
#define ABIT_UGURU_BASE 0x00E0
|
|
/* Used to tell uGuru what to read and to read the actual data */
|
|
#define ABIT_UGURU_CMD 0x00
|
|
/* Mostly used to check if uGuru is busy */
|
|
#define ABIT_UGURU_DATA 0x04
|
|
#define ABIT_UGURU_REGION_LENGTH 5
|
|
/* uGuru status' */
|
|
#define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */
|
|
#define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */
|
|
#define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */
|
|
#define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */
|
|
|
|
/* Constants */
|
|
/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
|
|
static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
|
|
/*
|
|
* Min / Max allowed values for sensor2 (fan) alarm threshold, these values
|
|
* correspond to 300-3000 RPM
|
|
*/
|
|
static const u8 abituguru_bank2_min_threshold = 5;
|
|
static const u8 abituguru_bank2_max_threshold = 50;
|
|
/*
|
|
* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
|
|
* are temperature trip points.
|
|
*/
|
|
static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
|
|
/*
|
|
* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
|
|
* special case the minimum allowed pwm% setting for this is 30% (77) on
|
|
* some MB's this special case is handled in the code!
|
|
*/
|
|
static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
|
|
static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
|
|
|
|
|
|
/* Insmod parameters */
|
|
static bool force;
|
|
module_param(force, bool, 0);
|
|
MODULE_PARM_DESC(force, "Set to one to force detection.");
|
|
static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
|
|
module_param_array(bank1_types, int, NULL, 0);
|
|
MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
|
|
" -1 autodetect\n"
|
|
" 0 volt sensor\n"
|
|
" 1 temp sensor\n"
|
|
" 2 not connected");
|
|
static int fan_sensors;
|
|
module_param(fan_sensors, int, 0);
|
|
MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
|
|
"(0 = autodetect)");
|
|
static int pwms;
|
|
module_param(pwms, int, 0);
|
|
MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
|
|
"(0 = autodetect)");
|
|
|
|
/* Default verbose is 2, since this driver is still in the testing phase */
|
|
static int verbose = 2;
|
|
module_param(verbose, int, 0644);
|
|
MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
|
|
" 0 normal output\n"
|
|
" 1 + verbose error reporting\n"
|
|
" 2 + sensors type probing info\n"
|
|
" 3 + retryable error reporting");
|
|
|
|
|
|
/*
|
|
* For the Abit uGuru, we need to keep some data in memory.
|
|
* The structure is dynamically allocated, at the same time when a new
|
|
* abituguru device is allocated.
|
|
*/
|
|
struct abituguru_data {
|
|
struct device *hwmon_dev; /* hwmon registered device */
|
|
struct mutex update_lock; /* protect access to data and uGuru */
|
|
unsigned long last_updated; /* In jiffies */
|
|
unsigned short addr; /* uguru base address */
|
|
char uguru_ready; /* is the uguru in ready state? */
|
|
unsigned char update_timeouts; /*
|
|
* number of update timeouts since last
|
|
* successful update
|
|
*/
|
|
|
|
/*
|
|
* The sysfs attr and their names are generated automatically, for bank1
|
|
* we cannot use a predefined array because we don't know beforehand
|
|
* of a sensor is a volt or a temp sensor, for bank2 and the pwms its
|
|
* easier todo things the same way. For in sensors we have 9 (temp 7)
|
|
* sysfs entries per sensor, for bank2 and pwms 6.
|
|
*/
|
|
struct sensor_device_attribute_2 sysfs_attr[
|
|
ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
|
|
ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
|
|
/* Buffer to store the dynamically generated sysfs names */
|
|
char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
|
|
|
|
/* Bank 1 data */
|
|
/* number of and addresses of [0] in, [1] temp sensors */
|
|
u8 bank1_sensors[2];
|
|
u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
|
|
u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
|
|
/*
|
|
* This array holds 3 entries per sensor for the bank 1 sensor settings
|
|
* (flags, min, max for voltage / flags, warn, shutdown for temp).
|
|
*/
|
|
u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
|
|
/*
|
|
* Maximum value for each sensor used for scaling in mV/millidegrees
|
|
* Celsius.
|
|
*/
|
|
int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
|
|
|
|
/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
|
|
u8 bank2_sensors; /* actual number of bank2 sensors found */
|
|
u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
|
|
u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
|
|
|
|
/* Alarms 2 bytes for bank1, 1 byte for bank2 */
|
|
u8 alarms[3];
|
|
|
|
/* Fan PWM (speed control) 5 bytes per PWM */
|
|
u8 pwms; /* actual number of pwms found */
|
|
u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
|
|
};
|
|
|
|
static const char *never_happen = "This should never happen.";
|
|
static const char *report_this =
|
|
"Please report this to the abituguru maintainer (see MAINTAINERS)";
|
|
|
|
/* wait till the uguru is in the specified state */
|
|
static int abituguru_wait(struct abituguru_data *data, u8 state)
|
|
{
|
|
int timeout = ABIT_UGURU_WAIT_TIMEOUT;
|
|
|
|
while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
|
|
timeout--;
|
|
if (timeout == 0)
|
|
return -EBUSY;
|
|
/*
|
|
* sleep a bit before our last few tries, see the comment on
|
|
* this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
|
|
*/
|
|
if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
|
|
msleep(0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Put the uguru in ready for input state */
|
|
static int abituguru_ready(struct abituguru_data *data)
|
|
{
|
|
int timeout = ABIT_UGURU_READY_TIMEOUT;
|
|
|
|
if (data->uguru_ready)
|
|
return 0;
|
|
|
|
/* Reset? / Prepare for next read/write cycle */
|
|
outb(0x00, data->addr + ABIT_UGURU_DATA);
|
|
|
|
/* Wait till the uguru is ready */
|
|
if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
|
|
ABIT_UGURU_DEBUG(1,
|
|
"timeout exceeded waiting for ready state\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Cmd port MUST be read now and should contain 0xAC */
|
|
while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
|
|
timeout--;
|
|
if (timeout == 0) {
|
|
ABIT_UGURU_DEBUG(1,
|
|
"CMD reg does not hold 0xAC after ready command\n");
|
|
return -EIO;
|
|
}
|
|
msleep(0);
|
|
}
|
|
|
|
/*
|
|
* After this the ABIT_UGURU_DATA port should contain
|
|
* ABIT_UGURU_STATUS_INPUT
|
|
*/
|
|
timeout = ABIT_UGURU_READY_TIMEOUT;
|
|
while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
|
|
timeout--;
|
|
if (timeout == 0) {
|
|
ABIT_UGURU_DEBUG(1,
|
|
"state != more input after ready command\n");
|
|
return -EIO;
|
|
}
|
|
msleep(0);
|
|
}
|
|
|
|
data->uguru_ready = 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Send the bank and then sensor address to the uGuru for the next read/write
|
|
* cycle. This function gets called as the first part of a read/write by
|
|
* abituguru_read and abituguru_write. This function should never be
|
|
* called by any other function.
|
|
*/
|
|
static int abituguru_send_address(struct abituguru_data *data,
|
|
u8 bank_addr, u8 sensor_addr, int retries)
|
|
{
|
|
/*
|
|
* assume the caller does error handling itself if it has not requested
|
|
* any retries, and thus be quiet.
|
|
*/
|
|
int report_errors = retries;
|
|
|
|
for (;;) {
|
|
/*
|
|
* Make sure the uguru is ready and then send the bank address,
|
|
* after this the uguru is no longer "ready".
|
|
*/
|
|
if (abituguru_ready(data) != 0)
|
|
return -EIO;
|
|
outb(bank_addr, data->addr + ABIT_UGURU_DATA);
|
|
data->uguru_ready = 0;
|
|
|
|
/*
|
|
* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
|
|
* and send the sensor addr
|
|
*/
|
|
if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
|
|
if (retries) {
|
|
ABIT_UGURU_DEBUG(3, "timeout exceeded "
|
|
"waiting for more input state, %d "
|
|
"tries remaining\n", retries);
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule_timeout(ABIT_UGURU_RETRY_DELAY);
|
|
retries--;
|
|
continue;
|
|
}
|
|
if (report_errors)
|
|
ABIT_UGURU_DEBUG(1, "timeout exceeded "
|
|
"waiting for more input state "
|
|
"(bank: %d)\n", (int)bank_addr);
|
|
return -EBUSY;
|
|
}
|
|
outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read count bytes from sensor sensor_addr in bank bank_addr and store the
|
|
* result in buf, retry the send address part of the read retries times.
|
|
*/
|
|
static int abituguru_read(struct abituguru_data *data,
|
|
u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
|
|
{
|
|
int i;
|
|
|
|
/* Send the address */
|
|
i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
|
|
if (i)
|
|
return i;
|
|
|
|
/* And read the data */
|
|
for (i = 0; i < count; i++) {
|
|
if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
|
|
ABIT_UGURU_DEBUG(retries ? 1 : 3,
|
|
"timeout exceeded waiting for "
|
|
"read state (bank: %d, sensor: %d)\n",
|
|
(int)bank_addr, (int)sensor_addr);
|
|
break;
|
|
}
|
|
buf[i] = inb(data->addr + ABIT_UGURU_CMD);
|
|
}
|
|
|
|
/* Last put the chip back in ready state */
|
|
abituguru_ready(data);
|
|
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
|
|
* address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
|
|
*/
|
|
static int abituguru_write(struct abituguru_data *data,
|
|
u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
|
|
{
|
|
/*
|
|
* We use the ready timeout as we have to wait for 0xAC just like the
|
|
* ready function
|
|
*/
|
|
int i, timeout = ABIT_UGURU_READY_TIMEOUT;
|
|
|
|
/* Send the address */
|
|
i = abituguru_send_address(data, bank_addr, sensor_addr,
|
|
ABIT_UGURU_MAX_RETRIES);
|
|
if (i)
|
|
return i;
|
|
|
|
/* And write the data */
|
|
for (i = 0; i < count; i++) {
|
|
if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
|
|
ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
|
|
"write state (bank: %d, sensor: %d)\n",
|
|
(int)bank_addr, (int)sensor_addr);
|
|
break;
|
|
}
|
|
outb(buf[i], data->addr + ABIT_UGURU_CMD);
|
|
}
|
|
|
|
/*
|
|
* Now we need to wait till the chip is ready to be read again,
|
|
* so that we can read 0xAC as confirmation that our write has
|
|
* succeeded.
|
|
*/
|
|
if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
|
|
ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
|
|
"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
|
|
(int)sensor_addr);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Cmd port MUST be read now and should contain 0xAC */
|
|
while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
|
|
timeout--;
|
|
if (timeout == 0) {
|
|
ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
|
|
"write (bank: %d, sensor: %d)\n",
|
|
(int)bank_addr, (int)sensor_addr);
|
|
return -EIO;
|
|
}
|
|
msleep(0);
|
|
}
|
|
|
|
/* Last put the chip back in ready state */
|
|
abituguru_ready(data);
|
|
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Detect sensor type. Temp and Volt sensors are enabled with
|
|
* different masks and will ignore enable masks not meant for them.
|
|
* This enables us to test what kind of sensor we're dealing with.
|
|
* By setting the alarm thresholds so that we will always get an
|
|
* alarm for sensor type X and then enabling the sensor as sensor type
|
|
* X, if we then get an alarm it is a sensor of type X.
|
|
*/
|
|
static int
|
|
abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
|
|
u8 sensor_addr)
|
|
{
|
|
u8 val, test_flag, buf[3];
|
|
int i, ret = -ENODEV; /* error is the most common used retval :| */
|
|
|
|
/* If overriden by the user return the user selected type */
|
|
if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
|
|
bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
|
|
ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
|
|
"%d because of \"bank1_types\" module param\n",
|
|
bank1_types[sensor_addr], (int)sensor_addr);
|
|
return bank1_types[sensor_addr];
|
|
}
|
|
|
|
/* First read the sensor and the current settings */
|
|
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
|
|
1, ABIT_UGURU_MAX_RETRIES) != 1)
|
|
return -ENODEV;
|
|
|
|
/* Test val is sane / usable for sensor type detection. */
|
|
if ((val < 10u) || (val > 250u)) {
|
|
pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
|
|
"unable to determine sensor type, skipping sensor\n",
|
|
(int)sensor_addr, (int)val);
|
|
/*
|
|
* assume no sensor is there for sensors for which we can't
|
|
* determine the sensor type because their reading is too close
|
|
* to their limits, this usually means no sensor is there.
|
|
*/
|
|
return ABIT_UGURU_NC;
|
|
}
|
|
|
|
ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
|
|
/*
|
|
* Volt sensor test, enable volt low alarm, set min value ridiculously
|
|
* high, or vica versa if the reading is very high. If its a volt
|
|
* sensor this should always give us an alarm.
|
|
*/
|
|
if (val <= 240u) {
|
|
buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
|
|
buf[1] = 245;
|
|
buf[2] = 250;
|
|
test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
|
|
} else {
|
|
buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
|
|
buf[1] = 5;
|
|
buf[2] = 10;
|
|
test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
|
|
}
|
|
|
|
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
|
|
buf, 3) != 3)
|
|
goto abituguru_detect_bank1_sensor_type_exit;
|
|
/*
|
|
* Now we need 20 ms to give the uguru time to read the sensors
|
|
* and raise a voltage alarm
|
|
*/
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule_timeout(HZ/50);
|
|
/* Check for alarm and check the alarm is a volt low alarm. */
|
|
if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
|
|
ABIT_UGURU_MAX_RETRIES) != 3)
|
|
goto abituguru_detect_bank1_sensor_type_exit;
|
|
if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
|
|
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
|
|
sensor_addr, buf, 3,
|
|
ABIT_UGURU_MAX_RETRIES) != 3)
|
|
goto abituguru_detect_bank1_sensor_type_exit;
|
|
if (buf[0] & test_flag) {
|
|
ABIT_UGURU_DEBUG(2, " found volt sensor\n");
|
|
ret = ABIT_UGURU_IN_SENSOR;
|
|
goto abituguru_detect_bank1_sensor_type_exit;
|
|
} else
|
|
ABIT_UGURU_DEBUG(2, " alarm raised during volt "
|
|
"sensor test, but volt range flag not set\n");
|
|
} else
|
|
ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor "
|
|
"test\n");
|
|
|
|
/*
|
|
* Temp sensor test, enable sensor as a temp sensor, set beep value
|
|
* ridiculously low (but not too low, otherwise uguru ignores it).
|
|
* If its a temp sensor this should always give us an alarm.
|
|
*/
|
|
buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
|
|
buf[1] = 5;
|
|
buf[2] = 10;
|
|
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
|
|
buf, 3) != 3)
|
|
goto abituguru_detect_bank1_sensor_type_exit;
|
|
/*
|
|
* Now we need 50 ms to give the uguru time to read the sensors
|
|
* and raise a temp alarm
|
|
*/
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
schedule_timeout(HZ/20);
|
|
/* Check for alarm and check the alarm is a temp high alarm. */
|
|
if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
|
|
ABIT_UGURU_MAX_RETRIES) != 3)
|
|
goto abituguru_detect_bank1_sensor_type_exit;
|
|
if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
|
|
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
|
|
sensor_addr, buf, 3,
|
|
ABIT_UGURU_MAX_RETRIES) != 3)
|
|
goto abituguru_detect_bank1_sensor_type_exit;
|
|
if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
|
|
ABIT_UGURU_DEBUG(2, " found temp sensor\n");
|
|
ret = ABIT_UGURU_TEMP_SENSOR;
|
|
goto abituguru_detect_bank1_sensor_type_exit;
|
|
} else
|
|
ABIT_UGURU_DEBUG(2, " alarm raised during temp "
|
|
"sensor test, but temp high flag not set\n");
|
|
} else
|
|
ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor "
|
|
"test\n");
|
|
|
|
ret = ABIT_UGURU_NC;
|
|
abituguru_detect_bank1_sensor_type_exit:
|
|
/*
|
|
* Restore original settings, failing here is really BAD, it has been
|
|
* reported that some BIOS-es hang when entering the uGuru menu with
|
|
* invalid settings present in the uGuru, so we try this 3 times.
|
|
*/
|
|
for (i = 0; i < 3; i++)
|
|
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
|
|
sensor_addr, data->bank1_settings[sensor_addr],
|
|
3) == 3)
|
|
break;
|
|
if (i == 3) {
|
|
pr_err("Fatal error could not restore original settings. %s %s\n",
|
|
never_happen, report_this);
|
|
return -ENODEV;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* These functions try to find out how many sensors there are in bank2 and how
|
|
* many pwms there are. The purpose of this is to make sure that we don't give
|
|
* the user the possibility to change settings for non-existent sensors / pwm.
|
|
* The uGuru will happily read / write whatever memory happens to be after the
|
|
* memory storing the PWM settings when reading/writing to a PWM which is not
|
|
* there. Notice even if we detect a PWM which doesn't exist we normally won't
|
|
* write to it, unless the user tries to change the settings.
|
|
*
|
|
* Although the uGuru allows reading (settings) from non existing bank2
|
|
* sensors, my version of the uGuru does seem to stop writing to them, the
|
|
* write function above aborts in this case with:
|
|
* "CMD reg does not hold 0xAC after write"
|
|
*
|
|
* Notice these 2 tests are non destructive iow read-only tests, otherwise
|
|
* they would defeat their purpose. Although for the bank2_sensors detection a
|
|
* read/write test would be feasible because of the reaction above, I've
|
|
* however opted to stay on the safe side.
|
|
*/
|
|
static void
|
|
abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
|
|
{
|
|
int i;
|
|
|
|
if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
|
|
data->bank2_sensors = fan_sensors;
|
|
ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
|
|
"\"fan_sensors\" module param\n",
|
|
(int)data->bank2_sensors);
|
|
return;
|
|
}
|
|
|
|
ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
|
|
for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
|
|
/*
|
|
* 0x89 are the known used bits:
|
|
* -0x80 enable shutdown
|
|
* -0x08 enable beep
|
|
* -0x01 enable alarm
|
|
* All other bits should be 0, but on some motherboards
|
|
* 0x40 (bit 6) is also high for some of the fans??
|
|
*/
|
|
if (data->bank2_settings[i][0] & ~0xC9) {
|
|
ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
|
|
"to be a fan sensor: settings[0] = %02X\n",
|
|
i, (unsigned int)data->bank2_settings[i][0]);
|
|
break;
|
|
}
|
|
|
|
/* check if the threshold is within the allowed range */
|
|
if (data->bank2_settings[i][1] <
|
|
abituguru_bank2_min_threshold) {
|
|
ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
|
|
"to be a fan sensor: the threshold (%d) is "
|
|
"below the minimum (%d)\n", i,
|
|
(int)data->bank2_settings[i][1],
|
|
(int)abituguru_bank2_min_threshold);
|
|
break;
|
|
}
|
|
if (data->bank2_settings[i][1] >
|
|
abituguru_bank2_max_threshold) {
|
|
ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
|
|
"to be a fan sensor: the threshold (%d) is "
|
|
"above the maximum (%d)\n", i,
|
|
(int)data->bank2_settings[i][1],
|
|
(int)abituguru_bank2_max_threshold);
|
|
break;
|
|
}
|
|
}
|
|
|
|
data->bank2_sensors = i;
|
|
ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
|
|
(int)data->bank2_sensors);
|
|
}
|
|
|
|
static void
|
|
abituguru_detect_no_pwms(struct abituguru_data *data)
|
|
{
|
|
int i, j;
|
|
|
|
if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
|
|
data->pwms = pwms;
|
|
ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
|
|
"\"pwms\" module param\n", (int)data->pwms);
|
|
return;
|
|
}
|
|
|
|
ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
|
|
for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
|
|
/*
|
|
* 0x80 is the enable bit and the low
|
|
* nibble is which temp sensor to use,
|
|
* the other bits should be 0
|
|
*/
|
|
if (data->pwm_settings[i][0] & ~0x8F) {
|
|
ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
|
|
"to be a pwm channel: settings[0] = %02X\n",
|
|
i, (unsigned int)data->pwm_settings[i][0]);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* the low nibble must correspond to one of the temp sensors
|
|
* we've found
|
|
*/
|
|
for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
|
|
j++) {
|
|
if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
|
|
(data->pwm_settings[i][0] & 0x0F))
|
|
break;
|
|
}
|
|
if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
|
|
ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
|
|
"to be a pwm channel: %d is not a valid temp "
|
|
"sensor address\n", i,
|
|
data->pwm_settings[i][0] & 0x0F);
|
|
break;
|
|
}
|
|
|
|
/* check if all other settings are within the allowed range */
|
|
for (j = 1; j < 5; j++) {
|
|
u8 min;
|
|
/* special case pwm1 min pwm% */
|
|
if ((i == 0) && ((j == 1) || (j == 2)))
|
|
min = 77;
|
|
else
|
|
min = abituguru_pwm_min[j];
|
|
if (data->pwm_settings[i][j] < min) {
|
|
ABIT_UGURU_DEBUG(2, " pwm channel %d does "
|
|
"not seem to be a pwm channel: "
|
|
"setting %d (%d) is below the minimum "
|
|
"value (%d)\n", i, j,
|
|
(int)data->pwm_settings[i][j],
|
|
(int)min);
|
|
goto abituguru_detect_no_pwms_exit;
|
|
}
|
|
if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
|
|
ABIT_UGURU_DEBUG(2, " pwm channel %d does "
|
|
"not seem to be a pwm channel: "
|
|
"setting %d (%d) is above the maximum "
|
|
"value (%d)\n", i, j,
|
|
(int)data->pwm_settings[i][j],
|
|
(int)abituguru_pwm_max[j]);
|
|
goto abituguru_detect_no_pwms_exit;
|
|
}
|
|
}
|
|
|
|
/* check that min temp < max temp and min pwm < max pwm */
|
|
if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
|
|
ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
|
|
"to be a pwm channel: min pwm (%d) >= "
|
|
"max pwm (%d)\n", i,
|
|
(int)data->pwm_settings[i][1],
|
|
(int)data->pwm_settings[i][2]);
|
|
break;
|
|
}
|
|
if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
|
|
ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
|
|
"to be a pwm channel: min temp (%d) >= "
|
|
"max temp (%d)\n", i,
|
|
(int)data->pwm_settings[i][3],
|
|
(int)data->pwm_settings[i][4]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
abituguru_detect_no_pwms_exit:
|
|
data->pwms = i;
|
|
ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
|
|
}
|
|
|
|
/*
|
|
* Following are the sysfs callback functions. These functions expect:
|
|
* sensor_device_attribute_2->index: sensor address/offset in the bank
|
|
* sensor_device_attribute_2->nr: register offset, bitmask or NA.
|
|
*/
|
|
static struct abituguru_data *abituguru_update_device(struct device *dev);
|
|
|
|
static ssize_t show_bank1_value(struct device *dev,
|
|
struct device_attribute *devattr, char *buf)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = abituguru_update_device(dev);
|
|
if (!data)
|
|
return -EIO;
|
|
return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
|
|
data->bank1_max_value[attr->index] + 128) / 255);
|
|
}
|
|
|
|
static ssize_t show_bank1_setting(struct device *dev,
|
|
struct device_attribute *devattr, char *buf)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
return sprintf(buf, "%d\n",
|
|
(data->bank1_settings[attr->index][attr->nr] *
|
|
data->bank1_max_value[attr->index] + 128) / 255);
|
|
}
|
|
|
|
static ssize_t show_bank2_value(struct device *dev,
|
|
struct device_attribute *devattr, char *buf)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = abituguru_update_device(dev);
|
|
if (!data)
|
|
return -EIO;
|
|
return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
|
|
ABIT_UGURU_FAN_MAX + 128) / 255);
|
|
}
|
|
|
|
static ssize_t show_bank2_setting(struct device *dev,
|
|
struct device_attribute *devattr, char *buf)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
return sprintf(buf, "%d\n",
|
|
(data->bank2_settings[attr->index][attr->nr] *
|
|
ABIT_UGURU_FAN_MAX + 128) / 255);
|
|
}
|
|
|
|
static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
|
|
*devattr, const char *buf, size_t count)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
unsigned long val;
|
|
ssize_t ret;
|
|
|
|
ret = kstrtoul(buf, 10, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = count;
|
|
val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
|
|
data->bank1_max_value[attr->index];
|
|
if (val > 255)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&data->update_lock);
|
|
if (data->bank1_settings[attr->index][attr->nr] != val) {
|
|
u8 orig_val = data->bank1_settings[attr->index][attr->nr];
|
|
data->bank1_settings[attr->index][attr->nr] = val;
|
|
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
|
|
attr->index, data->bank1_settings[attr->index],
|
|
3) <= attr->nr) {
|
|
data->bank1_settings[attr->index][attr->nr] = orig_val;
|
|
ret = -EIO;
|
|
}
|
|
}
|
|
mutex_unlock(&data->update_lock);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
|
|
*devattr, const char *buf, size_t count)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
unsigned long val;
|
|
ssize_t ret;
|
|
|
|
ret = kstrtoul(buf, 10, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = count;
|
|
val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
|
|
|
|
/* this check can be done before taking the lock */
|
|
if (val < abituguru_bank2_min_threshold ||
|
|
val > abituguru_bank2_max_threshold)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&data->update_lock);
|
|
if (data->bank2_settings[attr->index][attr->nr] != val) {
|
|
u8 orig_val = data->bank2_settings[attr->index][attr->nr];
|
|
data->bank2_settings[attr->index][attr->nr] = val;
|
|
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
|
|
attr->index, data->bank2_settings[attr->index],
|
|
2) <= attr->nr) {
|
|
data->bank2_settings[attr->index][attr->nr] = orig_val;
|
|
ret = -EIO;
|
|
}
|
|
}
|
|
mutex_unlock(&data->update_lock);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t show_bank1_alarm(struct device *dev,
|
|
struct device_attribute *devattr, char *buf)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = abituguru_update_device(dev);
|
|
if (!data)
|
|
return -EIO;
|
|
/*
|
|
* See if the alarm bit for this sensor is set, and if the
|
|
* alarm matches the type of alarm we're looking for (for volt
|
|
* it can be either low or high). The type is stored in a few
|
|
* readonly bits in the settings part of the relevant sensor.
|
|
* The bitmask of the type is passed to us in attr->nr.
|
|
*/
|
|
if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
|
|
(data->bank1_settings[attr->index][0] & attr->nr))
|
|
return sprintf(buf, "1\n");
|
|
else
|
|
return sprintf(buf, "0\n");
|
|
}
|
|
|
|
static ssize_t show_bank2_alarm(struct device *dev,
|
|
struct device_attribute *devattr, char *buf)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = abituguru_update_device(dev);
|
|
if (!data)
|
|
return -EIO;
|
|
if (data->alarms[2] & (0x01 << attr->index))
|
|
return sprintf(buf, "1\n");
|
|
else
|
|
return sprintf(buf, "0\n");
|
|
}
|
|
|
|
static ssize_t show_bank1_mask(struct device *dev,
|
|
struct device_attribute *devattr, char *buf)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
if (data->bank1_settings[attr->index][0] & attr->nr)
|
|
return sprintf(buf, "1\n");
|
|
else
|
|
return sprintf(buf, "0\n");
|
|
}
|
|
|
|
static ssize_t show_bank2_mask(struct device *dev,
|
|
struct device_attribute *devattr, char *buf)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
if (data->bank2_settings[attr->index][0] & attr->nr)
|
|
return sprintf(buf, "1\n");
|
|
else
|
|
return sprintf(buf, "0\n");
|
|
}
|
|
|
|
static ssize_t store_bank1_mask(struct device *dev,
|
|
struct device_attribute *devattr, const char *buf, size_t count)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
ssize_t ret;
|
|
u8 orig_val;
|
|
unsigned long mask;
|
|
|
|
ret = kstrtoul(buf, 10, &mask);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = count;
|
|
mutex_lock(&data->update_lock);
|
|
orig_val = data->bank1_settings[attr->index][0];
|
|
|
|
if (mask)
|
|
data->bank1_settings[attr->index][0] |= attr->nr;
|
|
else
|
|
data->bank1_settings[attr->index][0] &= ~attr->nr;
|
|
|
|
if ((data->bank1_settings[attr->index][0] != orig_val) &&
|
|
(abituguru_write(data,
|
|
ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
|
|
data->bank1_settings[attr->index], 3) < 1)) {
|
|
data->bank1_settings[attr->index][0] = orig_val;
|
|
ret = -EIO;
|
|
}
|
|
mutex_unlock(&data->update_lock);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t store_bank2_mask(struct device *dev,
|
|
struct device_attribute *devattr, const char *buf, size_t count)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
ssize_t ret;
|
|
u8 orig_val;
|
|
unsigned long mask;
|
|
|
|
ret = kstrtoul(buf, 10, &mask);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = count;
|
|
mutex_lock(&data->update_lock);
|
|
orig_val = data->bank2_settings[attr->index][0];
|
|
|
|
if (mask)
|
|
data->bank2_settings[attr->index][0] |= attr->nr;
|
|
else
|
|
data->bank2_settings[attr->index][0] &= ~attr->nr;
|
|
|
|
if ((data->bank2_settings[attr->index][0] != orig_val) &&
|
|
(abituguru_write(data,
|
|
ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
|
|
data->bank2_settings[attr->index], 2) < 1)) {
|
|
data->bank2_settings[attr->index][0] = orig_val;
|
|
ret = -EIO;
|
|
}
|
|
mutex_unlock(&data->update_lock);
|
|
return ret;
|
|
}
|
|
|
|
/* Fan PWM (speed control) */
|
|
static ssize_t show_pwm_setting(struct device *dev,
|
|
struct device_attribute *devattr, char *buf)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
|
|
abituguru_pwm_settings_multiplier[attr->nr]);
|
|
}
|
|
|
|
static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
|
|
*devattr, const char *buf, size_t count)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
u8 min;
|
|
unsigned long val;
|
|
ssize_t ret;
|
|
|
|
ret = kstrtoul(buf, 10, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = count;
|
|
val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
|
|
abituguru_pwm_settings_multiplier[attr->nr];
|
|
|
|
/* special case pwm1 min pwm% */
|
|
if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
|
|
min = 77;
|
|
else
|
|
min = abituguru_pwm_min[attr->nr];
|
|
|
|
/* this check can be done before taking the lock */
|
|
if (val < min || val > abituguru_pwm_max[attr->nr])
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&data->update_lock);
|
|
/* this check needs to be done after taking the lock */
|
|
if ((attr->nr & 1) &&
|
|
(val >= data->pwm_settings[attr->index][attr->nr + 1]))
|
|
ret = -EINVAL;
|
|
else if (!(attr->nr & 1) &&
|
|
(val <= data->pwm_settings[attr->index][attr->nr - 1]))
|
|
ret = -EINVAL;
|
|
else if (data->pwm_settings[attr->index][attr->nr] != val) {
|
|
u8 orig_val = data->pwm_settings[attr->index][attr->nr];
|
|
data->pwm_settings[attr->index][attr->nr] = val;
|
|
if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
|
|
attr->index, data->pwm_settings[attr->index],
|
|
5) <= attr->nr) {
|
|
data->pwm_settings[attr->index][attr->nr] =
|
|
orig_val;
|
|
ret = -EIO;
|
|
}
|
|
}
|
|
mutex_unlock(&data->update_lock);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t show_pwm_sensor(struct device *dev,
|
|
struct device_attribute *devattr, char *buf)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
int i;
|
|
/*
|
|
* We need to walk to the temp sensor addresses to find what
|
|
* the userspace id of the configured temp sensor is.
|
|
*/
|
|
for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
|
|
if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
|
|
(data->pwm_settings[attr->index][0] & 0x0F))
|
|
return sprintf(buf, "%d\n", i+1);
|
|
|
|
return -ENXIO;
|
|
}
|
|
|
|
static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
|
|
*devattr, const char *buf, size_t count)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
ssize_t ret;
|
|
unsigned long val;
|
|
u8 orig_val;
|
|
u8 address;
|
|
|
|
ret = kstrtoul(buf, 10, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
|
|
return -EINVAL;
|
|
|
|
val -= 1;
|
|
ret = count;
|
|
mutex_lock(&data->update_lock);
|
|
orig_val = data->pwm_settings[attr->index][0];
|
|
address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
|
|
data->pwm_settings[attr->index][0] &= 0xF0;
|
|
data->pwm_settings[attr->index][0] |= address;
|
|
if (data->pwm_settings[attr->index][0] != orig_val) {
|
|
if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
|
|
data->pwm_settings[attr->index], 5) < 1) {
|
|
data->pwm_settings[attr->index][0] = orig_val;
|
|
ret = -EIO;
|
|
}
|
|
}
|
|
mutex_unlock(&data->update_lock);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t show_pwm_enable(struct device *dev,
|
|
struct device_attribute *devattr, char *buf)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
int res = 0;
|
|
if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
|
|
res = 2;
|
|
return sprintf(buf, "%d\n", res);
|
|
}
|
|
|
|
static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
|
|
*devattr, const char *buf, size_t count)
|
|
{
|
|
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
u8 orig_val;
|
|
ssize_t ret;
|
|
unsigned long user_val;
|
|
|
|
ret = kstrtoul(buf, 10, &user_val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = count;
|
|
mutex_lock(&data->update_lock);
|
|
orig_val = data->pwm_settings[attr->index][0];
|
|
switch (user_val) {
|
|
case 0:
|
|
data->pwm_settings[attr->index][0] &=
|
|
~ABIT_UGURU_FAN_PWM_ENABLE;
|
|
break;
|
|
case 2:
|
|
data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
if ((data->pwm_settings[attr->index][0] != orig_val) &&
|
|
(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
|
|
attr->index, data->pwm_settings[attr->index],
|
|
5) < 1)) {
|
|
data->pwm_settings[attr->index][0] = orig_val;
|
|
ret = -EIO;
|
|
}
|
|
mutex_unlock(&data->update_lock);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t show_name(struct device *dev,
|
|
struct device_attribute *devattr, char *buf)
|
|
{
|
|
return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
|
|
}
|
|
|
|
/* Sysfs attr templates, the real entries are generated automatically. */
|
|
static const
|
|
struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
|
|
{
|
|
SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
|
|
SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
|
|
store_bank1_setting, 1, 0),
|
|
SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
|
|
ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
|
|
SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
|
|
store_bank1_setting, 2, 0),
|
|
SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
|
|
ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
|
|
SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
|
|
store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
|
|
SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
|
|
store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
|
|
SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
|
|
store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
|
|
SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
|
|
store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
|
|
}, {
|
|
SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
|
|
SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
|
|
ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
|
|
SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
|
|
store_bank1_setting, 1, 0),
|
|
SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
|
|
store_bank1_setting, 2, 0),
|
|
SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
|
|
store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
|
|
SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
|
|
store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
|
|
SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
|
|
store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
|
|
}
|
|
};
|
|
|
|
static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
|
|
SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
|
|
SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
|
|
SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
|
|
store_bank2_setting, 1, 0),
|
|
SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
|
|
store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
|
|
SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
|
|
store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
|
|
SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
|
|
store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
|
|
};
|
|
|
|
static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
|
|
SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
|
|
store_pwm_enable, 0, 0),
|
|
SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
|
|
store_pwm_sensor, 0, 0),
|
|
SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
|
|
store_pwm_setting, 1, 0),
|
|
SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
|
|
store_pwm_setting, 2, 0),
|
|
SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
|
|
store_pwm_setting, 3, 0),
|
|
SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
|
|
store_pwm_setting, 4, 0),
|
|
};
|
|
|
|
static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
|
|
SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
|
|
};
|
|
|
|
static int abituguru_probe(struct platform_device *pdev)
|
|
{
|
|
struct abituguru_data *data;
|
|
int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
|
|
char *sysfs_filename;
|
|
|
|
/*
|
|
* El weirdo probe order, to keep the sysfs order identical to the
|
|
* BIOS and window-appliction listing order.
|
|
*/
|
|
const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
|
|
0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
|
|
0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
|
|
|
|
data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
|
|
GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
|
|
mutex_init(&data->update_lock);
|
|
platform_set_drvdata(pdev, data);
|
|
|
|
/* See if the uGuru is ready */
|
|
if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
|
|
data->uguru_ready = 1;
|
|
|
|
/*
|
|
* Completely read the uGuru this has 2 purposes:
|
|
* - testread / see if one really is there.
|
|
* - make an in memory copy of all the uguru settings for future use.
|
|
*/
|
|
if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
|
|
data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
|
|
goto abituguru_probe_error;
|
|
|
|
for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
|
|
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
|
|
&data->bank1_value[i], 1,
|
|
ABIT_UGURU_MAX_RETRIES) != 1)
|
|
goto abituguru_probe_error;
|
|
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
|
|
data->bank1_settings[i], 3,
|
|
ABIT_UGURU_MAX_RETRIES) != 3)
|
|
goto abituguru_probe_error;
|
|
}
|
|
/*
|
|
* Note: We don't know how many bank2 sensors / pwms there really are,
|
|
* but in order to "detect" this we need to read the maximum amount
|
|
* anyways. If we read sensors/pwms not there we'll just read crap
|
|
* this can't hurt. We need the detection because we don't want
|
|
* unwanted writes, which will hurt!
|
|
*/
|
|
for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
|
|
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
|
|
&data->bank2_value[i], 1,
|
|
ABIT_UGURU_MAX_RETRIES) != 1)
|
|
goto abituguru_probe_error;
|
|
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
|
|
data->bank2_settings[i], 2,
|
|
ABIT_UGURU_MAX_RETRIES) != 2)
|
|
goto abituguru_probe_error;
|
|
}
|
|
for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
|
|
if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
|
|
data->pwm_settings[i], 5,
|
|
ABIT_UGURU_MAX_RETRIES) != 5)
|
|
goto abituguru_probe_error;
|
|
}
|
|
data->last_updated = jiffies;
|
|
|
|
/* Detect sensor types and fill the sysfs attr for bank1 */
|
|
sysfs_attr_i = 0;
|
|
sysfs_filename = data->sysfs_names;
|
|
sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
|
|
for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
|
|
res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
|
|
if (res < 0)
|
|
goto abituguru_probe_error;
|
|
if (res == ABIT_UGURU_NC)
|
|
continue;
|
|
|
|
/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
|
|
for (j = 0; j < (res ? 7 : 9); j++) {
|
|
used = snprintf(sysfs_filename, sysfs_names_free,
|
|
abituguru_sysfs_bank1_templ[res][j].dev_attr.
|
|
attr.name, data->bank1_sensors[res] + res)
|
|
+ 1;
|
|
data->sysfs_attr[sysfs_attr_i] =
|
|
abituguru_sysfs_bank1_templ[res][j];
|
|
data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
|
|
sysfs_filename;
|
|
data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
|
|
sysfs_filename += used;
|
|
sysfs_names_free -= used;
|
|
sysfs_attr_i++;
|
|
}
|
|
data->bank1_max_value[probe_order[i]] =
|
|
abituguru_bank1_max_value[res];
|
|
data->bank1_address[res][data->bank1_sensors[res]] =
|
|
probe_order[i];
|
|
data->bank1_sensors[res]++;
|
|
}
|
|
/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
|
|
abituguru_detect_no_bank2_sensors(data);
|
|
for (i = 0; i < data->bank2_sensors; i++) {
|
|
for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
|
|
used = snprintf(sysfs_filename, sysfs_names_free,
|
|
abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
|
|
i + 1) + 1;
|
|
data->sysfs_attr[sysfs_attr_i] =
|
|
abituguru_sysfs_fan_templ[j];
|
|
data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
|
|
sysfs_filename;
|
|
data->sysfs_attr[sysfs_attr_i].index = i;
|
|
sysfs_filename += used;
|
|
sysfs_names_free -= used;
|
|
sysfs_attr_i++;
|
|
}
|
|
}
|
|
/* Detect number of sensors and fill the sysfs attr for pwms */
|
|
abituguru_detect_no_pwms(data);
|
|
for (i = 0; i < data->pwms; i++) {
|
|
for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
|
|
used = snprintf(sysfs_filename, sysfs_names_free,
|
|
abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
|
|
i + 1) + 1;
|
|
data->sysfs_attr[sysfs_attr_i] =
|
|
abituguru_sysfs_pwm_templ[j];
|
|
data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
|
|
sysfs_filename;
|
|
data->sysfs_attr[sysfs_attr_i].index = i;
|
|
sysfs_filename += used;
|
|
sysfs_names_free -= used;
|
|
sysfs_attr_i++;
|
|
}
|
|
}
|
|
/* Fail safe check, this should never happen! */
|
|
if (sysfs_names_free < 0) {
|
|
pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
|
|
never_happen, report_this);
|
|
res = -ENAMETOOLONG;
|
|
goto abituguru_probe_error;
|
|
}
|
|
pr_info("found Abit uGuru\n");
|
|
|
|
/* Register sysfs hooks */
|
|
for (i = 0; i < sysfs_attr_i; i++) {
|
|
res = device_create_file(&pdev->dev,
|
|
&data->sysfs_attr[i].dev_attr);
|
|
if (res)
|
|
goto abituguru_probe_error;
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
|
|
res = device_create_file(&pdev->dev,
|
|
&abituguru_sysfs_attr[i].dev_attr);
|
|
if (res)
|
|
goto abituguru_probe_error;
|
|
}
|
|
|
|
data->hwmon_dev = hwmon_device_register(&pdev->dev);
|
|
if (!IS_ERR(data->hwmon_dev))
|
|
return 0; /* success */
|
|
|
|
res = PTR_ERR(data->hwmon_dev);
|
|
abituguru_probe_error:
|
|
for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
|
|
device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
|
|
for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
|
|
device_remove_file(&pdev->dev,
|
|
&abituguru_sysfs_attr[i].dev_attr);
|
|
return res;
|
|
}
|
|
|
|
static int abituguru_remove(struct platform_device *pdev)
|
|
{
|
|
int i;
|
|
struct abituguru_data *data = platform_get_drvdata(pdev);
|
|
|
|
hwmon_device_unregister(data->hwmon_dev);
|
|
for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
|
|
device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
|
|
for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
|
|
device_remove_file(&pdev->dev,
|
|
&abituguru_sysfs_attr[i].dev_attr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct abituguru_data *abituguru_update_device(struct device *dev)
|
|
{
|
|
int i, err;
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
/* fake a complete successful read if no update necessary. */
|
|
char success = 1;
|
|
|
|
mutex_lock(&data->update_lock);
|
|
if (time_after(jiffies, data->last_updated + HZ)) {
|
|
success = 0;
|
|
err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
|
|
data->alarms, 3, 0);
|
|
if (err != 3)
|
|
goto LEAVE_UPDATE;
|
|
for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
|
|
err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
|
|
i, &data->bank1_value[i], 1, 0);
|
|
if (err != 1)
|
|
goto LEAVE_UPDATE;
|
|
err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
|
|
i, data->bank1_settings[i], 3, 0);
|
|
if (err != 3)
|
|
goto LEAVE_UPDATE;
|
|
}
|
|
for (i = 0; i < data->bank2_sensors; i++) {
|
|
err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
|
|
&data->bank2_value[i], 1, 0);
|
|
if (err != 1)
|
|
goto LEAVE_UPDATE;
|
|
}
|
|
/* success! */
|
|
success = 1;
|
|
data->update_timeouts = 0;
|
|
LEAVE_UPDATE:
|
|
/* handle timeout condition */
|
|
if (!success && (err == -EBUSY || err >= 0)) {
|
|
/* No overflow please */
|
|
if (data->update_timeouts < 255u)
|
|
data->update_timeouts++;
|
|
if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
|
|
ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
|
|
"try again next update\n");
|
|
/* Just a timeout, fake a successful read */
|
|
success = 1;
|
|
} else
|
|
ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
|
|
"times waiting for more input state\n",
|
|
(int)data->update_timeouts);
|
|
}
|
|
/* On success set last_updated */
|
|
if (success)
|
|
data->last_updated = jiffies;
|
|
}
|
|
mutex_unlock(&data->update_lock);
|
|
|
|
if (success)
|
|
return data;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int abituguru_suspend(struct device *dev)
|
|
{
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
/*
|
|
* make sure all communications with the uguru are done and no new
|
|
* ones are started
|
|
*/
|
|
mutex_lock(&data->update_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int abituguru_resume(struct device *dev)
|
|
{
|
|
struct abituguru_data *data = dev_get_drvdata(dev);
|
|
/* See if the uGuru is still ready */
|
|
if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
|
|
data->uguru_ready = 0;
|
|
mutex_unlock(&data->update_lock);
|
|
return 0;
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
|
|
#define ABIT_UGURU_PM (&abituguru_pm)
|
|
#else
|
|
#define ABIT_UGURU_PM NULL
|
|
#endif /* CONFIG_PM */
|
|
|
|
static struct platform_driver abituguru_driver = {
|
|
.driver = {
|
|
.name = ABIT_UGURU_NAME,
|
|
.pm = ABIT_UGURU_PM,
|
|
},
|
|
.probe = abituguru_probe,
|
|
.remove = abituguru_remove,
|
|
};
|
|
|
|
static int __init abituguru_detect(void)
|
|
{
|
|
/*
|
|
* See if there is an uguru there. After a reboot uGuru will hold 0x00
|
|
* at DATA and 0xAC, when this driver has already been loaded once
|
|
* DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
|
|
* scenario but some will hold 0x00.
|
|
* Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
|
|
* after reading CMD first, so CMD must be read first!
|
|
*/
|
|
u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
|
|
u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
|
|
if (((data_val == 0x00) || (data_val == 0x08)) &&
|
|
((cmd_val == 0x00) || (cmd_val == 0xAC)))
|
|
return ABIT_UGURU_BASE;
|
|
|
|
ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
|
|
"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
|
|
|
|
if (force) {
|
|
pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
|
|
return ABIT_UGURU_BASE;
|
|
}
|
|
|
|
/* No uGuru found */
|
|
return -ENODEV;
|
|
}
|
|
|
|
static struct platform_device *abituguru_pdev;
|
|
|
|
static int __init abituguru_init(void)
|
|
{
|
|
int address, err;
|
|
struct resource res = { .flags = IORESOURCE_IO };
|
|
const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
|
|
|
|
/* safety check, refuse to load on non Abit motherboards */
|
|
if (!force && (!board_vendor ||
|
|
strcmp(board_vendor, "http://www.abit.com.tw/")))
|
|
return -ENODEV;
|
|
|
|
address = abituguru_detect();
|
|
if (address < 0)
|
|
return address;
|
|
|
|
err = platform_driver_register(&abituguru_driver);
|
|
if (err)
|
|
goto exit;
|
|
|
|
abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
|
|
if (!abituguru_pdev) {
|
|
pr_err("Device allocation failed\n");
|
|
err = -ENOMEM;
|
|
goto exit_driver_unregister;
|
|
}
|
|
|
|
res.start = address;
|
|
res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
|
|
res.name = ABIT_UGURU_NAME;
|
|
|
|
err = platform_device_add_resources(abituguru_pdev, &res, 1);
|
|
if (err) {
|
|
pr_err("Device resource addition failed (%d)\n", err);
|
|
goto exit_device_put;
|
|
}
|
|
|
|
err = platform_device_add(abituguru_pdev);
|
|
if (err) {
|
|
pr_err("Device addition failed (%d)\n", err);
|
|
goto exit_device_put;
|
|
}
|
|
|
|
return 0;
|
|
|
|
exit_device_put:
|
|
platform_device_put(abituguru_pdev);
|
|
exit_driver_unregister:
|
|
platform_driver_unregister(&abituguru_driver);
|
|
exit:
|
|
return err;
|
|
}
|
|
|
|
static void __exit abituguru_exit(void)
|
|
{
|
|
platform_device_unregister(abituguru_pdev);
|
|
platform_driver_unregister(&abituguru_driver);
|
|
}
|
|
|
|
MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
|
|
MODULE_DESCRIPTION("Abit uGuru Sensor device");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
module_init(abituguru_init);
|
|
module_exit(abituguru_exit);
|