mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 19:29:34 +07:00
b9b2387267
This is a semi-automated conversion to change rt2x00_desc_read to return the register contents instead of passing them by value, resulting in much better object code. The majority of the patch was done using: sed -i 's:\(\<rt2x00_desc_read\>(.*, .*\), &\(.*\));:\2 = \1);:' \ -i 's:\(\<_rt2x00_desc_read\>(.*, .*\), &\(.*\));:\2 = \1);:' \ drivers/net/wireless/ralink/rt2x00/rt* Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2151 lines
65 KiB
C
2151 lines
65 KiB
C
/*
|
|
Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
|
|
<http://rt2x00.serialmonkey.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
Module: rt2500pci
|
|
Abstract: rt2500pci device specific routines.
|
|
Supported chipsets: RT2560.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/eeprom_93cx6.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "rt2x00.h"
|
|
#include "rt2x00mmio.h"
|
|
#include "rt2x00pci.h"
|
|
#include "rt2500pci.h"
|
|
|
|
/*
|
|
* Register access.
|
|
* All access to the CSR registers will go through the methods
|
|
* rt2x00mmio_register_read and rt2x00mmio_register_write.
|
|
* BBP and RF register require indirect register access,
|
|
* and use the CSR registers BBPCSR and RFCSR to achieve this.
|
|
* These indirect registers work with busy bits,
|
|
* and we will try maximal REGISTER_BUSY_COUNT times to access
|
|
* the register while taking a REGISTER_BUSY_DELAY us delay
|
|
* between each attampt. When the busy bit is still set at that time,
|
|
* the access attempt is considered to have failed,
|
|
* and we will print an error.
|
|
*/
|
|
#define WAIT_FOR_BBP(__dev, __reg) \
|
|
rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
|
|
#define WAIT_FOR_RF(__dev, __reg) \
|
|
rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
|
|
|
|
static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, const u8 value)
|
|
{
|
|
u32 reg;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the BBP becomes available, afterwards we
|
|
* can safely write the new data into the register.
|
|
*/
|
|
if (WAIT_FOR_BBP(rt2x00dev, ®)) {
|
|
reg = 0;
|
|
rt2x00_set_field32(®, BBPCSR_VALUE, value);
|
|
rt2x00_set_field32(®, BBPCSR_REGNUM, word);
|
|
rt2x00_set_field32(®, BBPCSR_BUSY, 1);
|
|
rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
|
|
}
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word)
|
|
{
|
|
u32 reg;
|
|
u8 value;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the BBP becomes available, afterwards we
|
|
* can safely write the read request into the register.
|
|
* After the data has been written, we wait until hardware
|
|
* returns the correct value, if at any time the register
|
|
* doesn't become available in time, reg will be 0xffffffff
|
|
* which means we return 0xff to the caller.
|
|
*/
|
|
if (WAIT_FOR_BBP(rt2x00dev, ®)) {
|
|
reg = 0;
|
|
rt2x00_set_field32(®, BBPCSR_REGNUM, word);
|
|
rt2x00_set_field32(®, BBPCSR_BUSY, 1);
|
|
rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
|
|
|
|
WAIT_FOR_BBP(rt2x00dev, ®);
|
|
}
|
|
|
|
value = rt2x00_get_field32(reg, BBPCSR_VALUE);
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
|
|
return value;
|
|
}
|
|
|
|
static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int word, const u32 value)
|
|
{
|
|
u32 reg;
|
|
|
|
mutex_lock(&rt2x00dev->csr_mutex);
|
|
|
|
/*
|
|
* Wait until the RF becomes available, afterwards we
|
|
* can safely write the new data into the register.
|
|
*/
|
|
if (WAIT_FOR_RF(rt2x00dev, ®)) {
|
|
reg = 0;
|
|
rt2x00_set_field32(®, RFCSR_VALUE, value);
|
|
rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20);
|
|
rt2x00_set_field32(®, RFCSR_IF_SELECT, 0);
|
|
rt2x00_set_field32(®, RFCSR_BUSY, 1);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
|
|
rt2x00_rf_write(rt2x00dev, word, value);
|
|
}
|
|
|
|
mutex_unlock(&rt2x00dev->csr_mutex);
|
|
}
|
|
|
|
static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = eeprom->data;
|
|
u32 reg;
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
|
|
|
|
eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
|
|
eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
|
|
eeprom->reg_data_clock =
|
|
!!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
|
|
eeprom->reg_chip_select =
|
|
!!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
|
|
}
|
|
|
|
static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = eeprom->data;
|
|
u32 reg = 0;
|
|
|
|
rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
|
|
rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
|
|
rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK,
|
|
!!eeprom->reg_data_clock);
|
|
rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT,
|
|
!!eeprom->reg_chip_select);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
|
|
}
|
|
|
|
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
|
|
static const struct rt2x00debug rt2500pci_rt2x00debug = {
|
|
.owner = THIS_MODULE,
|
|
.csr = {
|
|
.read = rt2x00mmio_register_read,
|
|
.write = rt2x00mmio_register_write,
|
|
.flags = RT2X00DEBUGFS_OFFSET,
|
|
.word_base = CSR_REG_BASE,
|
|
.word_size = sizeof(u32),
|
|
.word_count = CSR_REG_SIZE / sizeof(u32),
|
|
},
|
|
.eeprom = {
|
|
.read = rt2x00_eeprom_read,
|
|
.write = rt2x00_eeprom_write,
|
|
.word_base = EEPROM_BASE,
|
|
.word_size = sizeof(u16),
|
|
.word_count = EEPROM_SIZE / sizeof(u16),
|
|
},
|
|
.bbp = {
|
|
.read = rt2500pci_bbp_read,
|
|
.write = rt2500pci_bbp_write,
|
|
.word_base = BBP_BASE,
|
|
.word_size = sizeof(u8),
|
|
.word_count = BBP_SIZE / sizeof(u8),
|
|
},
|
|
.rf = {
|
|
.read = rt2x00_rf_read,
|
|
.write = rt2500pci_rf_write,
|
|
.word_base = RF_BASE,
|
|
.word_size = sizeof(u32),
|
|
.word_count = RF_SIZE / sizeof(u32),
|
|
},
|
|
};
|
|
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
|
|
|
|
static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
|
|
return rt2x00_get_field32(reg, GPIOCSR_VAL0);
|
|
}
|
|
|
|
#ifdef CONFIG_RT2X00_LIB_LEDS
|
|
static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
|
|
enum led_brightness brightness)
|
|
{
|
|
struct rt2x00_led *led =
|
|
container_of(led_cdev, struct rt2x00_led, led_dev);
|
|
unsigned int enabled = brightness != LED_OFF;
|
|
u32 reg;
|
|
|
|
reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
|
|
|
|
if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
|
|
rt2x00_set_field32(®, LEDCSR_LINK, enabled);
|
|
else if (led->type == LED_TYPE_ACTIVITY)
|
|
rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled);
|
|
|
|
rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
|
|
}
|
|
|
|
static int rt2500pci_blink_set(struct led_classdev *led_cdev,
|
|
unsigned long *delay_on,
|
|
unsigned long *delay_off)
|
|
{
|
|
struct rt2x00_led *led =
|
|
container_of(led_cdev, struct rt2x00_led, led_dev);
|
|
u32 reg;
|
|
|
|
reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
|
|
rt2x00_set_field32(®, LEDCSR_ON_PERIOD, *delay_on);
|
|
rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, *delay_off);
|
|
rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00_led *led,
|
|
enum led_type type)
|
|
{
|
|
led->rt2x00dev = rt2x00dev;
|
|
led->type = type;
|
|
led->led_dev.brightness_set = rt2500pci_brightness_set;
|
|
led->led_dev.blink_set = rt2500pci_blink_set;
|
|
led->flags = LED_INITIALIZED;
|
|
}
|
|
#endif /* CONFIG_RT2X00_LIB_LEDS */
|
|
|
|
/*
|
|
* Configuration handlers.
|
|
*/
|
|
static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
|
|
const unsigned int filter_flags)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Start configuration steps.
|
|
* Note that the version error will always be dropped
|
|
* and broadcast frames will always be accepted since
|
|
* there is no filter for it at this time.
|
|
*/
|
|
reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
|
|
rt2x00_set_field32(®, RXCSR0_DROP_CRC,
|
|
!(filter_flags & FIF_FCSFAIL));
|
|
rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL,
|
|
!(filter_flags & FIF_PLCPFAIL));
|
|
rt2x00_set_field32(®, RXCSR0_DROP_CONTROL,
|
|
!(filter_flags & FIF_CONTROL));
|
|
rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME,
|
|
!test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
|
|
rt2x00_set_field32(®, RXCSR0_DROP_TODS,
|
|
!test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
|
|
!rt2x00dev->intf_ap_count);
|
|
rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1);
|
|
rt2x00_set_field32(®, RXCSR0_DROP_MCAST,
|
|
!(filter_flags & FIF_ALLMULTI));
|
|
rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
|
|
}
|
|
|
|
static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00_intf *intf,
|
|
struct rt2x00intf_conf *conf,
|
|
const unsigned int flags)
|
|
{
|
|
struct data_queue *queue = rt2x00dev->bcn;
|
|
unsigned int bcn_preload;
|
|
u32 reg;
|
|
|
|
if (flags & CONFIG_UPDATE_TYPE) {
|
|
/*
|
|
* Enable beacon config
|
|
*/
|
|
bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
|
|
reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
|
|
rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload);
|
|
rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min);
|
|
rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
|
|
|
|
/*
|
|
* Enable synchronisation.
|
|
*/
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
|
|
rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
|
|
}
|
|
|
|
if (flags & CONFIG_UPDATE_MAC)
|
|
rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
|
|
conf->mac, sizeof(conf->mac));
|
|
|
|
if (flags & CONFIG_UPDATE_BSSID)
|
|
rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
|
|
conf->bssid, sizeof(conf->bssid));
|
|
}
|
|
|
|
static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_erp *erp,
|
|
u32 changed)
|
|
{
|
|
int preamble_mask;
|
|
u32 reg;
|
|
|
|
/*
|
|
* When short preamble is enabled, we should set bit 0x08
|
|
*/
|
|
if (changed & BSS_CHANGED_ERP_PREAMBLE) {
|
|
preamble_mask = erp->short_preamble << 3;
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
|
|
rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, 0x162);
|
|
rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, 0xa2);
|
|
rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
|
|
rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
|
|
rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00);
|
|
rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04);
|
|
rt2x00_set_field32(®, ARCSR2_LENGTH,
|
|
GET_DURATION(ACK_SIZE, 10));
|
|
rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
|
|
rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask);
|
|
rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04);
|
|
rt2x00_set_field32(®, ARCSR2_LENGTH,
|
|
GET_DURATION(ACK_SIZE, 20));
|
|
rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
|
|
rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask);
|
|
rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04);
|
|
rt2x00_set_field32(®, ARCSR2_LENGTH,
|
|
GET_DURATION(ACK_SIZE, 55));
|
|
rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
|
|
rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask);
|
|
rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84);
|
|
rt2x00_set_field32(®, ARCSR2_LENGTH,
|
|
GET_DURATION(ACK_SIZE, 110));
|
|
rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
|
|
}
|
|
|
|
if (changed & BSS_CHANGED_BASIC_RATES)
|
|
rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
|
|
|
|
if (changed & BSS_CHANGED_ERP_SLOT) {
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
|
|
rt2x00_set_field32(®, CSR11_SLOT_TIME, erp->slot_time);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
|
|
rt2x00_set_field32(®, CSR18_SIFS, erp->sifs);
|
|
rt2x00_set_field32(®, CSR18_PIFS, erp->pifs);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
|
|
rt2x00_set_field32(®, CSR19_DIFS, erp->difs);
|
|
rt2x00_set_field32(®, CSR19_EIFS, erp->eifs);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
|
|
}
|
|
|
|
if (changed & BSS_CHANGED_BEACON_INT) {
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
|
|
rt2x00_set_field32(®, CSR12_BEACON_INTERVAL,
|
|
erp->beacon_int * 16);
|
|
rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION,
|
|
erp->beacon_int * 16);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
|
|
}
|
|
|
|
}
|
|
|
|
static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
|
|
struct antenna_setup *ant)
|
|
{
|
|
u32 reg;
|
|
u8 r14;
|
|
u8 r2;
|
|
|
|
/*
|
|
* We should never come here because rt2x00lib is supposed
|
|
* to catch this and send us the correct antenna explicitely.
|
|
*/
|
|
BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
|
|
ant->tx == ANTENNA_SW_DIVERSITY);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
|
|
r14 = rt2500pci_bbp_read(rt2x00dev, 14);
|
|
r2 = rt2500pci_bbp_read(rt2x00dev, 2);
|
|
|
|
/*
|
|
* Configure the TX antenna.
|
|
*/
|
|
switch (ant->tx) {
|
|
case ANTENNA_A:
|
|
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
|
|
rt2x00_set_field32(®, BBPCSR1_CCK, 0);
|
|
rt2x00_set_field32(®, BBPCSR1_OFDM, 0);
|
|
break;
|
|
case ANTENNA_B:
|
|
default:
|
|
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
|
|
rt2x00_set_field32(®, BBPCSR1_CCK, 2);
|
|
rt2x00_set_field32(®, BBPCSR1_OFDM, 2);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Configure the RX antenna.
|
|
*/
|
|
switch (ant->rx) {
|
|
case ANTENNA_A:
|
|
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
|
|
break;
|
|
case ANTENNA_B:
|
|
default:
|
|
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* RT2525E and RT5222 need to flip TX I/Q
|
|
*/
|
|
if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
|
|
rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
|
|
rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1);
|
|
rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1);
|
|
|
|
/*
|
|
* RT2525E does not need RX I/Q Flip.
|
|
*/
|
|
if (rt2x00_rf(rt2x00dev, RF2525E))
|
|
rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
|
|
} else {
|
|
rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0);
|
|
rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0);
|
|
}
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
|
|
rt2500pci_bbp_write(rt2x00dev, 14, r14);
|
|
rt2500pci_bbp_write(rt2x00dev, 2, r2);
|
|
}
|
|
|
|
static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
|
|
struct rf_channel *rf, const int txpower)
|
|
{
|
|
u8 r70;
|
|
|
|
/*
|
|
* Set TXpower.
|
|
*/
|
|
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
|
|
|
|
/*
|
|
* Switch on tuning bits.
|
|
* For RT2523 devices we do not need to update the R1 register.
|
|
*/
|
|
if (!rt2x00_rf(rt2x00dev, RF2523))
|
|
rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
|
|
rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
|
|
|
|
/*
|
|
* For RT2525 we should first set the channel to half band higher.
|
|
*/
|
|
if (rt2x00_rf(rt2x00dev, RF2525)) {
|
|
static const u32 vals[] = {
|
|
0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
|
|
0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
|
|
0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
|
|
0x00080d2e, 0x00080d3a
|
|
};
|
|
|
|
rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
|
|
rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
|
|
rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
|
|
if (rf->rf4)
|
|
rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
|
|
}
|
|
|
|
rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
|
|
rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
|
|
rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
|
|
if (rf->rf4)
|
|
rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
|
|
|
|
/*
|
|
* Channel 14 requires the Japan filter bit to be set.
|
|
*/
|
|
r70 = 0x46;
|
|
rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
|
|
rt2500pci_bbp_write(rt2x00dev, 70, r70);
|
|
|
|
msleep(1);
|
|
|
|
/*
|
|
* Switch off tuning bits.
|
|
* For RT2523 devices we do not need to update the R1 register.
|
|
*/
|
|
if (!rt2x00_rf(rt2x00dev, RF2523)) {
|
|
rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
|
|
rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
|
|
}
|
|
|
|
rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
|
|
rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
|
|
|
|
/*
|
|
* Clear false CRC during channel switch.
|
|
*/
|
|
rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
|
|
}
|
|
|
|
static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
|
|
const int txpower)
|
|
{
|
|
u32 rf3;
|
|
|
|
rf3 = rt2x00_rf_read(rt2x00dev, 3);
|
|
rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
|
|
rt2500pci_rf_write(rt2x00dev, 3, rf3);
|
|
}
|
|
|
|
static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_conf *libconf)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
|
|
rt2x00_set_field32(®, CSR11_LONG_RETRY,
|
|
libconf->conf->long_frame_max_tx_count);
|
|
rt2x00_set_field32(®, CSR11_SHORT_RETRY,
|
|
libconf->conf->short_frame_max_tx_count);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
|
|
}
|
|
|
|
static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_conf *libconf)
|
|
{
|
|
enum dev_state state =
|
|
(libconf->conf->flags & IEEE80211_CONF_PS) ?
|
|
STATE_SLEEP : STATE_AWAKE;
|
|
u32 reg;
|
|
|
|
if (state == STATE_SLEEP) {
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
|
|
rt2x00_set_field32(®, CSR20_DELAY_AFTER_TBCN,
|
|
(rt2x00dev->beacon_int - 20) * 16);
|
|
rt2x00_set_field32(®, CSR20_TBCN_BEFORE_WAKEUP,
|
|
libconf->conf->listen_interval - 1);
|
|
|
|
/* We must first disable autowake before it can be enabled */
|
|
rt2x00_set_field32(®, CSR20_AUTOWAKE, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
|
|
|
|
rt2x00_set_field32(®, CSR20_AUTOWAKE, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
|
|
} else {
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
|
|
rt2x00_set_field32(®, CSR20_AUTOWAKE, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
|
|
}
|
|
|
|
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
|
|
}
|
|
|
|
static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00lib_conf *libconf,
|
|
const unsigned int flags)
|
|
{
|
|
if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
|
|
rt2500pci_config_channel(rt2x00dev, &libconf->rf,
|
|
libconf->conf->power_level);
|
|
if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
|
|
!(flags & IEEE80211_CONF_CHANGE_CHANNEL))
|
|
rt2500pci_config_txpower(rt2x00dev,
|
|
libconf->conf->power_level);
|
|
if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
|
|
rt2500pci_config_retry_limit(rt2x00dev, libconf);
|
|
if (flags & IEEE80211_CONF_CHANGE_PS)
|
|
rt2500pci_config_ps(rt2x00dev, libconf);
|
|
}
|
|
|
|
/*
|
|
* Link tuning
|
|
*/
|
|
static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
|
|
struct link_qual *qual)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Update FCS error count from register.
|
|
*/
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
|
|
qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
|
|
|
|
/*
|
|
* Update False CCA count from register.
|
|
*/
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
|
|
qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
|
|
}
|
|
|
|
static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
|
|
struct link_qual *qual, u8 vgc_level)
|
|
{
|
|
if (qual->vgc_level_reg != vgc_level) {
|
|
rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
|
|
qual->vgc_level = vgc_level;
|
|
qual->vgc_level_reg = vgc_level;
|
|
}
|
|
}
|
|
|
|
static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
|
|
struct link_qual *qual)
|
|
{
|
|
rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
|
|
}
|
|
|
|
static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
|
|
struct link_qual *qual, const u32 count)
|
|
{
|
|
/*
|
|
* To prevent collisions with MAC ASIC on chipsets
|
|
* up to version C the link tuning should halt after 20
|
|
* seconds while being associated.
|
|
*/
|
|
if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
|
|
rt2x00dev->intf_associated && count > 20)
|
|
return;
|
|
|
|
/*
|
|
* Chipset versions C and lower should directly continue
|
|
* to the dynamic CCA tuning. Chipset version D and higher
|
|
* should go straight to dynamic CCA tuning when they
|
|
* are not associated.
|
|
*/
|
|
if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
|
|
!rt2x00dev->intf_associated)
|
|
goto dynamic_cca_tune;
|
|
|
|
/*
|
|
* A too low RSSI will cause too much false CCA which will
|
|
* then corrupt the R17 tuning. To remidy this the tuning should
|
|
* be stopped (While making sure the R17 value will not exceed limits)
|
|
*/
|
|
if (qual->rssi < -80 && count > 20) {
|
|
if (qual->vgc_level_reg >= 0x41)
|
|
rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Special big-R17 for short distance
|
|
*/
|
|
if (qual->rssi >= -58) {
|
|
rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Special mid-R17 for middle distance
|
|
*/
|
|
if (qual->rssi >= -74) {
|
|
rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Leave short or middle distance condition, restore r17
|
|
* to the dynamic tuning range.
|
|
*/
|
|
if (qual->vgc_level_reg >= 0x41) {
|
|
rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
|
|
return;
|
|
}
|
|
|
|
dynamic_cca_tune:
|
|
|
|
/*
|
|
* R17 is inside the dynamic tuning range,
|
|
* start tuning the link based on the false cca counter.
|
|
*/
|
|
if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
|
|
rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
|
|
else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
|
|
rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
|
|
}
|
|
|
|
/*
|
|
* Queue handlers.
|
|
*/
|
|
static void rt2500pci_start_queue(struct data_queue *queue)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
|
|
u32 reg;
|
|
|
|
switch (queue->qid) {
|
|
case QID_RX:
|
|
reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
|
|
rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
|
|
break;
|
|
case QID_BEACON:
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
|
|
rt2x00_set_field32(®, CSR14_TSF_COUNT, 1);
|
|
rt2x00_set_field32(®, CSR14_TBCN, 1);
|
|
rt2x00_set_field32(®, CSR14_BEACON_GEN, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void rt2500pci_kick_queue(struct data_queue *queue)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
|
|
u32 reg;
|
|
|
|
switch (queue->qid) {
|
|
case QID_AC_VO:
|
|
reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
|
|
rt2x00_set_field32(®, TXCSR0_KICK_PRIO, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
|
|
break;
|
|
case QID_AC_VI:
|
|
reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
|
|
rt2x00_set_field32(®, TXCSR0_KICK_TX, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
|
|
break;
|
|
case QID_ATIM:
|
|
reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
|
|
rt2x00_set_field32(®, TXCSR0_KICK_ATIM, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void rt2500pci_stop_queue(struct data_queue *queue)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
|
|
u32 reg;
|
|
|
|
switch (queue->qid) {
|
|
case QID_AC_VO:
|
|
case QID_AC_VI:
|
|
case QID_ATIM:
|
|
reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
|
|
rt2x00_set_field32(®, TXCSR0_ABORT, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
|
|
break;
|
|
case QID_RX:
|
|
reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
|
|
rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
|
|
break;
|
|
case QID_BEACON:
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
|
|
rt2x00_set_field32(®, CSR14_TSF_COUNT, 0);
|
|
rt2x00_set_field32(®, CSR14_TBCN, 0);
|
|
rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
|
|
|
|
/*
|
|
* Wait for possibly running tbtt tasklets.
|
|
*/
|
|
tasklet_kill(&rt2x00dev->tbtt_tasklet);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialization functions.
|
|
*/
|
|
static bool rt2500pci_get_entry_state(struct queue_entry *entry)
|
|
{
|
|
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
|
|
u32 word;
|
|
|
|
if (entry->queue->qid == QID_RX) {
|
|
word = rt2x00_desc_read(entry_priv->desc, 0);
|
|
|
|
return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
|
|
} else {
|
|
word = rt2x00_desc_read(entry_priv->desc, 0);
|
|
|
|
return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
|
|
rt2x00_get_field32(word, TXD_W0_VALID));
|
|
}
|
|
}
|
|
|
|
static void rt2500pci_clear_entry(struct queue_entry *entry)
|
|
{
|
|
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
|
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
|
|
u32 word;
|
|
|
|
if (entry->queue->qid == QID_RX) {
|
|
word = rt2x00_desc_read(entry_priv->desc, 1);
|
|
rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
|
|
rt2x00_desc_write(entry_priv->desc, 1, word);
|
|
|
|
word = rt2x00_desc_read(entry_priv->desc, 0);
|
|
rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
|
|
rt2x00_desc_write(entry_priv->desc, 0, word);
|
|
} else {
|
|
word = rt2x00_desc_read(entry_priv->desc, 0);
|
|
rt2x00_set_field32(&word, TXD_W0_VALID, 0);
|
|
rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
|
|
rt2x00_desc_write(entry_priv->desc, 0, word);
|
|
}
|
|
}
|
|
|
|
static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct queue_entry_priv_mmio *entry_priv;
|
|
u32 reg;
|
|
|
|
/*
|
|
* Initialize registers.
|
|
*/
|
|
reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
|
|
rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
|
|
rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
|
|
rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
|
|
rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
|
|
rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
|
|
|
|
entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
|
|
reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
|
|
rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER,
|
|
entry_priv->desc_dma);
|
|
rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
|
|
|
|
entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
|
|
reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
|
|
rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER,
|
|
entry_priv->desc_dma);
|
|
rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
|
|
|
|
entry_priv = rt2x00dev->atim->entries[0].priv_data;
|
|
reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
|
|
rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER,
|
|
entry_priv->desc_dma);
|
|
rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
|
|
|
|
entry_priv = rt2x00dev->bcn->entries[0].priv_data;
|
|
reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
|
|
rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER,
|
|
entry_priv->desc_dma);
|
|
rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
|
|
rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
|
|
rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
|
|
rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
|
|
|
|
entry_priv = rt2x00dev->rx->entries[0].priv_data;
|
|
reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
|
|
rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER,
|
|
entry_priv->desc_dma);
|
|
rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
|
|
rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
|
|
rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
|
|
rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
|
|
rt2x00_set_field32(®, TIMECSR_US_COUNT, 33);
|
|
rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63);
|
|
rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
|
|
rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT,
|
|
rt2x00dev->rx->data_size / 128);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
|
|
|
|
/*
|
|
* Always use CWmin and CWmax set in descriptor.
|
|
*/
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
|
|
rt2x00_set_field32(®, CSR11_CW_SELECT, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
|
|
rt2x00_set_field32(®, CSR14_TSF_COUNT, 0);
|
|
rt2x00_set_field32(®, CSR14_TSF_SYNC, 0);
|
|
rt2x00_set_field32(®, CSR14_TBCN, 0);
|
|
rt2x00_set_field32(®, CSR14_TCFP, 0);
|
|
rt2x00_set_field32(®, CSR14_TATIMW, 0);
|
|
rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
|
|
rt2x00_set_field32(®, CSR14_CFP_COUNT_PRELOAD, 0);
|
|
rt2x00_set_field32(®, CSR14_TBCM_PRELOAD, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
|
|
rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10);
|
|
rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1);
|
|
rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11);
|
|
rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1);
|
|
rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13);
|
|
rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1);
|
|
rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12);
|
|
rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
|
|
rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112);
|
|
rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56);
|
|
rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20);
|
|
rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10);
|
|
rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
|
|
rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45);
|
|
rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37);
|
|
rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33);
|
|
rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29);
|
|
rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
|
|
rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29);
|
|
rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25);
|
|
rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25);
|
|
rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25);
|
|
rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
|
|
rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */
|
|
rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1);
|
|
rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */
|
|
rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1);
|
|
rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
|
|
rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1);
|
|
rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */
|
|
rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
|
|
rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0);
|
|
rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0);
|
|
rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3);
|
|
rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1);
|
|
rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1);
|
|
rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1);
|
|
rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
|
|
rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
|
|
|
|
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
|
|
return -EBUSY;
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
|
|
rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
|
|
rt2x00_set_field32(®, MACCSR2_DELAY, 64);
|
|
rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
|
|
rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17);
|
|
rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26);
|
|
rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1);
|
|
rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0);
|
|
rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26);
|
|
rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
|
|
|
|
rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
|
|
rt2x00_set_field32(®, CSR1_SOFT_RESET, 1);
|
|
rt2x00_set_field32(®, CSR1_BBP_RESET, 0);
|
|
rt2x00_set_field32(®, CSR1_HOST_READY, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
|
|
rt2x00_set_field32(®, CSR1_SOFT_RESET, 0);
|
|
rt2x00_set_field32(®, CSR1_HOST_READY, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
|
|
|
|
/*
|
|
* We must clear the FCS and FIFO error count.
|
|
* These registers are cleared on read,
|
|
* so we may pass a useless variable to store the value.
|
|
*/
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i;
|
|
u8 value;
|
|
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
value = rt2500pci_bbp_read(rt2x00dev, 0);
|
|
if ((value != 0xff) && (value != 0x00))
|
|
return 0;
|
|
udelay(REGISTER_BUSY_DELAY);
|
|
}
|
|
|
|
rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
unsigned int i;
|
|
u16 eeprom;
|
|
u8 reg_id;
|
|
u8 value;
|
|
|
|
if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
|
|
return -EACCES;
|
|
|
|
rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
|
|
rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
|
|
rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
|
|
rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
|
|
rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
|
|
rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
|
|
rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
|
|
rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
|
|
rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
|
|
rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
|
|
rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
|
|
rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
|
|
rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
|
|
rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
|
|
rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
|
|
rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
|
|
rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
|
|
rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
|
|
rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
|
|
rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
|
|
rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
|
|
rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
|
|
rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
|
|
rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
|
|
rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
|
|
rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
|
|
rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
|
|
rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
|
|
rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
|
|
rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
|
|
|
|
for (i = 0; i < EEPROM_BBP_SIZE; i++) {
|
|
eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
|
|
|
|
if (eeprom != 0xffff && eeprom != 0x0000) {
|
|
reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
|
|
value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
|
|
rt2500pci_bbp_write(rt2x00dev, reg_id, value);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Device state switch handlers.
|
|
*/
|
|
static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
int mask = (state == STATE_RADIO_IRQ_OFF);
|
|
u32 reg;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* When interrupts are being enabled, the interrupt registers
|
|
* should clear the register to assure a clean state.
|
|
*/
|
|
if (state == STATE_RADIO_IRQ_ON) {
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
|
|
}
|
|
|
|
/*
|
|
* Only toggle the interrupts bits we are going to use.
|
|
* Non-checked interrupt bits are disabled by default.
|
|
*/
|
|
spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
|
|
rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask);
|
|
rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask);
|
|
rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask);
|
|
rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask);
|
|
rt2x00_set_field32(®, CSR8_RXDONE, mask);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
|
|
|
|
spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
|
|
|
|
if (state == STATE_RADIO_IRQ_OFF) {
|
|
/*
|
|
* Ensure that all tasklets are finished.
|
|
*/
|
|
tasklet_kill(&rt2x00dev->txstatus_tasklet);
|
|
tasklet_kill(&rt2x00dev->rxdone_tasklet);
|
|
tasklet_kill(&rt2x00dev->tbtt_tasklet);
|
|
}
|
|
}
|
|
|
|
static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
/*
|
|
* Initialize all registers.
|
|
*/
|
|
if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
|
|
rt2500pci_init_registers(rt2x00dev) ||
|
|
rt2500pci_init_bbp(rt2x00dev)))
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
/*
|
|
* Disable power
|
|
*/
|
|
rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
|
|
}
|
|
|
|
static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
u32 reg, reg2;
|
|
unsigned int i;
|
|
char put_to_sleep;
|
|
char bbp_state;
|
|
char rf_state;
|
|
|
|
put_to_sleep = (state != STATE_AWAKE);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
|
|
rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1);
|
|
rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state);
|
|
rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state);
|
|
rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
|
|
rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
|
|
|
|
/*
|
|
* Device is not guaranteed to be in the requested state yet.
|
|
* We must wait until the register indicates that the
|
|
* device has entered the correct state.
|
|
*/
|
|
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
|
|
reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
|
|
bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
|
|
rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
|
|
if (bbp_state == state && rf_state == state)
|
|
return 0;
|
|
rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
|
|
msleep(10);
|
|
}
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
|
|
enum dev_state state)
|
|
{
|
|
int retval = 0;
|
|
|
|
switch (state) {
|
|
case STATE_RADIO_ON:
|
|
retval = rt2500pci_enable_radio(rt2x00dev);
|
|
break;
|
|
case STATE_RADIO_OFF:
|
|
rt2500pci_disable_radio(rt2x00dev);
|
|
break;
|
|
case STATE_RADIO_IRQ_ON:
|
|
case STATE_RADIO_IRQ_OFF:
|
|
rt2500pci_toggle_irq(rt2x00dev, state);
|
|
break;
|
|
case STATE_DEEP_SLEEP:
|
|
case STATE_SLEEP:
|
|
case STATE_STANDBY:
|
|
case STATE_AWAKE:
|
|
retval = rt2500pci_set_state(rt2x00dev, state);
|
|
break;
|
|
default:
|
|
retval = -ENOTSUPP;
|
|
break;
|
|
}
|
|
|
|
if (unlikely(retval))
|
|
rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
|
|
state, retval);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* TX descriptor initialization
|
|
*/
|
|
static void rt2500pci_write_tx_desc(struct queue_entry *entry,
|
|
struct txentry_desc *txdesc)
|
|
{
|
|
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
|
|
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
|
|
__le32 *txd = entry_priv->desc;
|
|
u32 word;
|
|
|
|
/*
|
|
* Start writing the descriptor words.
|
|
*/
|
|
word = rt2x00_desc_read(txd, 1);
|
|
rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
|
|
rt2x00_desc_write(txd, 1, word);
|
|
|
|
word = rt2x00_desc_read(txd, 2);
|
|
rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
|
|
rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
|
|
rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
|
|
rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
|
|
rt2x00_desc_write(txd, 2, word);
|
|
|
|
word = rt2x00_desc_read(txd, 3);
|
|
rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
|
|
rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
|
|
rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
|
|
txdesc->u.plcp.length_low);
|
|
rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
|
|
txdesc->u.plcp.length_high);
|
|
rt2x00_desc_write(txd, 3, word);
|
|
|
|
word = rt2x00_desc_read(txd, 10);
|
|
rt2x00_set_field32(&word, TXD_W10_RTS,
|
|
test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
|
|
rt2x00_desc_write(txd, 10, word);
|
|
|
|
/*
|
|
* Writing TXD word 0 must the last to prevent a race condition with
|
|
* the device, whereby the device may take hold of the TXD before we
|
|
* finished updating it.
|
|
*/
|
|
word = rt2x00_desc_read(txd, 0);
|
|
rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
|
|
rt2x00_set_field32(&word, TXD_W0_VALID, 1);
|
|
rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
|
|
test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXD_W0_ACK,
|
|
test_bit(ENTRY_TXD_ACK, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
|
|
test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXD_W0_OFDM,
|
|
(txdesc->rate_mode == RATE_MODE_OFDM));
|
|
rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
|
|
rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
|
|
rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
|
|
test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
|
|
rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
|
|
rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
|
|
rt2x00_desc_write(txd, 0, word);
|
|
|
|
/*
|
|
* Register descriptor details in skb frame descriptor.
|
|
*/
|
|
skbdesc->desc = txd;
|
|
skbdesc->desc_len = TXD_DESC_SIZE;
|
|
}
|
|
|
|
/*
|
|
* TX data initialization
|
|
*/
|
|
static void rt2500pci_write_beacon(struct queue_entry *entry,
|
|
struct txentry_desc *txdesc)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
|
|
u32 reg;
|
|
|
|
/*
|
|
* Disable beaconing while we are reloading the beacon data,
|
|
* otherwise we might be sending out invalid data.
|
|
*/
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
|
|
rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
|
|
|
|
if (rt2x00queue_map_txskb(entry)) {
|
|
rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Write the TX descriptor for the beacon.
|
|
*/
|
|
rt2500pci_write_tx_desc(entry, txdesc);
|
|
|
|
/*
|
|
* Dump beacon to userspace through debugfs.
|
|
*/
|
|
rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
|
|
out:
|
|
/*
|
|
* Enable beaconing again.
|
|
*/
|
|
rt2x00_set_field32(®, CSR14_BEACON_GEN, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
|
|
}
|
|
|
|
/*
|
|
* RX control handlers
|
|
*/
|
|
static void rt2500pci_fill_rxdone(struct queue_entry *entry,
|
|
struct rxdone_entry_desc *rxdesc)
|
|
{
|
|
struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
|
|
u32 word0;
|
|
u32 word2;
|
|
|
|
word0 = rt2x00_desc_read(entry_priv->desc, 0);
|
|
word2 = rt2x00_desc_read(entry_priv->desc, 2);
|
|
|
|
if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
|
|
rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
|
|
if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
|
|
rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
|
|
|
|
/*
|
|
* Obtain the status about this packet.
|
|
* When frame was received with an OFDM bitrate,
|
|
* the signal is the PLCP value. If it was received with
|
|
* a CCK bitrate the signal is the rate in 100kbit/s.
|
|
*/
|
|
rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
|
|
rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
|
|
entry->queue->rt2x00dev->rssi_offset;
|
|
rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
|
|
|
|
if (rt2x00_get_field32(word0, RXD_W0_OFDM))
|
|
rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
|
|
else
|
|
rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
|
|
if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
|
|
rxdesc->dev_flags |= RXDONE_MY_BSS;
|
|
}
|
|
|
|
/*
|
|
* Interrupt functions.
|
|
*/
|
|
static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
|
|
const enum data_queue_qid queue_idx)
|
|
{
|
|
struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
|
|
struct queue_entry_priv_mmio *entry_priv;
|
|
struct queue_entry *entry;
|
|
struct txdone_entry_desc txdesc;
|
|
u32 word;
|
|
|
|
while (!rt2x00queue_empty(queue)) {
|
|
entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
|
|
entry_priv = entry->priv_data;
|
|
word = rt2x00_desc_read(entry_priv->desc, 0);
|
|
|
|
if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
|
|
!rt2x00_get_field32(word, TXD_W0_VALID))
|
|
break;
|
|
|
|
/*
|
|
* Obtain the status about this packet.
|
|
*/
|
|
txdesc.flags = 0;
|
|
switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
|
|
case 0: /* Success */
|
|
case 1: /* Success with retry */
|
|
__set_bit(TXDONE_SUCCESS, &txdesc.flags);
|
|
break;
|
|
case 2: /* Failure, excessive retries */
|
|
__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
|
|
/* Don't break, this is a failed frame! */
|
|
default: /* Failure */
|
|
__set_bit(TXDONE_FAILURE, &txdesc.flags);
|
|
}
|
|
txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
|
|
|
|
rt2x00lib_txdone(entry, &txdesc);
|
|
}
|
|
}
|
|
|
|
static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
|
|
struct rt2x00_field32 irq_field)
|
|
{
|
|
u32 reg;
|
|
|
|
/*
|
|
* Enable a single interrupt. The interrupt mask register
|
|
* access needs locking.
|
|
*/
|
|
spin_lock_irq(&rt2x00dev->irqmask_lock);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
|
|
rt2x00_set_field32(®, irq_field, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
|
|
|
|
spin_unlock_irq(&rt2x00dev->irqmask_lock);
|
|
}
|
|
|
|
static void rt2500pci_txstatus_tasklet(unsigned long data)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
|
|
u32 reg;
|
|
|
|
/*
|
|
* Handle all tx queues.
|
|
*/
|
|
rt2500pci_txdone(rt2x00dev, QID_ATIM);
|
|
rt2500pci_txdone(rt2x00dev, QID_AC_VO);
|
|
rt2500pci_txdone(rt2x00dev, QID_AC_VI);
|
|
|
|
/*
|
|
* Enable all TXDONE interrupts again.
|
|
*/
|
|
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
|
|
spin_lock_irq(&rt2x00dev->irqmask_lock);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
|
|
rt2x00_set_field32(®, CSR8_TXDONE_TXRING, 0);
|
|
rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, 0);
|
|
rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, 0);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
|
|
|
|
spin_unlock_irq(&rt2x00dev->irqmask_lock);
|
|
}
|
|
}
|
|
|
|
static void rt2500pci_tbtt_tasklet(unsigned long data)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
|
|
rt2x00lib_beacondone(rt2x00dev);
|
|
if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
|
|
}
|
|
|
|
static void rt2500pci_rxdone_tasklet(unsigned long data)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
|
|
if (rt2x00mmio_rxdone(rt2x00dev))
|
|
tasklet_schedule(&rt2x00dev->rxdone_tasklet);
|
|
else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
|
|
}
|
|
|
|
static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = dev_instance;
|
|
u32 reg, mask;
|
|
|
|
/*
|
|
* Get the interrupt sources & saved to local variable.
|
|
* Write register value back to clear pending interrupts.
|
|
*/
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
|
|
rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
|
|
|
|
if (!reg)
|
|
return IRQ_NONE;
|
|
|
|
if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
|
|
return IRQ_HANDLED;
|
|
|
|
mask = reg;
|
|
|
|
/*
|
|
* Schedule tasklets for interrupt handling.
|
|
*/
|
|
if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
|
|
tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
|
|
|
|
if (rt2x00_get_field32(reg, CSR7_RXDONE))
|
|
tasklet_schedule(&rt2x00dev->rxdone_tasklet);
|
|
|
|
if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
|
|
rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
|
|
rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
|
|
tasklet_schedule(&rt2x00dev->txstatus_tasklet);
|
|
/*
|
|
* Mask out all txdone interrupts.
|
|
*/
|
|
rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
|
|
rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
|
|
rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
|
|
}
|
|
|
|
/*
|
|
* Disable all interrupts for which a tasklet was scheduled right now,
|
|
* the tasklet will reenable the appropriate interrupts.
|
|
*/
|
|
spin_lock(&rt2x00dev->irqmask_lock);
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
|
|
reg |= mask;
|
|
rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
|
|
|
|
spin_unlock(&rt2x00dev->irqmask_lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Device probe functions.
|
|
*/
|
|
static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct eeprom_93cx6 eeprom;
|
|
u32 reg;
|
|
u16 word;
|
|
u8 *mac;
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
|
|
|
|
eeprom.data = rt2x00dev;
|
|
eeprom.register_read = rt2500pci_eepromregister_read;
|
|
eeprom.register_write = rt2500pci_eepromregister_write;
|
|
eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
|
|
PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
|
|
eeprom.reg_data_in = 0;
|
|
eeprom.reg_data_out = 0;
|
|
eeprom.reg_data_clock = 0;
|
|
eeprom.reg_chip_select = 0;
|
|
|
|
eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
|
|
EEPROM_SIZE / sizeof(u16));
|
|
|
|
/*
|
|
* Start validation of the data that has been read.
|
|
*/
|
|
mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
|
|
rt2x00lib_set_mac_address(rt2x00dev, mac);
|
|
|
|
word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
|
|
ANTENNA_SW_DIVERSITY);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
|
|
ANTENNA_SW_DIVERSITY);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
|
|
LED_MODE_DEFAULT);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
|
|
rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
|
|
rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
|
|
}
|
|
|
|
word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
|
|
rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
|
|
rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
|
|
}
|
|
|
|
word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
|
|
if (word == 0xffff) {
|
|
rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
|
|
DEFAULT_RSSI_OFFSET);
|
|
rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
|
|
rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
|
|
word);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
u32 reg;
|
|
u16 value;
|
|
u16 eeprom;
|
|
|
|
/*
|
|
* Read EEPROM word for configuration.
|
|
*/
|
|
eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
|
|
|
|
/*
|
|
* Identify RF chipset.
|
|
*/
|
|
value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
|
|
rt2x00_set_chip(rt2x00dev, RT2560, value,
|
|
rt2x00_get_field32(reg, CSR0_REVISION));
|
|
|
|
if (!rt2x00_rf(rt2x00dev, RF2522) &&
|
|
!rt2x00_rf(rt2x00dev, RF2523) &&
|
|
!rt2x00_rf(rt2x00dev, RF2524) &&
|
|
!rt2x00_rf(rt2x00dev, RF2525) &&
|
|
!rt2x00_rf(rt2x00dev, RF2525E) &&
|
|
!rt2x00_rf(rt2x00dev, RF5222)) {
|
|
rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Identify default antenna configuration.
|
|
*/
|
|
rt2x00dev->default_ant.tx =
|
|
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
|
|
rt2x00dev->default_ant.rx =
|
|
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
|
|
|
|
/*
|
|
* Store led mode, for correct led behaviour.
|
|
*/
|
|
#ifdef CONFIG_RT2X00_LIB_LEDS
|
|
value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
|
|
|
|
rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
|
|
if (value == LED_MODE_TXRX_ACTIVITY ||
|
|
value == LED_MODE_DEFAULT ||
|
|
value == LED_MODE_ASUS)
|
|
rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
|
|
LED_TYPE_ACTIVITY);
|
|
#endif /* CONFIG_RT2X00_LIB_LEDS */
|
|
|
|
/*
|
|
* Detect if this device has an hardware controlled radio.
|
|
*/
|
|
if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
|
|
__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
|
|
/*
|
|
* On this device RFKILL initialized during probe does not work.
|
|
*/
|
|
__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
|
|
}
|
|
|
|
/*
|
|
* Check if the BBP tuning should be enabled.
|
|
*/
|
|
eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
|
|
if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
|
|
__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
|
|
|
|
/*
|
|
* Read the RSSI <-> dBm offset information.
|
|
*/
|
|
eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
|
|
rt2x00dev->rssi_offset =
|
|
rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* RF value list for RF2522
|
|
* Supports: 2.4 GHz
|
|
*/
|
|
static const struct rf_channel rf_vals_bg_2522[] = {
|
|
{ 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
|
|
{ 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
|
|
{ 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
|
|
{ 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
|
|
{ 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
|
|
{ 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
|
|
{ 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
|
|
{ 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
|
|
{ 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
|
|
{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
|
|
{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
|
|
{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
|
|
{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
|
|
{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
|
|
};
|
|
|
|
/*
|
|
* RF value list for RF2523
|
|
* Supports: 2.4 GHz
|
|
*/
|
|
static const struct rf_channel rf_vals_bg_2523[] = {
|
|
{ 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
|
|
{ 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
|
|
{ 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
|
|
{ 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
|
|
{ 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
|
|
{ 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
|
|
{ 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
|
|
{ 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
|
|
{ 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
|
|
{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
|
|
{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
|
|
{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
|
|
{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
|
|
{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
|
|
};
|
|
|
|
/*
|
|
* RF value list for RF2524
|
|
* Supports: 2.4 GHz
|
|
*/
|
|
static const struct rf_channel rf_vals_bg_2524[] = {
|
|
{ 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
|
|
{ 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
|
|
{ 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
|
|
{ 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
|
|
{ 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
|
|
{ 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
|
|
{ 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
|
|
{ 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
|
|
{ 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
|
|
{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
|
|
{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
|
|
{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
|
|
{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
|
|
{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
|
|
};
|
|
|
|
/*
|
|
* RF value list for RF2525
|
|
* Supports: 2.4 GHz
|
|
*/
|
|
static const struct rf_channel rf_vals_bg_2525[] = {
|
|
{ 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
|
|
{ 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
|
|
{ 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
|
|
{ 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
|
|
{ 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
|
|
{ 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
|
|
{ 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
|
|
{ 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
|
|
{ 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
|
|
{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
|
|
{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
|
|
{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
|
|
{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
|
|
{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
|
|
};
|
|
|
|
/*
|
|
* RF value list for RF2525e
|
|
* Supports: 2.4 GHz
|
|
*/
|
|
static const struct rf_channel rf_vals_bg_2525e[] = {
|
|
{ 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
|
|
{ 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
|
|
{ 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
|
|
{ 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
|
|
{ 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
|
|
{ 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
|
|
{ 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
|
|
{ 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
|
|
{ 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
|
|
{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
|
|
{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
|
|
{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
|
|
{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
|
|
{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
|
|
};
|
|
|
|
/*
|
|
* RF value list for RF5222
|
|
* Supports: 2.4 GHz & 5.2 GHz
|
|
*/
|
|
static const struct rf_channel rf_vals_5222[] = {
|
|
{ 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
|
|
{ 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
|
|
{ 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
|
|
{ 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
|
|
{ 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
|
|
{ 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
|
|
{ 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
|
|
{ 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
|
|
{ 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
|
|
{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
|
|
{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
|
|
{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
|
|
{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
|
|
{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
|
|
|
|
/* 802.11 UNI / HyperLan 2 */
|
|
{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
|
|
{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
|
|
{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
|
|
{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
|
|
{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
|
|
{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
|
|
{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
|
|
{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
|
|
|
|
/* 802.11 HyperLan 2 */
|
|
{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
|
|
{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
|
|
{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
|
|
{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
|
|
{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
|
|
{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
|
|
{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
|
|
{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
|
|
{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
|
|
{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
|
|
|
|
/* 802.11 UNII */
|
|
{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
|
|
{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
|
|
{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
|
|
{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
|
|
{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
|
|
};
|
|
|
|
static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
struct hw_mode_spec *spec = &rt2x00dev->spec;
|
|
struct channel_info *info;
|
|
char *tx_power;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Initialize all hw fields.
|
|
*/
|
|
ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
|
|
ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
|
|
ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
|
|
ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
|
|
|
|
SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
|
|
SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
|
|
rt2x00_eeprom_addr(rt2x00dev,
|
|
EEPROM_MAC_ADDR_0));
|
|
|
|
/*
|
|
* Disable powersaving as default.
|
|
*/
|
|
rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
|
|
|
|
/*
|
|
* Initialize hw_mode information.
|
|
*/
|
|
spec->supported_bands = SUPPORT_BAND_2GHZ;
|
|
spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
|
|
|
|
if (rt2x00_rf(rt2x00dev, RF2522)) {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
|
|
spec->channels = rf_vals_bg_2522;
|
|
} else if (rt2x00_rf(rt2x00dev, RF2523)) {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
|
|
spec->channels = rf_vals_bg_2523;
|
|
} else if (rt2x00_rf(rt2x00dev, RF2524)) {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
|
|
spec->channels = rf_vals_bg_2524;
|
|
} else if (rt2x00_rf(rt2x00dev, RF2525)) {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
|
|
spec->channels = rf_vals_bg_2525;
|
|
} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
|
|
spec->channels = rf_vals_bg_2525e;
|
|
} else if (rt2x00_rf(rt2x00dev, RF5222)) {
|
|
spec->supported_bands |= SUPPORT_BAND_5GHZ;
|
|
spec->num_channels = ARRAY_SIZE(rf_vals_5222);
|
|
spec->channels = rf_vals_5222;
|
|
}
|
|
|
|
/*
|
|
* Create channel information array
|
|
*/
|
|
info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
spec->channels_info = info;
|
|
|
|
tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
|
|
for (i = 0; i < 14; i++) {
|
|
info[i].max_power = MAX_TXPOWER;
|
|
info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
|
|
}
|
|
|
|
if (spec->num_channels > 14) {
|
|
for (i = 14; i < spec->num_channels; i++) {
|
|
info[i].max_power = MAX_TXPOWER;
|
|
info[i].default_power1 = DEFAULT_TXPOWER;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
|
|
{
|
|
int retval;
|
|
u32 reg;
|
|
|
|
/*
|
|
* Allocate eeprom data.
|
|
*/
|
|
retval = rt2500pci_validate_eeprom(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = rt2500pci_init_eeprom(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Enable rfkill polling by setting GPIO direction of the
|
|
* rfkill switch GPIO pin correctly.
|
|
*/
|
|
reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
|
|
rt2x00_set_field32(®, GPIOCSR_DIR0, 1);
|
|
rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
|
|
|
|
/*
|
|
* Initialize hw specifications.
|
|
*/
|
|
retval = rt2500pci_probe_hw_mode(rt2x00dev);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* This device requires the atim queue and DMA-mapped skbs.
|
|
*/
|
|
__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
|
|
__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
|
|
__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
|
|
|
|
/*
|
|
* Set the rssi offset.
|
|
*/
|
|
rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* IEEE80211 stack callback functions.
|
|
*/
|
|
static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
u64 tsf;
|
|
u32 reg;
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
|
|
tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
|
|
tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
|
|
|
|
return tsf;
|
|
}
|
|
|
|
static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
|
|
{
|
|
struct rt2x00_dev *rt2x00dev = hw->priv;
|
|
u32 reg;
|
|
|
|
reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
|
|
return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
|
|
}
|
|
|
|
static const struct ieee80211_ops rt2500pci_mac80211_ops = {
|
|
.tx = rt2x00mac_tx,
|
|
.start = rt2x00mac_start,
|
|
.stop = rt2x00mac_stop,
|
|
.add_interface = rt2x00mac_add_interface,
|
|
.remove_interface = rt2x00mac_remove_interface,
|
|
.config = rt2x00mac_config,
|
|
.configure_filter = rt2x00mac_configure_filter,
|
|
.sw_scan_start = rt2x00mac_sw_scan_start,
|
|
.sw_scan_complete = rt2x00mac_sw_scan_complete,
|
|
.get_stats = rt2x00mac_get_stats,
|
|
.bss_info_changed = rt2x00mac_bss_info_changed,
|
|
.conf_tx = rt2x00mac_conf_tx,
|
|
.get_tsf = rt2500pci_get_tsf,
|
|
.tx_last_beacon = rt2500pci_tx_last_beacon,
|
|
.rfkill_poll = rt2x00mac_rfkill_poll,
|
|
.flush = rt2x00mac_flush,
|
|
.set_antenna = rt2x00mac_set_antenna,
|
|
.get_antenna = rt2x00mac_get_antenna,
|
|
.get_ringparam = rt2x00mac_get_ringparam,
|
|
.tx_frames_pending = rt2x00mac_tx_frames_pending,
|
|
};
|
|
|
|
static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
|
|
.irq_handler = rt2500pci_interrupt,
|
|
.txstatus_tasklet = rt2500pci_txstatus_tasklet,
|
|
.tbtt_tasklet = rt2500pci_tbtt_tasklet,
|
|
.rxdone_tasklet = rt2500pci_rxdone_tasklet,
|
|
.probe_hw = rt2500pci_probe_hw,
|
|
.initialize = rt2x00mmio_initialize,
|
|
.uninitialize = rt2x00mmio_uninitialize,
|
|
.get_entry_state = rt2500pci_get_entry_state,
|
|
.clear_entry = rt2500pci_clear_entry,
|
|
.set_device_state = rt2500pci_set_device_state,
|
|
.rfkill_poll = rt2500pci_rfkill_poll,
|
|
.link_stats = rt2500pci_link_stats,
|
|
.reset_tuner = rt2500pci_reset_tuner,
|
|
.link_tuner = rt2500pci_link_tuner,
|
|
.start_queue = rt2500pci_start_queue,
|
|
.kick_queue = rt2500pci_kick_queue,
|
|
.stop_queue = rt2500pci_stop_queue,
|
|
.flush_queue = rt2x00mmio_flush_queue,
|
|
.write_tx_desc = rt2500pci_write_tx_desc,
|
|
.write_beacon = rt2500pci_write_beacon,
|
|
.fill_rxdone = rt2500pci_fill_rxdone,
|
|
.config_filter = rt2500pci_config_filter,
|
|
.config_intf = rt2500pci_config_intf,
|
|
.config_erp = rt2500pci_config_erp,
|
|
.config_ant = rt2500pci_config_ant,
|
|
.config = rt2500pci_config,
|
|
};
|
|
|
|
static void rt2500pci_queue_init(struct data_queue *queue)
|
|
{
|
|
switch (queue->qid) {
|
|
case QID_RX:
|
|
queue->limit = 32;
|
|
queue->data_size = DATA_FRAME_SIZE;
|
|
queue->desc_size = RXD_DESC_SIZE;
|
|
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
|
|
break;
|
|
|
|
case QID_AC_VO:
|
|
case QID_AC_VI:
|
|
case QID_AC_BE:
|
|
case QID_AC_BK:
|
|
queue->limit = 32;
|
|
queue->data_size = DATA_FRAME_SIZE;
|
|
queue->desc_size = TXD_DESC_SIZE;
|
|
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
|
|
break;
|
|
|
|
case QID_BEACON:
|
|
queue->limit = 1;
|
|
queue->data_size = MGMT_FRAME_SIZE;
|
|
queue->desc_size = TXD_DESC_SIZE;
|
|
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
|
|
break;
|
|
|
|
case QID_ATIM:
|
|
queue->limit = 8;
|
|
queue->data_size = DATA_FRAME_SIZE;
|
|
queue->desc_size = TXD_DESC_SIZE;
|
|
queue->priv_size = sizeof(struct queue_entry_priv_mmio);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
}
|
|
|
|
static const struct rt2x00_ops rt2500pci_ops = {
|
|
.name = KBUILD_MODNAME,
|
|
.max_ap_intf = 1,
|
|
.eeprom_size = EEPROM_SIZE,
|
|
.rf_size = RF_SIZE,
|
|
.tx_queues = NUM_TX_QUEUES,
|
|
.queue_init = rt2500pci_queue_init,
|
|
.lib = &rt2500pci_rt2x00_ops,
|
|
.hw = &rt2500pci_mac80211_ops,
|
|
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
|
|
.debugfs = &rt2500pci_rt2x00debug,
|
|
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
|
|
};
|
|
|
|
/*
|
|
* RT2500pci module information.
|
|
*/
|
|
static const struct pci_device_id rt2500pci_device_table[] = {
|
|
{ PCI_DEVICE(0x1814, 0x0201) },
|
|
{ 0, }
|
|
};
|
|
|
|
MODULE_AUTHOR(DRV_PROJECT);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
|
|
MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
|
|
MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int rt2500pci_probe(struct pci_dev *pci_dev,
|
|
const struct pci_device_id *id)
|
|
{
|
|
return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
|
|
}
|
|
|
|
static struct pci_driver rt2500pci_driver = {
|
|
.name = KBUILD_MODNAME,
|
|
.id_table = rt2500pci_device_table,
|
|
.probe = rt2500pci_probe,
|
|
.remove = rt2x00pci_remove,
|
|
.suspend = rt2x00pci_suspend,
|
|
.resume = rt2x00pci_resume,
|
|
};
|
|
|
|
module_pci_driver(rt2500pci_driver);
|