linux_dsm_epyc7002/arch/x86/entry/entry_32.S
Thomas Gleixner 4b9a8dca0e x86/idt: Remove the tracing IDT completely
No more users of the tracing IDT. All exception tracepoints have been moved
into the regular handlers. Get rid of the mess which shouldn't have been
created in the first place.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20170828064957.378851687@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-29 11:42:28 +02:00

1065 lines
26 KiB
ArmAsm

/*
* Copyright (C) 1991,1992 Linus Torvalds
*
* entry_32.S contains the system-call and low-level fault and trap handling routines.
*
* Stack layout while running C code:
* ptrace needs to have all registers on the stack.
* If the order here is changed, it needs to be
* updated in fork.c:copy_process(), signal.c:do_signal(),
* ptrace.c and ptrace.h
*
* 0(%esp) - %ebx
* 4(%esp) - %ecx
* 8(%esp) - %edx
* C(%esp) - %esi
* 10(%esp) - %edi
* 14(%esp) - %ebp
* 18(%esp) - %eax
* 1C(%esp) - %ds
* 20(%esp) - %es
* 24(%esp) - %fs
* 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS
* 2C(%esp) - orig_eax
* 30(%esp) - %eip
* 34(%esp) - %cs
* 38(%esp) - %eflags
* 3C(%esp) - %oldesp
* 40(%esp) - %oldss
*/
#include <linux/linkage.h>
#include <linux/err.h>
#include <asm/thread_info.h>
#include <asm/irqflags.h>
#include <asm/errno.h>
#include <asm/segment.h>
#include <asm/smp.h>
#include <asm/percpu.h>
#include <asm/processor-flags.h>
#include <asm/irq_vectors.h>
#include <asm/cpufeatures.h>
#include <asm/alternative-asm.h>
#include <asm/asm.h>
#include <asm/smap.h>
#include <asm/frame.h>
.section .entry.text, "ax"
/*
* We use macros for low-level operations which need to be overridden
* for paravirtualization. The following will never clobber any registers:
* INTERRUPT_RETURN (aka. "iret")
* GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
* ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
*
* For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
* specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
* Allowing a register to be clobbered can shrink the paravirt replacement
* enough to patch inline, increasing performance.
*/
#ifdef CONFIG_PREEMPT
# define preempt_stop(clobbers) DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
#else
# define preempt_stop(clobbers)
# define resume_kernel restore_all
#endif
.macro TRACE_IRQS_IRET
#ifdef CONFIG_TRACE_IRQFLAGS
testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off?
jz 1f
TRACE_IRQS_ON
1:
#endif
.endm
/*
* User gs save/restore
*
* %gs is used for userland TLS and kernel only uses it for stack
* canary which is required to be at %gs:20 by gcc. Read the comment
* at the top of stackprotector.h for more info.
*
* Local labels 98 and 99 are used.
*/
#ifdef CONFIG_X86_32_LAZY_GS
/* unfortunately push/pop can't be no-op */
.macro PUSH_GS
pushl $0
.endm
.macro POP_GS pop=0
addl $(4 + \pop), %esp
.endm
.macro POP_GS_EX
.endm
/* all the rest are no-op */
.macro PTGS_TO_GS
.endm
.macro PTGS_TO_GS_EX
.endm
.macro GS_TO_REG reg
.endm
.macro REG_TO_PTGS reg
.endm
.macro SET_KERNEL_GS reg
.endm
#else /* CONFIG_X86_32_LAZY_GS */
.macro PUSH_GS
pushl %gs
.endm
.macro POP_GS pop=0
98: popl %gs
.if \pop <> 0
add $\pop, %esp
.endif
.endm
.macro POP_GS_EX
.pushsection .fixup, "ax"
99: movl $0, (%esp)
jmp 98b
.popsection
_ASM_EXTABLE(98b, 99b)
.endm
.macro PTGS_TO_GS
98: mov PT_GS(%esp), %gs
.endm
.macro PTGS_TO_GS_EX
.pushsection .fixup, "ax"
99: movl $0, PT_GS(%esp)
jmp 98b
.popsection
_ASM_EXTABLE(98b, 99b)
.endm
.macro GS_TO_REG reg
movl %gs, \reg
.endm
.macro REG_TO_PTGS reg
movl \reg, PT_GS(%esp)
.endm
.macro SET_KERNEL_GS reg
movl $(__KERNEL_STACK_CANARY), \reg
movl \reg, %gs
.endm
#endif /* CONFIG_X86_32_LAZY_GS */
.macro SAVE_ALL pt_regs_ax=%eax
cld
PUSH_GS
pushl %fs
pushl %es
pushl %ds
pushl \pt_regs_ax
pushl %ebp
pushl %edi
pushl %esi
pushl %edx
pushl %ecx
pushl %ebx
movl $(__USER_DS), %edx
movl %edx, %ds
movl %edx, %es
movl $(__KERNEL_PERCPU), %edx
movl %edx, %fs
SET_KERNEL_GS %edx
.endm
/*
* This is a sneaky trick to help the unwinder find pt_regs on the stack. The
* frame pointer is replaced with an encoded pointer to pt_regs. The encoding
* is just setting the LSB, which makes it an invalid stack address and is also
* a signal to the unwinder that it's a pt_regs pointer in disguise.
*
* NOTE: This macro must be used *after* SAVE_ALL because it corrupts the
* original rbp.
*/
.macro ENCODE_FRAME_POINTER
#ifdef CONFIG_FRAME_POINTER
mov %esp, %ebp
orl $0x1, %ebp
#endif
.endm
.macro RESTORE_INT_REGS
popl %ebx
popl %ecx
popl %edx
popl %esi
popl %edi
popl %ebp
popl %eax
.endm
.macro RESTORE_REGS pop=0
RESTORE_INT_REGS
1: popl %ds
2: popl %es
3: popl %fs
POP_GS \pop
.pushsection .fixup, "ax"
4: movl $0, (%esp)
jmp 1b
5: movl $0, (%esp)
jmp 2b
6: movl $0, (%esp)
jmp 3b
.popsection
_ASM_EXTABLE(1b, 4b)
_ASM_EXTABLE(2b, 5b)
_ASM_EXTABLE(3b, 6b)
POP_GS_EX
.endm
/*
* %eax: prev task
* %edx: next task
*/
ENTRY(__switch_to_asm)
/*
* Save callee-saved registers
* This must match the order in struct inactive_task_frame
*/
pushl %ebp
pushl %ebx
pushl %edi
pushl %esi
/* switch stack */
movl %esp, TASK_threadsp(%eax)
movl TASK_threadsp(%edx), %esp
#ifdef CONFIG_CC_STACKPROTECTOR
movl TASK_stack_canary(%edx), %ebx
movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
#endif
/* restore callee-saved registers */
popl %esi
popl %edi
popl %ebx
popl %ebp
jmp __switch_to
END(__switch_to_asm)
/*
* The unwinder expects the last frame on the stack to always be at the same
* offset from the end of the page, which allows it to validate the stack.
* Calling schedule_tail() directly would break that convention because its an
* asmlinkage function so its argument has to be pushed on the stack. This
* wrapper creates a proper "end of stack" frame header before the call.
*/
ENTRY(schedule_tail_wrapper)
FRAME_BEGIN
pushl %eax
call schedule_tail
popl %eax
FRAME_END
ret
ENDPROC(schedule_tail_wrapper)
/*
* A newly forked process directly context switches into this address.
*
* eax: prev task we switched from
* ebx: kernel thread func (NULL for user thread)
* edi: kernel thread arg
*/
ENTRY(ret_from_fork)
call schedule_tail_wrapper
testl %ebx, %ebx
jnz 1f /* kernel threads are uncommon */
2:
/* When we fork, we trace the syscall return in the child, too. */
movl %esp, %eax
call syscall_return_slowpath
jmp restore_all
/* kernel thread */
1: movl %edi, %eax
call *%ebx
/*
* A kernel thread is allowed to return here after successfully
* calling do_execve(). Exit to userspace to complete the execve()
* syscall.
*/
movl $0, PT_EAX(%esp)
jmp 2b
END(ret_from_fork)
/*
* Return to user mode is not as complex as all this looks,
* but we want the default path for a system call return to
* go as quickly as possible which is why some of this is
* less clear than it otherwise should be.
*/
# userspace resumption stub bypassing syscall exit tracing
ALIGN
ret_from_exception:
preempt_stop(CLBR_ANY)
ret_from_intr:
#ifdef CONFIG_VM86
movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
movb PT_CS(%esp), %al
andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
#else
/*
* We can be coming here from child spawned by kernel_thread().
*/
movl PT_CS(%esp), %eax
andl $SEGMENT_RPL_MASK, %eax
#endif
cmpl $USER_RPL, %eax
jb resume_kernel # not returning to v8086 or userspace
ENTRY(resume_userspace)
DISABLE_INTERRUPTS(CLBR_ANY)
TRACE_IRQS_OFF
movl %esp, %eax
call prepare_exit_to_usermode
jmp restore_all
END(ret_from_exception)
#ifdef CONFIG_PREEMPT
ENTRY(resume_kernel)
DISABLE_INTERRUPTS(CLBR_ANY)
.Lneed_resched:
cmpl $0, PER_CPU_VAR(__preempt_count)
jnz restore_all
testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off (exception path) ?
jz restore_all
call preempt_schedule_irq
jmp .Lneed_resched
END(resume_kernel)
#endif
GLOBAL(__begin_SYSENTER_singlestep_region)
/*
* All code from here through __end_SYSENTER_singlestep_region is subject
* to being single-stepped if a user program sets TF and executes SYSENTER.
* There is absolutely nothing that we can do to prevent this from happening
* (thanks Intel!). To keep our handling of this situation as simple as
* possible, we handle TF just like AC and NT, except that our #DB handler
* will ignore all of the single-step traps generated in this range.
*/
#ifdef CONFIG_XEN
/*
* Xen doesn't set %esp to be precisely what the normal SYSENTER
* entry point expects, so fix it up before using the normal path.
*/
ENTRY(xen_sysenter_target)
addl $5*4, %esp /* remove xen-provided frame */
jmp .Lsysenter_past_esp
#endif
/*
* 32-bit SYSENTER entry.
*
* 32-bit system calls through the vDSO's __kernel_vsyscall enter here
* if X86_FEATURE_SEP is available. This is the preferred system call
* entry on 32-bit systems.
*
* The SYSENTER instruction, in principle, should *only* occur in the
* vDSO. In practice, a small number of Android devices were shipped
* with a copy of Bionic that inlined a SYSENTER instruction. This
* never happened in any of Google's Bionic versions -- it only happened
* in a narrow range of Intel-provided versions.
*
* SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
* IF and VM in RFLAGS are cleared (IOW: interrupts are off).
* SYSENTER does not save anything on the stack,
* and does not save old EIP (!!!), ESP, or EFLAGS.
*
* To avoid losing track of EFLAGS.VM (and thus potentially corrupting
* user and/or vm86 state), we explicitly disable the SYSENTER
* instruction in vm86 mode by reprogramming the MSRs.
*
* Arguments:
* eax system call number
* ebx arg1
* ecx arg2
* edx arg3
* esi arg4
* edi arg5
* ebp user stack
* 0(%ebp) arg6
*/
ENTRY(entry_SYSENTER_32)
movl TSS_sysenter_sp0(%esp), %esp
.Lsysenter_past_esp:
pushl $__USER_DS /* pt_regs->ss */
pushl %ebp /* pt_regs->sp (stashed in bp) */
pushfl /* pt_regs->flags (except IF = 0) */
orl $X86_EFLAGS_IF, (%esp) /* Fix IF */
pushl $__USER_CS /* pt_regs->cs */
pushl $0 /* pt_regs->ip = 0 (placeholder) */
pushl %eax /* pt_regs->orig_ax */
SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest */
/*
* SYSENTER doesn't filter flags, so we need to clear NT, AC
* and TF ourselves. To save a few cycles, we can check whether
* either was set instead of doing an unconditional popfq.
* This needs to happen before enabling interrupts so that
* we don't get preempted with NT set.
*
* If TF is set, we will single-step all the way to here -- do_debug
* will ignore all the traps. (Yes, this is slow, but so is
* single-stepping in general. This allows us to avoid having
* a more complicated code to handle the case where a user program
* forces us to single-step through the SYSENTER entry code.)
*
* NB.: .Lsysenter_fix_flags is a label with the code under it moved
* out-of-line as an optimization: NT is unlikely to be set in the
* majority of the cases and instead of polluting the I$ unnecessarily,
* we're keeping that code behind a branch which will predict as
* not-taken and therefore its instructions won't be fetched.
*/
testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
jnz .Lsysenter_fix_flags
.Lsysenter_flags_fixed:
/*
* User mode is traced as though IRQs are on, and SYSENTER
* turned them off.
*/
TRACE_IRQS_OFF
movl %esp, %eax
call do_fast_syscall_32
/* XEN PV guests always use IRET path */
ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
"jmp .Lsyscall_32_done", X86_FEATURE_XENPV
/* Opportunistic SYSEXIT */
TRACE_IRQS_ON /* User mode traces as IRQs on. */
movl PT_EIP(%esp), %edx /* pt_regs->ip */
movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */
1: mov PT_FS(%esp), %fs
PTGS_TO_GS
popl %ebx /* pt_regs->bx */
addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */
popl %esi /* pt_regs->si */
popl %edi /* pt_regs->di */
popl %ebp /* pt_regs->bp */
popl %eax /* pt_regs->ax */
/*
* Restore all flags except IF. (We restore IF separately because
* STI gives a one-instruction window in which we won't be interrupted,
* whereas POPF does not.)
*/
addl $PT_EFLAGS-PT_DS, %esp /* point esp at pt_regs->flags */
btr $X86_EFLAGS_IF_BIT, (%esp)
popfl
/*
* Return back to the vDSO, which will pop ecx and edx.
* Don't bother with DS and ES (they already contain __USER_DS).
*/
sti
sysexit
.pushsection .fixup, "ax"
2: movl $0, PT_FS(%esp)
jmp 1b
.popsection
_ASM_EXTABLE(1b, 2b)
PTGS_TO_GS_EX
.Lsysenter_fix_flags:
pushl $X86_EFLAGS_FIXED
popfl
jmp .Lsysenter_flags_fixed
GLOBAL(__end_SYSENTER_singlestep_region)
ENDPROC(entry_SYSENTER_32)
/*
* 32-bit legacy system call entry.
*
* 32-bit x86 Linux system calls traditionally used the INT $0x80
* instruction. INT $0x80 lands here.
*
* This entry point can be used by any 32-bit perform system calls.
* Instances of INT $0x80 can be found inline in various programs and
* libraries. It is also used by the vDSO's __kernel_vsyscall
* fallback for hardware that doesn't support a faster entry method.
* Restarted 32-bit system calls also fall back to INT $0x80
* regardless of what instruction was originally used to do the system
* call. (64-bit programs can use INT $0x80 as well, but they can
* only run on 64-bit kernels and therefore land in
* entry_INT80_compat.)
*
* This is considered a slow path. It is not used by most libc
* implementations on modern hardware except during process startup.
*
* Arguments:
* eax system call number
* ebx arg1
* ecx arg2
* edx arg3
* esi arg4
* edi arg5
* ebp arg6
*/
ENTRY(entry_INT80_32)
ASM_CLAC
pushl %eax /* pt_regs->orig_ax */
SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest */
/*
* User mode is traced as though IRQs are on, and the interrupt gate
* turned them off.
*/
TRACE_IRQS_OFF
movl %esp, %eax
call do_int80_syscall_32
.Lsyscall_32_done:
restore_all:
TRACE_IRQS_IRET
.Lrestore_all_notrace:
#ifdef CONFIG_X86_ESPFIX32
ALTERNATIVE "jmp .Lrestore_nocheck", "", X86_BUG_ESPFIX
movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
/*
* Warning: PT_OLDSS(%esp) contains the wrong/random values if we
* are returning to the kernel.
* See comments in process.c:copy_thread() for details.
*/
movb PT_OLDSS(%esp), %ah
movb PT_CS(%esp), %al
andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
je .Lldt_ss # returning to user-space with LDT SS
#endif
.Lrestore_nocheck:
RESTORE_REGS 4 # skip orig_eax/error_code
.Lirq_return:
INTERRUPT_RETURN
.section .fixup, "ax"
ENTRY(iret_exc )
pushl $0 # no error code
pushl $do_iret_error
jmp common_exception
.previous
_ASM_EXTABLE(.Lirq_return, iret_exc)
#ifdef CONFIG_X86_ESPFIX32
.Lldt_ss:
/*
* Setup and switch to ESPFIX stack
*
* We're returning to userspace with a 16 bit stack. The CPU will not
* restore the high word of ESP for us on executing iret... This is an
* "official" bug of all the x86-compatible CPUs, which we can work
* around to make dosemu and wine happy. We do this by preloading the
* high word of ESP with the high word of the userspace ESP while
* compensating for the offset by changing to the ESPFIX segment with
* a base address that matches for the difference.
*/
#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)
mov %esp, %edx /* load kernel esp */
mov PT_OLDESP(%esp), %eax /* load userspace esp */
mov %dx, %ax /* eax: new kernel esp */
sub %eax, %edx /* offset (low word is 0) */
shr $16, %edx
mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */
mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */
pushl $__ESPFIX_SS
pushl %eax /* new kernel esp */
/*
* Disable interrupts, but do not irqtrace this section: we
* will soon execute iret and the tracer was already set to
* the irqstate after the IRET:
*/
DISABLE_INTERRUPTS(CLBR_ANY)
lss (%esp), %esp /* switch to espfix segment */
jmp .Lrestore_nocheck
#endif
ENDPROC(entry_INT80_32)
.macro FIXUP_ESPFIX_STACK
/*
* Switch back for ESPFIX stack to the normal zerobased stack
*
* We can't call C functions using the ESPFIX stack. This code reads
* the high word of the segment base from the GDT and swiches to the
* normal stack and adjusts ESP with the matching offset.
*/
#ifdef CONFIG_X86_ESPFIX32
/* fixup the stack */
mov GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
mov GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
shl $16, %eax
addl %esp, %eax /* the adjusted stack pointer */
pushl $__KERNEL_DS
pushl %eax
lss (%esp), %esp /* switch to the normal stack segment */
#endif
.endm
.macro UNWIND_ESPFIX_STACK
#ifdef CONFIG_X86_ESPFIX32
movl %ss, %eax
/* see if on espfix stack */
cmpw $__ESPFIX_SS, %ax
jne 27f
movl $__KERNEL_DS, %eax
movl %eax, %ds
movl %eax, %es
/* switch to normal stack */
FIXUP_ESPFIX_STACK
27:
#endif
.endm
/*
* Build the entry stubs with some assembler magic.
* We pack 1 stub into every 8-byte block.
*/
.align 8
ENTRY(irq_entries_start)
vector=FIRST_EXTERNAL_VECTOR
.rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
pushl $(~vector+0x80) /* Note: always in signed byte range */
vector=vector+1
jmp common_interrupt
.align 8
.endr
END(irq_entries_start)
/*
* the CPU automatically disables interrupts when executing an IRQ vector,
* so IRQ-flags tracing has to follow that:
*/
.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
ASM_CLAC
addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */
SAVE_ALL
ENCODE_FRAME_POINTER
TRACE_IRQS_OFF
movl %esp, %eax
call do_IRQ
jmp ret_from_intr
ENDPROC(common_interrupt)
#define BUILD_INTERRUPT3(name, nr, fn) \
ENTRY(name) \
ASM_CLAC; \
pushl $~(nr); \
SAVE_ALL; \
ENCODE_FRAME_POINTER; \
TRACE_IRQS_OFF \
movl %esp, %eax; \
call fn; \
jmp ret_from_intr; \
ENDPROC(name)
#define BUILD_INTERRUPT(name, nr) \
BUILD_INTERRUPT3(name, nr, smp_##name); \
/* The include is where all of the SMP etc. interrupts come from */
#include <asm/entry_arch.h>
ENTRY(coprocessor_error)
ASM_CLAC
pushl $0
pushl $do_coprocessor_error
jmp common_exception
END(coprocessor_error)
ENTRY(simd_coprocessor_error)
ASM_CLAC
pushl $0
#ifdef CONFIG_X86_INVD_BUG
/* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
ALTERNATIVE "pushl $do_general_protection", \
"pushl $do_simd_coprocessor_error", \
X86_FEATURE_XMM
#else
pushl $do_simd_coprocessor_error
#endif
jmp common_exception
END(simd_coprocessor_error)
ENTRY(device_not_available)
ASM_CLAC
pushl $-1 # mark this as an int
pushl $do_device_not_available
jmp common_exception
END(device_not_available)
#ifdef CONFIG_PARAVIRT
ENTRY(native_iret)
iret
_ASM_EXTABLE(native_iret, iret_exc)
END(native_iret)
#endif
ENTRY(overflow)
ASM_CLAC
pushl $0
pushl $do_overflow
jmp common_exception
END(overflow)
ENTRY(bounds)
ASM_CLAC
pushl $0
pushl $do_bounds
jmp common_exception
END(bounds)
ENTRY(invalid_op)
ASM_CLAC
pushl $0
pushl $do_invalid_op
jmp common_exception
END(invalid_op)
ENTRY(coprocessor_segment_overrun)
ASM_CLAC
pushl $0
pushl $do_coprocessor_segment_overrun
jmp common_exception
END(coprocessor_segment_overrun)
ENTRY(invalid_TSS)
ASM_CLAC
pushl $do_invalid_TSS
jmp common_exception
END(invalid_TSS)
ENTRY(segment_not_present)
ASM_CLAC
pushl $do_segment_not_present
jmp common_exception
END(segment_not_present)
ENTRY(stack_segment)
ASM_CLAC
pushl $do_stack_segment
jmp common_exception
END(stack_segment)
ENTRY(alignment_check)
ASM_CLAC
pushl $do_alignment_check
jmp common_exception
END(alignment_check)
ENTRY(divide_error)
ASM_CLAC
pushl $0 # no error code
pushl $do_divide_error
jmp common_exception
END(divide_error)
#ifdef CONFIG_X86_MCE
ENTRY(machine_check)
ASM_CLAC
pushl $0
pushl machine_check_vector
jmp common_exception
END(machine_check)
#endif
ENTRY(spurious_interrupt_bug)
ASM_CLAC
pushl $0
pushl $do_spurious_interrupt_bug
jmp common_exception
END(spurious_interrupt_bug)
#ifdef CONFIG_XEN
ENTRY(xen_hypervisor_callback)
pushl $-1 /* orig_ax = -1 => not a system call */
SAVE_ALL
ENCODE_FRAME_POINTER
TRACE_IRQS_OFF
/*
* Check to see if we got the event in the critical
* region in xen_iret_direct, after we've reenabled
* events and checked for pending events. This simulates
* iret instruction's behaviour where it delivers a
* pending interrupt when enabling interrupts:
*/
movl PT_EIP(%esp), %eax
cmpl $xen_iret_start_crit, %eax
jb 1f
cmpl $xen_iret_end_crit, %eax
jae 1f
jmp xen_iret_crit_fixup
ENTRY(xen_do_upcall)
1: mov %esp, %eax
call xen_evtchn_do_upcall
#ifndef CONFIG_PREEMPT
call xen_maybe_preempt_hcall
#endif
jmp ret_from_intr
ENDPROC(xen_hypervisor_callback)
/*
* Hypervisor uses this for application faults while it executes.
* We get here for two reasons:
* 1. Fault while reloading DS, ES, FS or GS
* 2. Fault while executing IRET
* Category 1 we fix up by reattempting the load, and zeroing the segment
* register if the load fails.
* Category 2 we fix up by jumping to do_iret_error. We cannot use the
* normal Linux return path in this case because if we use the IRET hypercall
* to pop the stack frame we end up in an infinite loop of failsafe callbacks.
* We distinguish between categories by maintaining a status value in EAX.
*/
ENTRY(xen_failsafe_callback)
pushl %eax
movl $1, %eax
1: mov 4(%esp), %ds
2: mov 8(%esp), %es
3: mov 12(%esp), %fs
4: mov 16(%esp), %gs
/* EAX == 0 => Category 1 (Bad segment)
EAX != 0 => Category 2 (Bad IRET) */
testl %eax, %eax
popl %eax
lea 16(%esp), %esp
jz 5f
jmp iret_exc
5: pushl $-1 /* orig_ax = -1 => not a system call */
SAVE_ALL
ENCODE_FRAME_POINTER
jmp ret_from_exception
.section .fixup, "ax"
6: xorl %eax, %eax
movl %eax, 4(%esp)
jmp 1b
7: xorl %eax, %eax
movl %eax, 8(%esp)
jmp 2b
8: xorl %eax, %eax
movl %eax, 12(%esp)
jmp 3b
9: xorl %eax, %eax
movl %eax, 16(%esp)
jmp 4b
.previous
_ASM_EXTABLE(1b, 6b)
_ASM_EXTABLE(2b, 7b)
_ASM_EXTABLE(3b, 8b)
_ASM_EXTABLE(4b, 9b)
ENDPROC(xen_failsafe_callback)
BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
xen_evtchn_do_upcall)
#endif /* CONFIG_XEN */
#if IS_ENABLED(CONFIG_HYPERV)
BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
hyperv_vector_handler)
#endif /* CONFIG_HYPERV */
ENTRY(page_fault)
ASM_CLAC
pushl $do_page_fault
ALIGN
jmp common_exception
END(page_fault)
common_exception:
/* the function address is in %gs's slot on the stack */
pushl %fs
pushl %es
pushl %ds
pushl %eax
pushl %ebp
pushl %edi
pushl %esi
pushl %edx
pushl %ecx
pushl %ebx
ENCODE_FRAME_POINTER
cld
movl $(__KERNEL_PERCPU), %ecx
movl %ecx, %fs
UNWIND_ESPFIX_STACK
GS_TO_REG %ecx
movl PT_GS(%esp), %edi # get the function address
movl PT_ORIG_EAX(%esp), %edx # get the error code
movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
REG_TO_PTGS %ecx
SET_KERNEL_GS %ecx
movl $(__USER_DS), %ecx
movl %ecx, %ds
movl %ecx, %es
TRACE_IRQS_OFF
movl %esp, %eax # pt_regs pointer
call *%edi
jmp ret_from_exception
END(common_exception)
ENTRY(debug)
/*
* #DB can happen at the first instruction of
* entry_SYSENTER_32 or in Xen's SYSENTER prologue. If this
* happens, then we will be running on a very small stack. We
* need to detect this condition and switch to the thread
* stack before calling any C code at all.
*
* If you edit this code, keep in mind that NMIs can happen in here.
*/
ASM_CLAC
pushl $-1 # mark this as an int
SAVE_ALL
ENCODE_FRAME_POINTER
xorl %edx, %edx # error code 0
movl %esp, %eax # pt_regs pointer
/* Are we currently on the SYSENTER stack? */
PER_CPU(cpu_tss + CPU_TSS_SYSENTER_stack + SIZEOF_SYSENTER_stack, %ecx)
subl %eax, %ecx /* ecx = (end of SYSENTER_stack) - esp */
cmpl $SIZEOF_SYSENTER_stack, %ecx
jb .Ldebug_from_sysenter_stack
TRACE_IRQS_OFF
call do_debug
jmp ret_from_exception
.Ldebug_from_sysenter_stack:
/* We're on the SYSENTER stack. Switch off. */
movl %esp, %ebx
movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
TRACE_IRQS_OFF
call do_debug
movl %ebx, %esp
jmp ret_from_exception
END(debug)
/*
* NMI is doubly nasty. It can happen on the first instruction of
* entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
* of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
* switched stacks. We handle both conditions by simply checking whether we
* interrupted kernel code running on the SYSENTER stack.
*/
ENTRY(nmi)
ASM_CLAC
#ifdef CONFIG_X86_ESPFIX32
pushl %eax
movl %ss, %eax
cmpw $__ESPFIX_SS, %ax
popl %eax
je .Lnmi_espfix_stack
#endif
pushl %eax # pt_regs->orig_ax
SAVE_ALL
ENCODE_FRAME_POINTER
xorl %edx, %edx # zero error code
movl %esp, %eax # pt_regs pointer
/* Are we currently on the SYSENTER stack? */
PER_CPU(cpu_tss + CPU_TSS_SYSENTER_stack + SIZEOF_SYSENTER_stack, %ecx)
subl %eax, %ecx /* ecx = (end of SYSENTER_stack) - esp */
cmpl $SIZEOF_SYSENTER_stack, %ecx
jb .Lnmi_from_sysenter_stack
/* Not on SYSENTER stack. */
call do_nmi
jmp .Lrestore_all_notrace
.Lnmi_from_sysenter_stack:
/*
* We're on the SYSENTER stack. Switch off. No one (not even debug)
* is using the thread stack right now, so it's safe for us to use it.
*/
movl %esp, %ebx
movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
call do_nmi
movl %ebx, %esp
jmp .Lrestore_all_notrace
#ifdef CONFIG_X86_ESPFIX32
.Lnmi_espfix_stack:
/*
* create the pointer to lss back
*/
pushl %ss
pushl %esp
addl $4, (%esp)
/* copy the iret frame of 12 bytes */
.rept 3
pushl 16(%esp)
.endr
pushl %eax
SAVE_ALL
ENCODE_FRAME_POINTER
FIXUP_ESPFIX_STACK # %eax == %esp
xorl %edx, %edx # zero error code
call do_nmi
RESTORE_REGS
lss 12+4(%esp), %esp # back to espfix stack
jmp .Lirq_return
#endif
END(nmi)
ENTRY(int3)
ASM_CLAC
pushl $-1 # mark this as an int
SAVE_ALL
ENCODE_FRAME_POINTER
TRACE_IRQS_OFF
xorl %edx, %edx # zero error code
movl %esp, %eax # pt_regs pointer
call do_int3
jmp ret_from_exception
END(int3)
ENTRY(general_protection)
pushl $do_general_protection
jmp common_exception
END(general_protection)
#ifdef CONFIG_KVM_GUEST
ENTRY(async_page_fault)
ASM_CLAC
pushl $do_async_page_fault
jmp common_exception
END(async_page_fault)
#endif
ENTRY(rewind_stack_do_exit)
/* Prevent any naive code from trying to unwind to our caller. */
xorl %ebp, %ebp
movl PER_CPU_VAR(cpu_current_top_of_stack), %esi
leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
call do_exit
1: jmp 1b
END(rewind_stack_do_exit)