linux_dsm_epyc7002/drivers/tty/serial/mfd.c
Linus Torvalds f991fae5c6 Power management and ACPI updates for 3.11-rc1
- Hotplug changes allowing device hot-removal operations to fail
   gracefully (instead of crashing the kernel) if they cannot be
   carried out completely.  From Rafael J Wysocki and Toshi Kani.
 
 - Freezer update from Colin Cross and Mandeep Singh Baines targeted
   at making the freezing of tasks a bit less heavy weight operation.
 
 - cpufreq resume fix from Srivatsa S Bhat for a regression introduced
   during the 3.10 cycle causing some cpufreq sysfs attributes to
   return wrong values to user space after resume.
 
 - New freqdomain_cpus sysfs attribute for the acpi-cpufreq driver to
   provide information previously available via related_cpus from
   Lan Tianyu.
 
 - cpufreq fixes and cleanups from Viresh Kumar, Jacob Shin,
   Heiko Stübner, Xiaoguang Chen, Ezequiel Garcia, Arnd Bergmann, and
   Tang Yuantian.
 
 - Fix for an ACPICA regression causing suspend/resume issues to
   appear on some systems introduced during the 3.4 development cycle
   from Lv Zheng.
 
 - ACPICA fixes and cleanups from Bob Moore, Tomasz Nowicki, Lv Zheng,
   Chao Guan, and Zhang Rui.
 
 - New cupidle driver for Xilinx Zynq processors from Michal Simek.
 
 - cpuidle fixes and cleanups from Daniel Lezcano.
 
 - Changes to make suspend/resume work correctly in Xen guests from
   Konrad Rzeszutek Wilk.
 
 - ACPI device power management fixes and cleanups from Fengguang Wu
   and Rafael J Wysocki.
 
 - ACPI documentation updates from Lv Zheng, Aaron Lu and Hanjun Guo.
 
 - Fix for the IA-64 issue that was the reason for reverting commit
   9f29ab1 and updates of the ACPI scan code from Rafael J Wysocki.
 
 - Mechanism for adding CMOS RTC address space handlers from Lan Tianyu
   (to allow some EC-related breakage to be fixed on some systems).
 
 - Spec-compliant implementation of acpi_os_get_timer() from
   Mika Westerberg.
 
 - Modification of do_acpi_find_child() to execute _STA in order to
   to avoid situations in which a pointer to a disabled device object
   is returned instead of an enabled one with the same _ADR value.
   From Jeff Wu.
 
 - Intel BayTrail PCH (Platform Controller Hub) support for the ACPI
   Intel Low-Power Subsystems (LPSS) driver and modificaions of that
   driver to work around a couple of known BIOS issues from
   Mika Westerberg and Heikki Krogerus.
 
 - EC driver fix from Vasiliy Kulikov to make it use get_user() and
   put_user() instead of dereferencing user space pointers blindly.
 
 - Assorted ACPI code cleanups from Bjorn Helgaas, Nicholas Mazzuca and
   Toshi Kani.
 
 - Modification of the "runtime idle" helper routine to take the return
   values of the callbacks executed by it into account and to call
   rpm_suspend() if they return 0, which allows some code bloat
   reduction to be done, from Rafael J Wysocki and Alan Stern.
 
 - New trace points for PM QoS from Sahara <keun-o.park@windriver.com>.
 
 - PM QoS documentation update from Lan Tianyu.
 
 - Assorted core PM code cleanups and changes from Bernie Thompson,
   Bjorn Helgaas, Julius Werner, and Shuah Khan.
 
 - New devfreq driver for the Exynos5-bus device from Abhilash Kesavan.
 
 - Minor devfreq cleanups, fixes and MAINTAINERS update from
   MyungJoo Ham, Abhilash Kesavan, Paul Bolle, Rajagopal Venkat, and
   Wei Yongjun.
 
 - OMAP Adaptive Voltage Scaling (AVS) SmartReflex voltage control
   driver updates from Andrii Tseglytskyi and Nishanth Menon.
 
 /
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.19 (GNU/Linux)
 
 iQIcBAABAgAGBQJR0ZNOAAoJEKhOf7ml8uNsDLYP/0EU4rmvw0TWTITfp6RS1KDE
 9GwBn96ZR4Q5bJd9gBCTPSqhHOYMqxWEUp99sn/M2wehG1pk/jw5LO56+2IhM3UZ
 g1HDcJ7te2nVT/iXsKiAGTVhU9Rk0aYwoVSknwk27qpIBGxW9w/s5tLX8pY3Q3Zq
 wL/7aTPjyL+PFFFEaxgH7qLqsl3DhbtYW5AriUBTkXout/tJ4eO1b7MNBncLDh8X
 VQ/0DNCKE95VEJfkO4rk9RKUyVp9GDn0i+HXCD/FS4IA5oYzePdVdNDmXf7g+swe
 CGlTZq8pB+oBpDiHl4lxzbNrKQjRNbGnDUkoRcWqn0nAw56xK+vmYnWJhW99gQ/I
 fKnvxeLca5po1aiqmC4VSJxZIatFZqLrZAI4dzoCLWY+bGeTnCKmj0/F8ytFnZA2
 8IuLLs7/dFOaHXV/pKmpg6FAlFa9CPxoqRFoyqb4M0GjEarADyalXUWsPtG+6xCp
 R/p0CISpwk+guKZR/qPhL7M654S7SHrPwd2DPF0KgGsvk+G2GhoB8EzvD8BVp98Z
 9siCGCdgKQfJQVI6R0k9aFmn/4gRQIAgyPhkhv9tqULUUkiaXki+/t8kPfnb8O/d
 zep+CA57E2G8MYLkDJfpFeKS7GpPD6TIdgFdGmOUC0Y6sl9iTdiw4yTx8O2JM37z
 rHBZfYGkJBrbGRu+Q1gs
 =VBBq
 -----END PGP SIGNATURE-----

Merge tag 'pm+acpi-3.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management and ACPI updates from Rafael Wysocki:
 "This time the total number of ACPI commits is slightly greater than
  the number of cpufreq commits, but Viresh Kumar (who works on cpufreq)
  remains the most active patch submitter.

  To me, the most significant change is the addition of offline/online
  device operations to the driver core (with the Greg's blessing) and
  the related modifications of the ACPI core hotplug code.  Next are the
  freezer updates from Colin Cross that should make the freezing of
  tasks a bit less heavy weight.

  We also have a couple of regression fixes, a number of fixes for
  issues that have not been identified as regressions, two new drivers
  and a bunch of cleanups all over.

  Highlights:

   - Hotplug changes to support graceful hot-removal failures.

     It sometimes is necessary to fail device hot-removal operations
     gracefully if they cannot be carried out completely.  For example,
     if memory from a memory module being hot-removed has been allocated
     for the kernel's own use and cannot be moved elsewhere, it's
     desirable to fail the hot-removal operation in a graceful way
     rather than to crash the kernel, but currenty a success or a kernel
     crash are the only possible outcomes of an attempted memory
     hot-removal.  Needless to say, that is not a very attractive
     alternative and it had to be addressed.

     However, in order to make it work for memory, I first had to make
     it work for CPUs and for this purpose I needed to modify the ACPI
     processor driver.  It's been split into two parts, a resident one
     handling the low-level initialization/cleanup and a modular one
     playing the actual driver's role (but it binds to the CPU system
     device objects rather than to the ACPI device objects representing
     processors).  That's been sort of like a live brain surgery on a
     patient who's riding a bike.

     So this is a little scary, but since we found and fixed a couple of
     regressions it caused to happen during the early linux-next testing
     (a month ago), nobody has complained.

     As a bonus we remove some duplicated ACPI hotplug code, because the
     ACPI-based CPU hotplug is now going to use the common ACPI hotplug
     code.

   - Lighter weight freezing of tasks.

     These changes from Colin Cross and Mandeep Singh Baines are
     targeted at making the freezing of tasks a bit less heavy weight
     operation.  They reduce the number of tasks woken up every time
     during the freezing, by using the observation that the freezer
     simply doesn't need to wake up some of them and wait for them all
     to call refrigerator().  The time needed for the freezer to decide
     to report a failure is reduced too.

     Also reintroduced is the check causing a lockdep warining to
     trigger when try_to_freeze() is called with locks held (which is
     generally unsafe and shouldn't happen).

   - cpufreq updates

     First off, a commit from Srivatsa S Bhat fixes a resume regression
     introduced during the 3.10 cycle causing some cpufreq sysfs
     attributes to return wrong values to user space after resume.  The
     fix is kind of fresh, but also it's pretty obvious once Srivatsa
     has identified the root cause.

     Second, we have a new freqdomain_cpus sysfs attribute for the
     acpi-cpufreq driver to provide information previously available via
     related_cpus.  From Lan Tianyu.

     Finally, we fix a number of issues, mostly related to the
     CPUFREQ_POSTCHANGE notifier and cpufreq Kconfig options and clean
     up some code.  The majority of changes from Viresh Kumar with bits
     from Jacob Shin, Heiko Stübner, Xiaoguang Chen, Ezequiel Garcia,
     Arnd Bergmann, and Tang Yuantian.

   - ACPICA update

     A usual bunch of updates from the ACPICA upstream.

     During the 3.4 cycle we introduced support for ACPI 5 extended
     sleep registers, but they are only supposed to be used if the
     HW-reduced mode bit is set in the FADT flags and the code attempted
     to use them without checking that bit.  That caused suspend/resume
     regressions to happen on some systems.  Fix from Lv Zheng causes
     those registers to be used only if the HW-reduced mode bit is set.

     Apart from this some other ACPICA bugs are fixed and code cleanups
     are made by Bob Moore, Tomasz Nowicki, Lv Zheng, Chao Guan, and
     Zhang Rui.

   - cpuidle updates

     New driver for Xilinx Zynq processors is added by Michal Simek.

     Multidriver support simplification, addition of some missing
     kerneldoc comments and Kconfig-related fixes come from Daniel
     Lezcano.

   - ACPI power management updates

     Changes to make suspend/resume work correctly in Xen guests from
     Konrad Rzeszutek Wilk, sparse warning fix from Fengguang Wu and
     cleanups and fixes of the ACPI device power state selection
     routine.

   - ACPI documentation updates

     Some previously missing pieces of ACPI documentation are added by
     Lv Zheng and Aaron Lu (hopefully, that will help people to
     uderstand how the ACPI subsystem works) and one outdated doc is
     updated by Hanjun Guo.

   - Assorted ACPI updates

     We finally nailed down the IA-64 issue that was the reason for
     reverting commit 9f29ab11dd ("ACPI / scan: do not match drivers
     against objects having scan handlers"), so we can fix it and move
     the ACPI scan handler check added to the ACPI video driver back to
     the core.

     A mechanism for adding CMOS RTC address space handlers is
     introduced by Lan Tianyu to allow some EC-related breakage to be
     fixed on some systems.

     A spec-compliant implementation of acpi_os_get_timer() is added by
     Mika Westerberg.

     The evaluation of _STA is added to do_acpi_find_child() to avoid
     situations in which a pointer to a disabled device object is
     returned instead of an enabled one with the same _ADR value.  From
     Jeff Wu.

     Intel BayTrail PCH (Platform Controller Hub) support is added to
     the ACPI driver for Intel Low-Power Subsystems (LPSS) and that
     driver is modified to work around a couple of known BIOS issues.
     Changes from Mika Westerberg and Heikki Krogerus.

     The EC driver is fixed by Vasiliy Kulikov to use get_user() and
     put_user() instead of dereferencing user space pointers blindly.

     Code cleanups are made by Bjorn Helgaas, Nicholas Mazzuca and Toshi
     Kani.

   - Assorted power management updates

     The "runtime idle" helper routine is changed to take the return
     values of the callbacks executed by it into account and to call
     rpm_suspend() if they return 0, which allows us to reduce the
     overall code bloat a bit (by dropping some code that's not
     necessary any more after that modification).

     The runtime PM documentation is updated by Alan Stern (to reflect
     the "runtime idle" behavior change).

     New trace points for PM QoS are added by Sahara
     (<keun-o.park@windriver.com>).

     PM QoS documentation is updated by Lan Tianyu.

     Code cleanups are made and minor issues are addressed by Bernie
     Thompson, Bjorn Helgaas, Julius Werner, and Shuah Khan.

   - devfreq updates

     New driver for the Exynos5-bus device from Abhilash Kesavan.

     Minor cleanups, fixes and MAINTAINERS update from MyungJoo Ham,
     Abhilash Kesavan, Paul Bolle, Rajagopal Venkat, and Wei Yongjun.

   - OMAP power management updates

     Adaptive Voltage Scaling (AVS) SmartReflex voltage control driver
     updates from Andrii Tseglytskyi and Nishanth Menon."

* tag 'pm+acpi-3.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (162 commits)
  cpufreq: Fix cpufreq regression after suspend/resume
  ACPI / PM: Fix possible NULL pointer deref in acpi_pm_device_sleep_state()
  PM / Sleep: Warn about system time after resume with pm_trace
  cpufreq: don't leave stale policy pointer in cdbs->cur_policy
  acpi-cpufreq: Add new sysfs attribute freqdomain_cpus
  cpufreq: make sure frequency transitions are serialized
  ACPI: implement acpi_os_get_timer() according the spec
  ACPI / EC: Add HP Folio 13 to ec_dmi_table in order to skip DSDT scan
  ACPI: Add CMOS RTC Operation Region handler support
  ACPI / processor: Drop unused variable from processor_perflib.c
  cpufreq: tegra: call CPUFREQ_POSTCHANGE notfier in error cases
  cpufreq: s3c64xx: call CPUFREQ_POSTCHANGE notfier in error cases
  cpufreq: omap: call CPUFREQ_POSTCHANGE notfier in error cases
  cpufreq: imx6q: call CPUFREQ_POSTCHANGE notfier in error cases
  cpufreq: exynos: call CPUFREQ_POSTCHANGE notfier in error cases
  cpufreq: dbx500: call CPUFREQ_POSTCHANGE notfier in error cases
  cpufreq: davinci: call CPUFREQ_POSTCHANGE notfier in error cases
  cpufreq: arm-big-little: call CPUFREQ_POSTCHANGE notfier in error cases
  cpufreq: powernow-k8: call CPUFREQ_POSTCHANGE notfier in error cases
  cpufreq: pcc: call CPUFREQ_POSTCHANGE notfier in error cases
  ...
2013-07-03 14:35:40 -07:00

1502 lines
36 KiB
C

/*
* mfd.c: driver for High Speed UART device of Intel Medfield platform
*
* Refer pxa.c, 8250.c and some other drivers in drivers/serial/
*
* (C) Copyright 2010 Intel Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
/* Notes:
* 1. DMA channel allocation: 0/1 channel are assigned to port 0,
* 2/3 chan to port 1, 4/5 chan to port 3. Even number chans
* are used for RX, odd chans for TX
*
* 2. The RI/DSR/DCD/DTR are not pinned out, DCD & DSR are always
* asserted, only when the HW is reset the DDCD and DDSR will
* be triggered
*/
#if defined(CONFIG_SERIAL_MFD_HSU_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#include <linux/module.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/sysrq.h>
#include <linux/slab.h>
#include <linux/serial_reg.h>
#include <linux/circ_buf.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <linux/serial_mfd.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/nmi.h>
#include <linux/io.h>
#include <linux/debugfs.h>
#include <linux/pm_runtime.h>
#define HSU_DMA_BUF_SIZE 2048
#define chan_readl(chan, offset) readl(chan->reg + offset)
#define chan_writel(chan, offset, val) writel(val, chan->reg + offset)
#define mfd_readl(obj, offset) readl(obj->reg + offset)
#define mfd_writel(obj, offset, val) writel(val, obj->reg + offset)
static int hsu_dma_enable;
module_param(hsu_dma_enable, int, 0);
MODULE_PARM_DESC(hsu_dma_enable,
"It is a bitmap to set working mode, if bit[x] is 1, then port[x] will work in DMA mode, otherwise in PIO mode.");
struct hsu_dma_buffer {
u8 *buf;
dma_addr_t dma_addr;
u32 dma_size;
u32 ofs;
};
struct hsu_dma_chan {
u32 id;
enum dma_data_direction dirt;
struct uart_hsu_port *uport;
void __iomem *reg;
};
struct uart_hsu_port {
struct uart_port port;
unsigned char ier;
unsigned char lcr;
unsigned char mcr;
unsigned int lsr_break_flag;
char name[12];
int index;
struct device *dev;
struct hsu_dma_chan *txc;
struct hsu_dma_chan *rxc;
struct hsu_dma_buffer txbuf;
struct hsu_dma_buffer rxbuf;
int use_dma; /* flag for DMA/PIO */
int running;
int dma_tx_on;
};
/* Top level data structure of HSU */
struct hsu_port {
void __iomem *reg;
unsigned long paddr;
unsigned long iolen;
u32 irq;
struct uart_hsu_port port[3];
struct hsu_dma_chan chans[10];
struct dentry *debugfs;
};
static inline unsigned int serial_in(struct uart_hsu_port *up, int offset)
{
unsigned int val;
if (offset > UART_MSR) {
offset <<= 2;
val = readl(up->port.membase + offset);
} else
val = (unsigned int)readb(up->port.membase + offset);
return val;
}
static inline void serial_out(struct uart_hsu_port *up, int offset, int value)
{
if (offset > UART_MSR) {
offset <<= 2;
writel(value, up->port.membase + offset);
} else {
unsigned char val = value & 0xff;
writeb(val, up->port.membase + offset);
}
}
#ifdef CONFIG_DEBUG_FS
#define HSU_REGS_BUFSIZE 1024
static ssize_t port_show_regs(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
struct uart_hsu_port *up = file->private_data;
char *buf;
u32 len = 0;
ssize_t ret;
buf = kzalloc(HSU_REGS_BUFSIZE, GFP_KERNEL);
if (!buf)
return 0;
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"MFD HSU port[%d] regs:\n", up->index);
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"=================================\n");
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"IER: \t\t0x%08x\n", serial_in(up, UART_IER));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"IIR: \t\t0x%08x\n", serial_in(up, UART_IIR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"LCR: \t\t0x%08x\n", serial_in(up, UART_LCR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"MCR: \t\t0x%08x\n", serial_in(up, UART_MCR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"LSR: \t\t0x%08x\n", serial_in(up, UART_LSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"MSR: \t\t0x%08x\n", serial_in(up, UART_MSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"FOR: \t\t0x%08x\n", serial_in(up, UART_FOR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"PS: \t\t0x%08x\n", serial_in(up, UART_PS));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"MUL: \t\t0x%08x\n", serial_in(up, UART_MUL));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"DIV: \t\t0x%08x\n", serial_in(up, UART_DIV));
if (len > HSU_REGS_BUFSIZE)
len = HSU_REGS_BUFSIZE;
ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
kfree(buf);
return ret;
}
static ssize_t dma_show_regs(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
struct hsu_dma_chan *chan = file->private_data;
char *buf;
u32 len = 0;
ssize_t ret;
buf = kzalloc(HSU_REGS_BUFSIZE, GFP_KERNEL);
if (!buf)
return 0;
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"MFD HSU DMA channel [%d] regs:\n", chan->id);
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"=================================\n");
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"CR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_CR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"DCR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_DCR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"BSR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_BSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"MOTSR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_MOTSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0SAR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D0SAR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0TSR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D0TSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0SAR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D1SAR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0TSR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D1TSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0SAR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D2SAR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0TSR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D2TSR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0SAR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D3SAR));
len += snprintf(buf + len, HSU_REGS_BUFSIZE - len,
"D0TSR: \t\t0x%08x\n", chan_readl(chan, HSU_CH_D3TSR));
if (len > HSU_REGS_BUFSIZE)
len = HSU_REGS_BUFSIZE;
ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
kfree(buf);
return ret;
}
static const struct file_operations port_regs_ops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = port_show_regs,
.llseek = default_llseek,
};
static const struct file_operations dma_regs_ops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = dma_show_regs,
.llseek = default_llseek,
};
static int hsu_debugfs_init(struct hsu_port *hsu)
{
int i;
char name[32];
hsu->debugfs = debugfs_create_dir("hsu", NULL);
if (!hsu->debugfs)
return -ENOMEM;
for (i = 0; i < 3; i++) {
snprintf(name, sizeof(name), "port_%d_regs", i);
debugfs_create_file(name, S_IFREG | S_IRUGO,
hsu->debugfs, (void *)(&hsu->port[i]), &port_regs_ops);
}
for (i = 0; i < 6; i++) {
snprintf(name, sizeof(name), "dma_chan_%d_regs", i);
debugfs_create_file(name, S_IFREG | S_IRUGO,
hsu->debugfs, (void *)&hsu->chans[i], &dma_regs_ops);
}
return 0;
}
static void hsu_debugfs_remove(struct hsu_port *hsu)
{
if (hsu->debugfs)
debugfs_remove_recursive(hsu->debugfs);
}
#else
static inline int hsu_debugfs_init(struct hsu_port *hsu)
{
return 0;
}
static inline void hsu_debugfs_remove(struct hsu_port *hsu)
{
}
#endif /* CONFIG_DEBUG_FS */
static void serial_hsu_enable_ms(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
up->ier |= UART_IER_MSI;
serial_out(up, UART_IER, up->ier);
}
void hsu_dma_tx(struct uart_hsu_port *up)
{
struct circ_buf *xmit = &up->port.state->xmit;
struct hsu_dma_buffer *dbuf = &up->txbuf;
int count;
/* test_and_set_bit may be better, but anyway it's in lock protected mode */
if (up->dma_tx_on)
return;
/* Update the circ buf info */
xmit->tail += dbuf->ofs;
xmit->tail &= UART_XMIT_SIZE - 1;
up->port.icount.tx += dbuf->ofs;
dbuf->ofs = 0;
/* Disable the channel */
chan_writel(up->txc, HSU_CH_CR, 0x0);
if (!uart_circ_empty(xmit) && !uart_tx_stopped(&up->port)) {
dma_sync_single_for_device(up->port.dev,
dbuf->dma_addr,
dbuf->dma_size,
DMA_TO_DEVICE);
count = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE);
dbuf->ofs = count;
/* Reprogram the channel */
chan_writel(up->txc, HSU_CH_D0SAR, dbuf->dma_addr + xmit->tail);
chan_writel(up->txc, HSU_CH_D0TSR, count);
/* Reenable the channel */
chan_writel(up->txc, HSU_CH_DCR, 0x1
| (0x1 << 8)
| (0x1 << 16)
| (0x1 << 24));
up->dma_tx_on = 1;
chan_writel(up->txc, HSU_CH_CR, 0x1);
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&up->port);
}
/* The buffer is already cache coherent */
void hsu_dma_start_rx_chan(struct hsu_dma_chan *rxc, struct hsu_dma_buffer *dbuf)
{
dbuf->ofs = 0;
chan_writel(rxc, HSU_CH_BSR, 32);
chan_writel(rxc, HSU_CH_MOTSR, 4);
chan_writel(rxc, HSU_CH_D0SAR, dbuf->dma_addr);
chan_writel(rxc, HSU_CH_D0TSR, dbuf->dma_size);
chan_writel(rxc, HSU_CH_DCR, 0x1 | (0x1 << 8)
| (0x1 << 16)
| (0x1 << 24) /* timeout bit, see HSU Errata 1 */
);
chan_writel(rxc, HSU_CH_CR, 0x3);
}
/* Protected by spin_lock_irqsave(port->lock) */
static void serial_hsu_start_tx(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
if (up->use_dma) {
hsu_dma_tx(up);
} else if (!(up->ier & UART_IER_THRI)) {
up->ier |= UART_IER_THRI;
serial_out(up, UART_IER, up->ier);
}
}
static void serial_hsu_stop_tx(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
struct hsu_dma_chan *txc = up->txc;
if (up->use_dma)
chan_writel(txc, HSU_CH_CR, 0x0);
else if (up->ier & UART_IER_THRI) {
up->ier &= ~UART_IER_THRI;
serial_out(up, UART_IER, up->ier);
}
}
/* This is always called in spinlock protected mode, so
* modify timeout timer is safe here */
void hsu_dma_rx(struct uart_hsu_port *up, u32 int_sts)
{
struct hsu_dma_buffer *dbuf = &up->rxbuf;
struct hsu_dma_chan *chan = up->rxc;
struct uart_port *port = &up->port;
struct tty_port *tport = &port->state->port;
int count;
/*
* First need to know how many is already transferred,
* then check if its a timeout DMA irq, and return
* the trail bytes out, push them up and reenable the
* channel
*/
/* Timeout IRQ, need wait some time, see Errata 2 */
if (int_sts & 0xf00)
udelay(2);
/* Stop the channel */
chan_writel(chan, HSU_CH_CR, 0x0);
count = chan_readl(chan, HSU_CH_D0SAR) - dbuf->dma_addr;
if (!count) {
/* Restart the channel before we leave */
chan_writel(chan, HSU_CH_CR, 0x3);
return;
}
dma_sync_single_for_cpu(port->dev, dbuf->dma_addr,
dbuf->dma_size, DMA_FROM_DEVICE);
/*
* Head will only wrap around when we recycle
* the DMA buffer, and when that happens, we
* explicitly set tail to 0. So head will
* always be greater than tail.
*/
tty_insert_flip_string(tport, dbuf->buf, count);
port->icount.rx += count;
dma_sync_single_for_device(up->port.dev, dbuf->dma_addr,
dbuf->dma_size, DMA_FROM_DEVICE);
/* Reprogram the channel */
chan_writel(chan, HSU_CH_D0SAR, dbuf->dma_addr);
chan_writel(chan, HSU_CH_D0TSR, dbuf->dma_size);
chan_writel(chan, HSU_CH_DCR, 0x1
| (0x1 << 8)
| (0x1 << 16)
| (0x1 << 24) /* timeout bit, see HSU Errata 1 */
);
tty_flip_buffer_push(tport);
chan_writel(chan, HSU_CH_CR, 0x3);
}
static void serial_hsu_stop_rx(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
struct hsu_dma_chan *chan = up->rxc;
if (up->use_dma)
chan_writel(chan, HSU_CH_CR, 0x2);
else {
up->ier &= ~UART_IER_RLSI;
up->port.read_status_mask &= ~UART_LSR_DR;
serial_out(up, UART_IER, up->ier);
}
}
static inline void receive_chars(struct uart_hsu_port *up, int *status)
{
unsigned int ch, flag;
unsigned int max_count = 256;
do {
ch = serial_in(up, UART_RX);
flag = TTY_NORMAL;
up->port.icount.rx++;
if (unlikely(*status & (UART_LSR_BI | UART_LSR_PE |
UART_LSR_FE | UART_LSR_OE))) {
dev_warn(up->dev, "We really rush into ERR/BI case"
"status = 0x%02x", *status);
/* For statistics only */
if (*status & UART_LSR_BI) {
*status &= ~(UART_LSR_FE | UART_LSR_PE);
up->port.icount.brk++;
/*
* We do the SysRQ and SAK checking
* here because otherwise the break
* may get masked by ignore_status_mask
* or read_status_mask.
*/
if (uart_handle_break(&up->port))
goto ignore_char;
} else if (*status & UART_LSR_PE)
up->port.icount.parity++;
else if (*status & UART_LSR_FE)
up->port.icount.frame++;
if (*status & UART_LSR_OE)
up->port.icount.overrun++;
/* Mask off conditions which should be ignored. */
*status &= up->port.read_status_mask;
#ifdef CONFIG_SERIAL_MFD_HSU_CONSOLE
if (up->port.cons &&
up->port.cons->index == up->port.line) {
/* Recover the break flag from console xmit */
*status |= up->lsr_break_flag;
up->lsr_break_flag = 0;
}
#endif
if (*status & UART_LSR_BI) {
flag = TTY_BREAK;
} else if (*status & UART_LSR_PE)
flag = TTY_PARITY;
else if (*status & UART_LSR_FE)
flag = TTY_FRAME;
}
if (uart_handle_sysrq_char(&up->port, ch))
goto ignore_char;
uart_insert_char(&up->port, *status, UART_LSR_OE, ch, flag);
ignore_char:
*status = serial_in(up, UART_LSR);
} while ((*status & UART_LSR_DR) && max_count--);
tty_flip_buffer_push(&up->port.state->port);
}
static void transmit_chars(struct uart_hsu_port *up)
{
struct circ_buf *xmit = &up->port.state->xmit;
int count;
if (up->port.x_char) {
serial_out(up, UART_TX, up->port.x_char);
up->port.icount.tx++;
up->port.x_char = 0;
return;
}
if (uart_circ_empty(xmit) || uart_tx_stopped(&up->port)) {
serial_hsu_stop_tx(&up->port);
return;
}
/* The IRQ is for TX FIFO half-empty */
count = up->port.fifosize / 2;
do {
serial_out(up, UART_TX, xmit->buf[xmit->tail]);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
up->port.icount.tx++;
if (uart_circ_empty(xmit))
break;
} while (--count > 0);
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&up->port);
if (uart_circ_empty(xmit))
serial_hsu_stop_tx(&up->port);
}
static inline void check_modem_status(struct uart_hsu_port *up)
{
int status;
status = serial_in(up, UART_MSR);
if ((status & UART_MSR_ANY_DELTA) == 0)
return;
if (status & UART_MSR_TERI)
up->port.icount.rng++;
if (status & UART_MSR_DDSR)
up->port.icount.dsr++;
/* We may only get DDCD when HW init and reset */
if (status & UART_MSR_DDCD)
uart_handle_dcd_change(&up->port, status & UART_MSR_DCD);
/* Will start/stop_tx accordingly */
if (status & UART_MSR_DCTS)
uart_handle_cts_change(&up->port, status & UART_MSR_CTS);
wake_up_interruptible(&up->port.state->port.delta_msr_wait);
}
/*
* This handles the interrupt from one port.
*/
static irqreturn_t port_irq(int irq, void *dev_id)
{
struct uart_hsu_port *up = dev_id;
unsigned int iir, lsr;
unsigned long flags;
if (unlikely(!up->running))
return IRQ_NONE;
spin_lock_irqsave(&up->port.lock, flags);
if (up->use_dma) {
lsr = serial_in(up, UART_LSR);
if (unlikely(lsr & (UART_LSR_BI | UART_LSR_PE |
UART_LSR_FE | UART_LSR_OE)))
dev_warn(up->dev,
"Got lsr irq while using DMA, lsr = 0x%2x\n",
lsr);
check_modem_status(up);
spin_unlock_irqrestore(&up->port.lock, flags);
return IRQ_HANDLED;
}
iir = serial_in(up, UART_IIR);
if (iir & UART_IIR_NO_INT) {
spin_unlock_irqrestore(&up->port.lock, flags);
return IRQ_NONE;
}
lsr = serial_in(up, UART_LSR);
if (lsr & UART_LSR_DR)
receive_chars(up, &lsr);
check_modem_status(up);
/* lsr will be renewed during the receive_chars */
if (lsr & UART_LSR_THRE)
transmit_chars(up);
spin_unlock_irqrestore(&up->port.lock, flags);
return IRQ_HANDLED;
}
static inline void dma_chan_irq(struct hsu_dma_chan *chan)
{
struct uart_hsu_port *up = chan->uport;
unsigned long flags;
u32 int_sts;
spin_lock_irqsave(&up->port.lock, flags);
if (!up->use_dma || !up->running)
goto exit;
/*
* No matter what situation, need read clear the IRQ status
* There is a bug, see Errata 5, HSD 2900918
*/
int_sts = chan_readl(chan, HSU_CH_SR);
/* Rx channel */
if (chan->dirt == DMA_FROM_DEVICE)
hsu_dma_rx(up, int_sts);
/* Tx channel */
if (chan->dirt == DMA_TO_DEVICE) {
chan_writel(chan, HSU_CH_CR, 0x0);
up->dma_tx_on = 0;
hsu_dma_tx(up);
}
exit:
spin_unlock_irqrestore(&up->port.lock, flags);
return;
}
static irqreturn_t dma_irq(int irq, void *dev_id)
{
struct hsu_port *hsu = dev_id;
u32 int_sts, i;
int_sts = mfd_readl(hsu, HSU_GBL_DMAISR);
/* Currently we only have 6 channels may be used */
for (i = 0; i < 6; i++) {
if (int_sts & 0x1)
dma_chan_irq(&hsu->chans[i]);
int_sts >>= 1;
}
return IRQ_HANDLED;
}
static unsigned int serial_hsu_tx_empty(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
unsigned long flags;
unsigned int ret;
spin_lock_irqsave(&up->port.lock, flags);
ret = serial_in(up, UART_LSR) & UART_LSR_TEMT ? TIOCSER_TEMT : 0;
spin_unlock_irqrestore(&up->port.lock, flags);
return ret;
}
static unsigned int serial_hsu_get_mctrl(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
unsigned char status;
unsigned int ret;
status = serial_in(up, UART_MSR);
ret = 0;
if (status & UART_MSR_DCD)
ret |= TIOCM_CAR;
if (status & UART_MSR_RI)
ret |= TIOCM_RNG;
if (status & UART_MSR_DSR)
ret |= TIOCM_DSR;
if (status & UART_MSR_CTS)
ret |= TIOCM_CTS;
return ret;
}
static void serial_hsu_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
unsigned char mcr = 0;
if (mctrl & TIOCM_RTS)
mcr |= UART_MCR_RTS;
if (mctrl & TIOCM_DTR)
mcr |= UART_MCR_DTR;
if (mctrl & TIOCM_OUT1)
mcr |= UART_MCR_OUT1;
if (mctrl & TIOCM_OUT2)
mcr |= UART_MCR_OUT2;
if (mctrl & TIOCM_LOOP)
mcr |= UART_MCR_LOOP;
mcr |= up->mcr;
serial_out(up, UART_MCR, mcr);
}
static void serial_hsu_break_ctl(struct uart_port *port, int break_state)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
unsigned long flags;
spin_lock_irqsave(&up->port.lock, flags);
if (break_state == -1)
up->lcr |= UART_LCR_SBC;
else
up->lcr &= ~UART_LCR_SBC;
serial_out(up, UART_LCR, up->lcr);
spin_unlock_irqrestore(&up->port.lock, flags);
}
/*
* What special to do:
* 1. chose the 64B fifo mode
* 2. start dma or pio depends on configuration
* 3. we only allocate dma memory when needed
*/
static int serial_hsu_startup(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
unsigned long flags;
pm_runtime_get_sync(up->dev);
/*
* Clear the FIFO buffers and disable them.
* (they will be reenabled in set_termios())
*/
serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO);
serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO |
UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT);
serial_out(up, UART_FCR, 0);
/* Clear the interrupt registers. */
(void) serial_in(up, UART_LSR);
(void) serial_in(up, UART_RX);
(void) serial_in(up, UART_IIR);
(void) serial_in(up, UART_MSR);
/* Now, initialize the UART, default is 8n1 */
serial_out(up, UART_LCR, UART_LCR_WLEN8);
spin_lock_irqsave(&up->port.lock, flags);
up->port.mctrl |= TIOCM_OUT2;
serial_hsu_set_mctrl(&up->port, up->port.mctrl);
/*
* Finally, enable interrupts. Note: Modem status interrupts
* are set via set_termios(), which will be occurring imminently
* anyway, so we don't enable them here.
*/
if (!up->use_dma)
up->ier = UART_IER_RLSI | UART_IER_RDI | UART_IER_RTOIE;
else
up->ier = 0;
serial_out(up, UART_IER, up->ier);
spin_unlock_irqrestore(&up->port.lock, flags);
/* DMA init */
if (up->use_dma) {
struct hsu_dma_buffer *dbuf;
struct circ_buf *xmit = &port->state->xmit;
up->dma_tx_on = 0;
/* First allocate the RX buffer */
dbuf = &up->rxbuf;
dbuf->buf = kzalloc(HSU_DMA_BUF_SIZE, GFP_KERNEL);
if (!dbuf->buf) {
up->use_dma = 0;
goto exit;
}
dbuf->dma_addr = dma_map_single(port->dev,
dbuf->buf,
HSU_DMA_BUF_SIZE,
DMA_FROM_DEVICE);
dbuf->dma_size = HSU_DMA_BUF_SIZE;
/* Start the RX channel right now */
hsu_dma_start_rx_chan(up->rxc, dbuf);
/* Next init the TX DMA */
dbuf = &up->txbuf;
dbuf->buf = xmit->buf;
dbuf->dma_addr = dma_map_single(port->dev,
dbuf->buf,
UART_XMIT_SIZE,
DMA_TO_DEVICE);
dbuf->dma_size = UART_XMIT_SIZE;
/* This should not be changed all around */
chan_writel(up->txc, HSU_CH_BSR, 32);
chan_writel(up->txc, HSU_CH_MOTSR, 4);
dbuf->ofs = 0;
}
exit:
/* And clear the interrupt registers again for luck. */
(void) serial_in(up, UART_LSR);
(void) serial_in(up, UART_RX);
(void) serial_in(up, UART_IIR);
(void) serial_in(up, UART_MSR);
up->running = 1;
return 0;
}
static void serial_hsu_shutdown(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
unsigned long flags;
/* Disable interrupts from this port */
up->ier = 0;
serial_out(up, UART_IER, 0);
up->running = 0;
spin_lock_irqsave(&up->port.lock, flags);
up->port.mctrl &= ~TIOCM_OUT2;
serial_hsu_set_mctrl(&up->port, up->port.mctrl);
spin_unlock_irqrestore(&up->port.lock, flags);
/* Disable break condition and FIFOs */
serial_out(up, UART_LCR, serial_in(up, UART_LCR) & ~UART_LCR_SBC);
serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO |
UART_FCR_CLEAR_RCVR |
UART_FCR_CLEAR_XMIT);
serial_out(up, UART_FCR, 0);
pm_runtime_put(up->dev);
}
static void
serial_hsu_set_termios(struct uart_port *port, struct ktermios *termios,
struct ktermios *old)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
unsigned char cval, fcr = 0;
unsigned long flags;
unsigned int baud, quot;
u32 ps, mul;
switch (termios->c_cflag & CSIZE) {
case CS5:
cval = UART_LCR_WLEN5;
break;
case CS6:
cval = UART_LCR_WLEN6;
break;
case CS7:
cval = UART_LCR_WLEN7;
break;
default:
case CS8:
cval = UART_LCR_WLEN8;
break;
}
/* CMSPAR isn't supported by this driver */
termios->c_cflag &= ~CMSPAR;
if (termios->c_cflag & CSTOPB)
cval |= UART_LCR_STOP;
if (termios->c_cflag & PARENB)
cval |= UART_LCR_PARITY;
if (!(termios->c_cflag & PARODD))
cval |= UART_LCR_EPAR;
/*
* The base clk is 50Mhz, and the baud rate come from:
* baud = 50M * MUL / (DIV * PS * DLAB)
*
* For those basic low baud rate we can get the direct
* scalar from 2746800, like 115200 = 2746800/24. For those
* higher baud rate, we handle them case by case, mainly by
* adjusting the MUL/PS registers, and DIV register is kept
* as default value 0x3d09 to make things simple
*/
baud = uart_get_baud_rate(port, termios, old, 0, 4000000);
quot = 1;
ps = 0x10;
mul = 0x3600;
switch (baud) {
case 3500000:
mul = 0x3345;
ps = 0xC;
break;
case 1843200:
mul = 0x2400;
break;
case 3000000:
case 2500000:
case 2000000:
case 1500000:
case 1000000:
case 500000:
/* mul/ps/quot = 0x9C4/0x10/0x1 will make a 500000 bps */
mul = baud / 500000 * 0x9C4;
break;
default:
/* Use uart_get_divisor to get quot for other baud rates */
quot = 0;
}
if (!quot)
quot = uart_get_divisor(port, baud);
if ((up->port.uartclk / quot) < (2400 * 16))
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_HSU_64_1B;
else if ((up->port.uartclk / quot) < (230400 * 16))
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_HSU_64_16B;
else
fcr = UART_FCR_ENABLE_FIFO | UART_FCR_HSU_64_32B;
fcr |= UART_FCR_HSU_64B_FIFO;
/*
* Ok, we're now changing the port state. Do it with
* interrupts disabled.
*/
spin_lock_irqsave(&up->port.lock, flags);
/* Update the per-port timeout */
uart_update_timeout(port, termios->c_cflag, baud);
up->port.read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR;
if (termios->c_iflag & INPCK)
up->port.read_status_mask |= UART_LSR_FE | UART_LSR_PE;
if (termios->c_iflag & (BRKINT | PARMRK))
up->port.read_status_mask |= UART_LSR_BI;
/* Characters to ignore */
up->port.ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
up->port.ignore_status_mask |= UART_LSR_PE | UART_LSR_FE;
if (termios->c_iflag & IGNBRK) {
up->port.ignore_status_mask |= UART_LSR_BI;
/*
* If we're ignoring parity and break indicators,
* ignore overruns too (for real raw support).
*/
if (termios->c_iflag & IGNPAR)
up->port.ignore_status_mask |= UART_LSR_OE;
}
/* Ignore all characters if CREAD is not set */
if ((termios->c_cflag & CREAD) == 0)
up->port.ignore_status_mask |= UART_LSR_DR;
/*
* CTS flow control flag and modem status interrupts, disable
* MSI by default
*/
up->ier &= ~UART_IER_MSI;
if (UART_ENABLE_MS(&up->port, termios->c_cflag))
up->ier |= UART_IER_MSI;
serial_out(up, UART_IER, up->ier);
if (termios->c_cflag & CRTSCTS)
up->mcr |= UART_MCR_AFE | UART_MCR_RTS;
else
up->mcr &= ~UART_MCR_AFE;
serial_out(up, UART_LCR, cval | UART_LCR_DLAB); /* set DLAB */
serial_out(up, UART_DLL, quot & 0xff); /* LS of divisor */
serial_out(up, UART_DLM, quot >> 8); /* MS of divisor */
serial_out(up, UART_LCR, cval); /* reset DLAB */
serial_out(up, UART_MUL, mul); /* set MUL */
serial_out(up, UART_PS, ps); /* set PS */
up->lcr = cval; /* Save LCR */
serial_hsu_set_mctrl(&up->port, up->port.mctrl);
serial_out(up, UART_FCR, fcr);
spin_unlock_irqrestore(&up->port.lock, flags);
}
static void
serial_hsu_pm(struct uart_port *port, unsigned int state,
unsigned int oldstate)
{
}
static void serial_hsu_release_port(struct uart_port *port)
{
}
static int serial_hsu_request_port(struct uart_port *port)
{
return 0;
}
static void serial_hsu_config_port(struct uart_port *port, int flags)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
up->port.type = PORT_MFD;
}
static int
serial_hsu_verify_port(struct uart_port *port, struct serial_struct *ser)
{
/* We don't want the core code to modify any port params */
return -EINVAL;
}
static const char *
serial_hsu_type(struct uart_port *port)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
return up->name;
}
/* Mainly for uart console use */
static struct uart_hsu_port *serial_hsu_ports[3];
static struct uart_driver serial_hsu_reg;
#ifdef CONFIG_SERIAL_MFD_HSU_CONSOLE
#define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE)
/* Wait for transmitter & holding register to empty */
static inline void wait_for_xmitr(struct uart_hsu_port *up)
{
unsigned int status, tmout = 1000;
/* Wait up to 1ms for the character to be sent. */
do {
status = serial_in(up, UART_LSR);
if (status & UART_LSR_BI)
up->lsr_break_flag = UART_LSR_BI;
if (--tmout == 0)
break;
udelay(1);
} while (!(status & BOTH_EMPTY));
/* Wait up to 1s for flow control if necessary */
if (up->port.flags & UPF_CONS_FLOW) {
tmout = 1000000;
while (--tmout &&
((serial_in(up, UART_MSR) & UART_MSR_CTS) == 0))
udelay(1);
}
}
static void serial_hsu_console_putchar(struct uart_port *port, int ch)
{
struct uart_hsu_port *up =
container_of(port, struct uart_hsu_port, port);
wait_for_xmitr(up);
serial_out(up, UART_TX, ch);
}
/*
* Print a string to the serial port trying not to disturb
* any possible real use of the port...
*
* The console_lock must be held when we get here.
*/
static void
serial_hsu_console_write(struct console *co, const char *s, unsigned int count)
{
struct uart_hsu_port *up = serial_hsu_ports[co->index];
unsigned long flags;
unsigned int ier;
int locked = 1;
touch_nmi_watchdog();
local_irq_save(flags);
if (up->port.sysrq)
locked = 0;
else if (oops_in_progress) {
locked = spin_trylock(&up->port.lock);
} else
spin_lock(&up->port.lock);
/* First save the IER then disable the interrupts */
ier = serial_in(up, UART_IER);
serial_out(up, UART_IER, 0);
uart_console_write(&up->port, s, count, serial_hsu_console_putchar);
/*
* Finally, wait for transmitter to become empty
* and restore the IER
*/
wait_for_xmitr(up);
serial_out(up, UART_IER, ier);
if (locked)
spin_unlock(&up->port.lock);
local_irq_restore(flags);
}
static struct console serial_hsu_console;
static int __init
serial_hsu_console_setup(struct console *co, char *options)
{
struct uart_hsu_port *up;
int baud = 115200;
int bits = 8;
int parity = 'n';
int flow = 'n';
if (co->index == -1 || co->index >= serial_hsu_reg.nr)
co->index = 0;
up = serial_hsu_ports[co->index];
if (!up)
return -ENODEV;
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
return uart_set_options(&up->port, co, baud, parity, bits, flow);
}
static struct console serial_hsu_console = {
.name = "ttyMFD",
.write = serial_hsu_console_write,
.device = uart_console_device,
.setup = serial_hsu_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &serial_hsu_reg,
};
#define SERIAL_HSU_CONSOLE (&serial_hsu_console)
#else
#define SERIAL_HSU_CONSOLE NULL
#endif
struct uart_ops serial_hsu_pops = {
.tx_empty = serial_hsu_tx_empty,
.set_mctrl = serial_hsu_set_mctrl,
.get_mctrl = serial_hsu_get_mctrl,
.stop_tx = serial_hsu_stop_tx,
.start_tx = serial_hsu_start_tx,
.stop_rx = serial_hsu_stop_rx,
.enable_ms = serial_hsu_enable_ms,
.break_ctl = serial_hsu_break_ctl,
.startup = serial_hsu_startup,
.shutdown = serial_hsu_shutdown,
.set_termios = serial_hsu_set_termios,
.pm = serial_hsu_pm,
.type = serial_hsu_type,
.release_port = serial_hsu_release_port,
.request_port = serial_hsu_request_port,
.config_port = serial_hsu_config_port,
.verify_port = serial_hsu_verify_port,
};
static struct uart_driver serial_hsu_reg = {
.owner = THIS_MODULE,
.driver_name = "MFD serial",
.dev_name = "ttyMFD",
.major = TTY_MAJOR,
.minor = 128,
.nr = 3,
.cons = SERIAL_HSU_CONSOLE,
};
#ifdef CONFIG_PM
static int serial_hsu_suspend(struct pci_dev *pdev, pm_message_t state)
{
void *priv = pci_get_drvdata(pdev);
struct uart_hsu_port *up;
/* Make sure this is not the internal dma controller */
if (priv && (pdev->device != 0x081E)) {
up = priv;
uart_suspend_port(&serial_hsu_reg, &up->port);
}
pci_save_state(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int serial_hsu_resume(struct pci_dev *pdev)
{
void *priv = pci_get_drvdata(pdev);
struct uart_hsu_port *up;
int ret;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
ret = pci_enable_device(pdev);
if (ret)
dev_warn(&pdev->dev,
"HSU: can't re-enable device, try to continue\n");
if (priv && (pdev->device != 0x081E)) {
up = priv;
uart_resume_port(&serial_hsu_reg, &up->port);
}
return 0;
}
#else
#define serial_hsu_suspend NULL
#define serial_hsu_resume NULL
#endif
#ifdef CONFIG_PM_RUNTIME
static int serial_hsu_runtime_idle(struct device *dev)
{
pm_schedule_suspend(dev, 500);
return -EBUSY;
}
static int serial_hsu_runtime_suspend(struct device *dev)
{
return 0;
}
static int serial_hsu_runtime_resume(struct device *dev)
{
return 0;
}
#else
#define serial_hsu_runtime_idle NULL
#define serial_hsu_runtime_suspend NULL
#define serial_hsu_runtime_resume NULL
#endif
static const struct dev_pm_ops serial_hsu_pm_ops = {
.runtime_suspend = serial_hsu_runtime_suspend,
.runtime_resume = serial_hsu_runtime_resume,
.runtime_idle = serial_hsu_runtime_idle,
};
/* temp global pointer before we settle down on using one or four PCI dev */
static struct hsu_port *phsu;
static int serial_hsu_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct uart_hsu_port *uport;
int index, ret;
printk(KERN_INFO "HSU: found PCI Serial controller(ID: %04x:%04x)\n",
pdev->vendor, pdev->device);
switch (pdev->device) {
case 0x081B:
index = 0;
break;
case 0x081C:
index = 1;
break;
case 0x081D:
index = 2;
break;
case 0x081E:
/* internal DMA controller */
index = 3;
break;
default:
dev_err(&pdev->dev, "HSU: out of index!");
return -ENODEV;
}
ret = pci_enable_device(pdev);
if (ret)
return ret;
if (index == 3) {
/* DMA controller */
ret = request_irq(pdev->irq, dma_irq, 0, "hsu_dma", phsu);
if (ret) {
dev_err(&pdev->dev, "can not get IRQ\n");
goto err_disable;
}
pci_set_drvdata(pdev, phsu);
} else {
/* UART port 0~2 */
uport = &phsu->port[index];
uport->port.irq = pdev->irq;
uport->port.dev = &pdev->dev;
uport->dev = &pdev->dev;
ret = request_irq(pdev->irq, port_irq, 0, uport->name, uport);
if (ret) {
dev_err(&pdev->dev, "can not get IRQ\n");
goto err_disable;
}
uart_add_one_port(&serial_hsu_reg, &uport->port);
pci_set_drvdata(pdev, uport);
}
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_allow(&pdev->dev);
return 0;
err_disable:
pci_disable_device(pdev);
return ret;
}
static void hsu_global_init(void)
{
struct hsu_port *hsu;
struct uart_hsu_port *uport;
struct hsu_dma_chan *dchan;
int i, ret;
hsu = kzalloc(sizeof(struct hsu_port), GFP_KERNEL);
if (!hsu)
return;
/* Get basic io resource and map it */
hsu->paddr = 0xffa28000;
hsu->iolen = 0x1000;
if (!(request_mem_region(hsu->paddr, hsu->iolen, "HSU global")))
pr_warning("HSU: error in request mem region\n");
hsu->reg = ioremap_nocache((unsigned long)hsu->paddr, hsu->iolen);
if (!hsu->reg) {
pr_err("HSU: error in ioremap\n");
ret = -ENOMEM;
goto err_free_region;
}
/* Initialise the 3 UART ports */
uport = hsu->port;
for (i = 0; i < 3; i++) {
uport->port.type = PORT_MFD;
uport->port.iotype = UPIO_MEM;
uport->port.mapbase = (resource_size_t)hsu->paddr
+ HSU_PORT_REG_OFFSET
+ i * HSU_PORT_REG_LENGTH;
uport->port.membase = hsu->reg + HSU_PORT_REG_OFFSET
+ i * HSU_PORT_REG_LENGTH;
sprintf(uport->name, "hsu_port%d", i);
uport->port.fifosize = 64;
uport->port.ops = &serial_hsu_pops;
uport->port.line = i;
uport->port.flags = UPF_IOREMAP;
/* set the scalable maxim support rate to 2746800 bps */
uport->port.uartclk = 115200 * 24 * 16;
uport->running = 0;
uport->txc = &hsu->chans[i * 2];
uport->rxc = &hsu->chans[i * 2 + 1];
serial_hsu_ports[i] = uport;
uport->index = i;
if (hsu_dma_enable & (1<<i))
uport->use_dma = 1;
else
uport->use_dma = 0;
uport++;
}
/* Initialise 6 dma channels */
dchan = hsu->chans;
for (i = 0; i < 6; i++) {
dchan->id = i;
dchan->dirt = (i & 0x1) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
dchan->uport = &hsu->port[i/2];
dchan->reg = hsu->reg + HSU_DMA_CHANS_REG_OFFSET +
i * HSU_DMA_CHANS_REG_LENGTH;
dchan++;
}
phsu = hsu;
hsu_debugfs_init(hsu);
return;
err_free_region:
release_mem_region(hsu->paddr, hsu->iolen);
kfree(hsu);
return;
}
static void serial_hsu_remove(struct pci_dev *pdev)
{
void *priv = pci_get_drvdata(pdev);
struct uart_hsu_port *up;
if (!priv)
return;
pm_runtime_forbid(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
/* For port 0/1/2, priv is the address of uart_hsu_port */
if (pdev->device != 0x081E) {
up = priv;
uart_remove_one_port(&serial_hsu_reg, &up->port);
}
pci_set_drvdata(pdev, NULL);
free_irq(pdev->irq, priv);
pci_disable_device(pdev);
}
/* First 3 are UART ports, and the 4th is the DMA */
static const struct pci_device_id pci_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x081B) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x081C) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x081D) },
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x081E) },
{},
};
static struct pci_driver hsu_pci_driver = {
.name = "HSU serial",
.id_table = pci_ids,
.probe = serial_hsu_probe,
.remove = serial_hsu_remove,
.suspend = serial_hsu_suspend,
.resume = serial_hsu_resume,
.driver = {
.pm = &serial_hsu_pm_ops,
},
};
static int __init hsu_pci_init(void)
{
int ret;
hsu_global_init();
ret = uart_register_driver(&serial_hsu_reg);
if (ret)
return ret;
return pci_register_driver(&hsu_pci_driver);
}
static void __exit hsu_pci_exit(void)
{
pci_unregister_driver(&hsu_pci_driver);
uart_unregister_driver(&serial_hsu_reg);
hsu_debugfs_remove(phsu);
kfree(phsu);
}
module_init(hsu_pci_init);
module_exit(hsu_pci_exit);
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:medfield-hsu");