linux_dsm_epyc7002/drivers/infiniband/hw/cxgb4/cq.c
David Rientjes d3c814e8b2 RDMA/cxgb4: Remove dependency on __GFP_NOFAIL
The alloc_skb() in various allocations are failable, so remove
__GFP_NOFAIL from their masks.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
2010-07-21 10:55:05 -07:00

902 lines
22 KiB
C

/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "iw_cxgb4.h"
static int destroy_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
struct c4iw_dev_ucontext *uctx)
{
struct fw_ri_res_wr *res_wr;
struct fw_ri_res *res;
int wr_len;
struct c4iw_wr_wait wr_wait;
struct sk_buff *skb;
int ret;
wr_len = sizeof *res_wr + sizeof *res;
skb = alloc_skb(wr_len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
res_wr = (struct fw_ri_res_wr *)__skb_put(skb, wr_len);
memset(res_wr, 0, wr_len);
res_wr->op_nres = cpu_to_be32(
FW_WR_OP(FW_RI_RES_WR) |
V_FW_RI_RES_WR_NRES(1) |
FW_WR_COMPL(1));
res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
res_wr->cookie = (u64)&wr_wait;
res = res_wr->res;
res->u.cq.restype = FW_RI_RES_TYPE_CQ;
res->u.cq.op = FW_RI_RES_OP_RESET;
res->u.cq.iqid = cpu_to_be32(cq->cqid);
c4iw_init_wr_wait(&wr_wait);
ret = c4iw_ofld_send(rdev, skb);
if (!ret) {
wait_event_timeout(wr_wait.wait, wr_wait.done, C4IW_WR_TO);
if (!wr_wait.done) {
printk(KERN_ERR MOD "Device %s not responding!\n",
pci_name(rdev->lldi.pdev));
rdev->flags = T4_FATAL_ERROR;
ret = -EIO;
} else
ret = wr_wait.ret;
}
kfree(cq->sw_queue);
dma_free_coherent(&(rdev->lldi.pdev->dev),
cq->memsize, cq->queue,
dma_unmap_addr(cq, mapping));
c4iw_put_cqid(rdev, cq->cqid, uctx);
return ret;
}
static int create_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
struct c4iw_dev_ucontext *uctx)
{
struct fw_ri_res_wr *res_wr;
struct fw_ri_res *res;
int wr_len;
int user = (uctx != &rdev->uctx);
struct c4iw_wr_wait wr_wait;
int ret;
struct sk_buff *skb;
cq->cqid = c4iw_get_cqid(rdev, uctx);
if (!cq->cqid) {
ret = -ENOMEM;
goto err1;
}
if (!user) {
cq->sw_queue = kzalloc(cq->memsize, GFP_KERNEL);
if (!cq->sw_queue) {
ret = -ENOMEM;
goto err2;
}
}
cq->queue = dma_alloc_coherent(&rdev->lldi.pdev->dev, cq->memsize,
&cq->dma_addr, GFP_KERNEL);
if (!cq->queue) {
ret = -ENOMEM;
goto err3;
}
dma_unmap_addr_set(cq, mapping, cq->dma_addr);
memset(cq->queue, 0, cq->memsize);
/* build fw_ri_res_wr */
wr_len = sizeof *res_wr + sizeof *res;
skb = alloc_skb(wr_len, GFP_KERNEL);
if (!skb) {
ret = -ENOMEM;
goto err4;
}
set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
res_wr = (struct fw_ri_res_wr *)__skb_put(skb, wr_len);
memset(res_wr, 0, wr_len);
res_wr->op_nres = cpu_to_be32(
FW_WR_OP(FW_RI_RES_WR) |
V_FW_RI_RES_WR_NRES(1) |
FW_WR_COMPL(1));
res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
res_wr->cookie = (u64)&wr_wait;
res = res_wr->res;
res->u.cq.restype = FW_RI_RES_TYPE_CQ;
res->u.cq.op = FW_RI_RES_OP_WRITE;
res->u.cq.iqid = cpu_to_be32(cq->cqid);
res->u.cq.iqandst_to_iqandstindex = cpu_to_be32(
V_FW_RI_RES_WR_IQANUS(0) |
V_FW_RI_RES_WR_IQANUD(1) |
F_FW_RI_RES_WR_IQANDST |
V_FW_RI_RES_WR_IQANDSTINDEX(*rdev->lldi.rxq_ids));
res->u.cq.iqdroprss_to_iqesize = cpu_to_be16(
F_FW_RI_RES_WR_IQDROPRSS |
V_FW_RI_RES_WR_IQPCIECH(2) |
V_FW_RI_RES_WR_IQINTCNTTHRESH(0) |
F_FW_RI_RES_WR_IQO |
V_FW_RI_RES_WR_IQESIZE(1));
res->u.cq.iqsize = cpu_to_be16(cq->size);
res->u.cq.iqaddr = cpu_to_be64(cq->dma_addr);
c4iw_init_wr_wait(&wr_wait);
ret = c4iw_ofld_send(rdev, skb);
if (ret)
goto err4;
PDBG("%s wait_event wr_wait %p\n", __func__, &wr_wait);
wait_event_timeout(wr_wait.wait, wr_wait.done, C4IW_WR_TO);
if (!wr_wait.done) {
printk(KERN_ERR MOD "Device %s not responding!\n",
pci_name(rdev->lldi.pdev));
rdev->flags = T4_FATAL_ERROR;
ret = -EIO;
} else
ret = wr_wait.ret;
if (ret)
goto err4;
cq->gen = 1;
cq->gts = rdev->lldi.gts_reg;
cq->rdev = rdev;
if (user) {
cq->ugts = (u64)pci_resource_start(rdev->lldi.pdev, 2) +
(cq->cqid << rdev->cqshift);
cq->ugts &= PAGE_MASK;
}
return 0;
err4:
dma_free_coherent(&rdev->lldi.pdev->dev, cq->memsize, cq->queue,
dma_unmap_addr(cq, mapping));
err3:
kfree(cq->sw_queue);
err2:
c4iw_put_cqid(rdev, cq->cqid, uctx);
err1:
return ret;
}
static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq)
{
struct t4_cqe cqe;
PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__,
wq, cq, cq->sw_cidx, cq->sw_pidx);
memset(&cqe, 0, sizeof(cqe));
cqe.header = cpu_to_be32(V_CQE_STATUS(T4_ERR_SWFLUSH) |
V_CQE_OPCODE(FW_RI_SEND) |
V_CQE_TYPE(0) |
V_CQE_SWCQE(1) |
V_CQE_QPID(wq->rq.qid));
cqe.bits_type_ts = cpu_to_be64(V_CQE_GENBIT((u64)cq->gen));
cq->sw_queue[cq->sw_pidx] = cqe;
t4_swcq_produce(cq);
}
int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count)
{
int flushed = 0;
int in_use = wq->rq.in_use - count;
BUG_ON(in_use < 0);
PDBG("%s wq %p cq %p rq.in_use %u skip count %u\n", __func__,
wq, cq, wq->rq.in_use, count);
while (in_use--) {
insert_recv_cqe(wq, cq);
flushed++;
}
return flushed;
}
static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq,
struct t4_swsqe *swcqe)
{
struct t4_cqe cqe;
PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__,
wq, cq, cq->sw_cidx, cq->sw_pidx);
memset(&cqe, 0, sizeof(cqe));
cqe.header = cpu_to_be32(V_CQE_STATUS(T4_ERR_SWFLUSH) |
V_CQE_OPCODE(swcqe->opcode) |
V_CQE_TYPE(1) |
V_CQE_SWCQE(1) |
V_CQE_QPID(wq->sq.qid));
CQE_WRID_SQ_IDX(&cqe) = swcqe->idx;
cqe.bits_type_ts = cpu_to_be64(V_CQE_GENBIT((u64)cq->gen));
cq->sw_queue[cq->sw_pidx] = cqe;
t4_swcq_produce(cq);
}
int c4iw_flush_sq(struct t4_wq *wq, struct t4_cq *cq, int count)
{
int flushed = 0;
struct t4_swsqe *swsqe = &wq->sq.sw_sq[wq->sq.cidx + count];
int in_use = wq->sq.in_use - count;
BUG_ON(in_use < 0);
while (in_use--) {
swsqe->signaled = 0;
insert_sq_cqe(wq, cq, swsqe);
swsqe++;
if (swsqe == (wq->sq.sw_sq + wq->sq.size))
swsqe = wq->sq.sw_sq;
flushed++;
}
return flushed;
}
/*
* Move all CQEs from the HWCQ into the SWCQ.
*/
void c4iw_flush_hw_cq(struct t4_cq *cq)
{
struct t4_cqe *cqe = NULL, *swcqe;
int ret;
PDBG("%s cq %p cqid 0x%x\n", __func__, cq, cq->cqid);
ret = t4_next_hw_cqe(cq, &cqe);
while (!ret) {
PDBG("%s flushing hwcq cidx 0x%x swcq pidx 0x%x\n",
__func__, cq->cidx, cq->sw_pidx);
swcqe = &cq->sw_queue[cq->sw_pidx];
*swcqe = *cqe;
swcqe->header |= cpu_to_be32(V_CQE_SWCQE(1));
t4_swcq_produce(cq);
t4_hwcq_consume(cq);
ret = t4_next_hw_cqe(cq, &cqe);
}
}
static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq)
{
if (CQE_OPCODE(cqe) == FW_RI_TERMINATE)
return 0;
if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe))
return 0;
if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe))
return 0;
if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq))
return 0;
return 1;
}
void c4iw_count_scqes(struct t4_cq *cq, struct t4_wq *wq, int *count)
{
struct t4_cqe *cqe;
u32 ptr;
*count = 0;
ptr = cq->sw_cidx;
while (ptr != cq->sw_pidx) {
cqe = &cq->sw_queue[ptr];
if ((SQ_TYPE(cqe) || ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) &&
wq->sq.oldest_read)) &&
(CQE_QPID(cqe) == wq->sq.qid))
(*count)++;
if (++ptr == cq->size)
ptr = 0;
}
PDBG("%s cq %p count %d\n", __func__, cq, *count);
}
void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count)
{
struct t4_cqe *cqe;
u32 ptr;
*count = 0;
PDBG("%s count zero %d\n", __func__, *count);
ptr = cq->sw_cidx;
while (ptr != cq->sw_pidx) {
cqe = &cq->sw_queue[ptr];
if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) &&
(CQE_QPID(cqe) == wq->rq.qid) && cqe_completes_wr(cqe, wq))
(*count)++;
if (++ptr == cq->size)
ptr = 0;
}
PDBG("%s cq %p count %d\n", __func__, cq, *count);
}
static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq)
{
struct t4_swsqe *swsqe;
u16 ptr = wq->sq.cidx;
int count = wq->sq.in_use;
int unsignaled = 0;
swsqe = &wq->sq.sw_sq[ptr];
while (count--)
if (!swsqe->signaled) {
if (++ptr == wq->sq.size)
ptr = 0;
swsqe = &wq->sq.sw_sq[ptr];
unsignaled++;
} else if (swsqe->complete) {
/*
* Insert this completed cqe into the swcq.
*/
PDBG("%s moving cqe into swcq sq idx %u cq idx %u\n",
__func__, ptr, cq->sw_pidx);
swsqe->cqe.header |= htonl(V_CQE_SWCQE(1));
cq->sw_queue[cq->sw_pidx] = swsqe->cqe;
t4_swcq_produce(cq);
swsqe->signaled = 0;
wq->sq.in_use -= unsignaled;
break;
} else
break;
}
static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe,
struct t4_cqe *read_cqe)
{
read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx;
read_cqe->len = cpu_to_be32(wq->sq.oldest_read->read_len);
read_cqe->header = htonl(V_CQE_QPID(CQE_QPID(hw_cqe)) |
V_CQE_SWCQE(SW_CQE(hw_cqe)) |
V_CQE_OPCODE(FW_RI_READ_REQ) |
V_CQE_TYPE(1));
read_cqe->bits_type_ts = hw_cqe->bits_type_ts;
}
/*
* Return a ptr to the next read wr in the SWSQ or NULL.
*/
static void advance_oldest_read(struct t4_wq *wq)
{
u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1;
if (rptr == wq->sq.size)
rptr = 0;
while (rptr != wq->sq.pidx) {
wq->sq.oldest_read = &wq->sq.sw_sq[rptr];
if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ)
return;
if (++rptr == wq->sq.size)
rptr = 0;
}
wq->sq.oldest_read = NULL;
}
/*
* poll_cq
*
* Caller must:
* check the validity of the first CQE,
* supply the wq assicated with the qpid.
*
* credit: cq credit to return to sge.
* cqe_flushed: 1 iff the CQE is flushed.
* cqe: copy of the polled CQE.
*
* return value:
* 0 CQE returned ok.
* -EAGAIN CQE skipped, try again.
* -EOVERFLOW CQ overflow detected.
*/
static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe,
u8 *cqe_flushed, u64 *cookie, u32 *credit)
{
int ret = 0;
struct t4_cqe *hw_cqe, read_cqe;
*cqe_flushed = 0;
*credit = 0;
ret = t4_next_cqe(cq, &hw_cqe);
if (ret)
return ret;
PDBG("%s CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x"
" opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
__func__, CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe),
CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe),
CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe),
CQE_WRID_LOW(hw_cqe));
/*
* skip cqe's not affiliated with a QP.
*/
if (wq == NULL) {
ret = -EAGAIN;
goto skip_cqe;
}
/*
* Gotta tweak READ completions:
* 1) the cqe doesn't contain the sq_wptr from the wr.
* 2) opcode not reflected from the wr.
* 3) read_len not reflected from the wr.
* 4) cq_type is RQ_TYPE not SQ_TYPE.
*/
if (RQ_TYPE(hw_cqe) && (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP)) {
/*
* If this is an unsolicited read response, then the read
* was generated by the kernel driver as part of peer-2-peer
* connection setup. So ignore the completion.
*/
if (!wq->sq.oldest_read) {
if (CQE_STATUS(hw_cqe))
t4_set_wq_in_error(wq);
ret = -EAGAIN;
goto skip_cqe;
}
/*
* Don't write to the HWCQ, so create a new read req CQE
* in local memory.
*/
create_read_req_cqe(wq, hw_cqe, &read_cqe);
hw_cqe = &read_cqe;
advance_oldest_read(wq);
}
if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) {
*cqe_flushed = t4_wq_in_error(wq);
t4_set_wq_in_error(wq);
goto proc_cqe;
}
/*
* RECV completion.
*/
if (RQ_TYPE(hw_cqe)) {
/*
* HW only validates 4 bits of MSN. So we must validate that
* the MSN in the SEND is the next expected MSN. If its not,
* then we complete this with T4_ERR_MSN and mark the wq in
* error.
*/
if (t4_rq_empty(wq)) {
t4_set_wq_in_error(wq);
ret = -EAGAIN;
goto skip_cqe;
}
if (unlikely((CQE_WRID_MSN(hw_cqe) != (wq->rq.msn)))) {
t4_set_wq_in_error(wq);
hw_cqe->header |= htonl(V_CQE_STATUS(T4_ERR_MSN));
goto proc_cqe;
}
goto proc_cqe;
}
/*
* If we get here its a send completion.
*
* Handle out of order completion. These get stuffed
* in the SW SQ. Then the SW SQ is walked to move any
* now in-order completions into the SW CQ. This handles
* 2 cases:
* 1) reaping unsignaled WRs when the first subsequent
* signaled WR is completed.
* 2) out of order read completions.
*/
if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) {
struct t4_swsqe *swsqe;
PDBG("%s out of order completion going in sw_sq at idx %u\n",
__func__, CQE_WRID_SQ_IDX(hw_cqe));
swsqe = &wq->sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
swsqe->cqe = *hw_cqe;
swsqe->complete = 1;
ret = -EAGAIN;
goto flush_wq;
}
proc_cqe:
*cqe = *hw_cqe;
/*
* Reap the associated WR(s) that are freed up with this
* completion.
*/
if (SQ_TYPE(hw_cqe)) {
wq->sq.cidx = CQE_WRID_SQ_IDX(hw_cqe);
PDBG("%s completing sq idx %u\n", __func__, wq->sq.cidx);
*cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id;
t4_sq_consume(wq);
} else {
PDBG("%s completing rq idx %u\n", __func__, wq->rq.cidx);
*cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id;
BUG_ON(t4_rq_empty(wq));
t4_rq_consume(wq);
}
flush_wq:
/*
* Flush any completed cqes that are now in-order.
*/
flush_completed_wrs(wq, cq);
skip_cqe:
if (SW_CQE(hw_cqe)) {
PDBG("%s cq %p cqid 0x%x skip sw cqe cidx %u\n",
__func__, cq, cq->cqid, cq->sw_cidx);
t4_swcq_consume(cq);
} else {
PDBG("%s cq %p cqid 0x%x skip hw cqe cidx %u\n",
__func__, cq, cq->cqid, cq->cidx);
t4_hwcq_consume(cq);
}
return ret;
}
/*
* Get one cq entry from c4iw and map it to openib.
*
* Returns:
* 0 cqe returned
* -ENODATA EMPTY;
* -EAGAIN caller must try again
* any other -errno fatal error
*/
static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ib_wc *wc)
{
struct c4iw_qp *qhp = NULL;
struct t4_cqe cqe = {0, 0}, *rd_cqe;
struct t4_wq *wq;
u32 credit = 0;
u8 cqe_flushed;
u64 cookie = 0;
int ret;
ret = t4_next_cqe(&chp->cq, &rd_cqe);
if (ret)
return ret;
qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe));
if (!qhp)
wq = NULL;
else {
spin_lock(&qhp->lock);
wq = &(qhp->wq);
}
ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit);
if (ret)
goto out;
wc->wr_id = cookie;
wc->qp = &qhp->ibqp;
wc->vendor_err = CQE_STATUS(&cqe);
wc->wc_flags = 0;
PDBG("%s qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x "
"lo 0x%x cookie 0x%llx\n", __func__, CQE_QPID(&cqe),
CQE_TYPE(&cqe), CQE_OPCODE(&cqe), CQE_STATUS(&cqe), CQE_LEN(&cqe),
CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe), (unsigned long long)cookie);
if (CQE_TYPE(&cqe) == 0) {
if (!CQE_STATUS(&cqe))
wc->byte_len = CQE_LEN(&cqe);
else
wc->byte_len = 0;
wc->opcode = IB_WC_RECV;
if (CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_INV ||
CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_SE_INV) {
wc->ex.invalidate_rkey = CQE_WRID_STAG(&cqe);
wc->wc_flags |= IB_WC_WITH_INVALIDATE;
}
} else {
switch (CQE_OPCODE(&cqe)) {
case FW_RI_RDMA_WRITE:
wc->opcode = IB_WC_RDMA_WRITE;
break;
case FW_RI_READ_REQ:
wc->opcode = IB_WC_RDMA_READ;
wc->byte_len = CQE_LEN(&cqe);
break;
case FW_RI_SEND_WITH_INV:
case FW_RI_SEND_WITH_SE_INV:
wc->opcode = IB_WC_SEND;
wc->wc_flags |= IB_WC_WITH_INVALIDATE;
break;
case FW_RI_SEND:
case FW_RI_SEND_WITH_SE:
wc->opcode = IB_WC_SEND;
break;
case FW_RI_BIND_MW:
wc->opcode = IB_WC_BIND_MW;
break;
case FW_RI_LOCAL_INV:
wc->opcode = IB_WC_LOCAL_INV;
break;
case FW_RI_FAST_REGISTER:
wc->opcode = IB_WC_FAST_REG_MR;
break;
default:
printk(KERN_ERR MOD "Unexpected opcode %d "
"in the CQE received for QPID=0x%0x\n",
CQE_OPCODE(&cqe), CQE_QPID(&cqe));
ret = -EINVAL;
goto out;
}
}
if (cqe_flushed)
wc->status = IB_WC_WR_FLUSH_ERR;
else {
switch (CQE_STATUS(&cqe)) {
case T4_ERR_SUCCESS:
wc->status = IB_WC_SUCCESS;
break;
case T4_ERR_STAG:
wc->status = IB_WC_LOC_ACCESS_ERR;
break;
case T4_ERR_PDID:
wc->status = IB_WC_LOC_PROT_ERR;
break;
case T4_ERR_QPID:
case T4_ERR_ACCESS:
wc->status = IB_WC_LOC_ACCESS_ERR;
break;
case T4_ERR_WRAP:
wc->status = IB_WC_GENERAL_ERR;
break;
case T4_ERR_BOUND:
wc->status = IB_WC_LOC_LEN_ERR;
break;
case T4_ERR_INVALIDATE_SHARED_MR:
case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND:
wc->status = IB_WC_MW_BIND_ERR;
break;
case T4_ERR_CRC:
case T4_ERR_MARKER:
case T4_ERR_PDU_LEN_ERR:
case T4_ERR_OUT_OF_RQE:
case T4_ERR_DDP_VERSION:
case T4_ERR_RDMA_VERSION:
case T4_ERR_DDP_QUEUE_NUM:
case T4_ERR_MSN:
case T4_ERR_TBIT:
case T4_ERR_MO:
case T4_ERR_MSN_RANGE:
case T4_ERR_IRD_OVERFLOW:
case T4_ERR_OPCODE:
wc->status = IB_WC_FATAL_ERR;
break;
case T4_ERR_SWFLUSH:
wc->status = IB_WC_WR_FLUSH_ERR;
break;
default:
printk(KERN_ERR MOD
"Unexpected cqe_status 0x%x for QPID=0x%0x\n",
CQE_STATUS(&cqe), CQE_QPID(&cqe));
ret = -EINVAL;
}
}
out:
if (wq)
spin_unlock(&qhp->lock);
return ret;
}
int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc)
{
struct c4iw_cq *chp;
unsigned long flags;
int npolled;
int err = 0;
chp = to_c4iw_cq(ibcq);
spin_lock_irqsave(&chp->lock, flags);
for (npolled = 0; npolled < num_entries; ++npolled) {
do {
err = c4iw_poll_cq_one(chp, wc + npolled);
} while (err == -EAGAIN);
if (err)
break;
}
spin_unlock_irqrestore(&chp->lock, flags);
return !err || err == -ENODATA ? npolled : err;
}
int c4iw_destroy_cq(struct ib_cq *ib_cq)
{
struct c4iw_cq *chp;
struct c4iw_ucontext *ucontext;
PDBG("%s ib_cq %p\n", __func__, ib_cq);
chp = to_c4iw_cq(ib_cq);
remove_handle(chp->rhp, &chp->rhp->cqidr, chp->cq.cqid);
atomic_dec(&chp->refcnt);
wait_event(chp->wait, !atomic_read(&chp->refcnt));
ucontext = ib_cq->uobject ? to_c4iw_ucontext(ib_cq->uobject->context)
: NULL;
destroy_cq(&chp->rhp->rdev, &chp->cq,
ucontext ? &ucontext->uctx : &chp->cq.rdev->uctx);
kfree(chp);
return 0;
}
struct ib_cq *c4iw_create_cq(struct ib_device *ibdev, int entries,
int vector, struct ib_ucontext *ib_context,
struct ib_udata *udata)
{
struct c4iw_dev *rhp;
struct c4iw_cq *chp;
struct c4iw_create_cq_resp uresp;
struct c4iw_ucontext *ucontext = NULL;
int ret;
size_t memsize, hwentries;
struct c4iw_mm_entry *mm, *mm2;
PDBG("%s ib_dev %p entries %d\n", __func__, ibdev, entries);
rhp = to_c4iw_dev(ibdev);
chp = kzalloc(sizeof(*chp), GFP_KERNEL);
if (!chp)
return ERR_PTR(-ENOMEM);
if (ib_context)
ucontext = to_c4iw_ucontext(ib_context);
/* account for the status page. */
entries++;
/* IQ needs one extra entry to differentiate full vs empty. */
entries++;
/*
* entries must be multiple of 16 for HW.
*/
entries = roundup(entries, 16);
/*
* Make actual HW queue 2x to avoid cdix_inc overflows.
*/
hwentries = entries * 2;
/*
* Make HW queue at least 64 entries so GTS updates aren't too
* frequent.
*/
if (hwentries < 64)
hwentries = 64;
memsize = hwentries * sizeof *chp->cq.queue;
/*
* memsize must be a multiple of the page size if its a user cq.
*/
if (ucontext) {
memsize = roundup(memsize, PAGE_SIZE);
hwentries = memsize / sizeof *chp->cq.queue;
}
chp->cq.size = hwentries;
chp->cq.memsize = memsize;
ret = create_cq(&rhp->rdev, &chp->cq,
ucontext ? &ucontext->uctx : &rhp->rdev.uctx);
if (ret)
goto err1;
chp->rhp = rhp;
chp->cq.size--; /* status page */
chp->ibcq.cqe = entries - 2;
spin_lock_init(&chp->lock);
atomic_set(&chp->refcnt, 1);
init_waitqueue_head(&chp->wait);
ret = insert_handle(rhp, &rhp->cqidr, chp, chp->cq.cqid);
if (ret)
goto err2;
if (ucontext) {
mm = kmalloc(sizeof *mm, GFP_KERNEL);
if (!mm)
goto err3;
mm2 = kmalloc(sizeof *mm2, GFP_KERNEL);
if (!mm2)
goto err4;
uresp.qid_mask = rhp->rdev.cqmask;
uresp.cqid = chp->cq.cqid;
uresp.size = chp->cq.size;
uresp.memsize = chp->cq.memsize;
spin_lock(&ucontext->mmap_lock);
uresp.key = ucontext->key;
ucontext->key += PAGE_SIZE;
uresp.gts_key = ucontext->key;
ucontext->key += PAGE_SIZE;
spin_unlock(&ucontext->mmap_lock);
ret = ib_copy_to_udata(udata, &uresp, sizeof uresp);
if (ret)
goto err5;
mm->key = uresp.key;
mm->addr = virt_to_phys(chp->cq.queue);
mm->len = chp->cq.memsize;
insert_mmap(ucontext, mm);
mm2->key = uresp.gts_key;
mm2->addr = chp->cq.ugts;
mm2->len = PAGE_SIZE;
insert_mmap(ucontext, mm2);
}
PDBG("%s cqid 0x%0x chp %p size %u memsize %zu, dma_addr 0x%0llx\n",
__func__, chp->cq.cqid, chp, chp->cq.size,
chp->cq.memsize,
(unsigned long long) chp->cq.dma_addr);
return &chp->ibcq;
err5:
kfree(mm2);
err4:
kfree(mm);
err3:
remove_handle(rhp, &rhp->cqidr, chp->cq.cqid);
err2:
destroy_cq(&chp->rhp->rdev, &chp->cq,
ucontext ? &ucontext->uctx : &rhp->rdev.uctx);
err1:
kfree(chp);
return ERR_PTR(ret);
}
int c4iw_resize_cq(struct ib_cq *cq, int cqe, struct ib_udata *udata)
{
return -ENOSYS;
}
int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags)
{
struct c4iw_cq *chp;
int ret;
unsigned long flag;
chp = to_c4iw_cq(ibcq);
spin_lock_irqsave(&chp->lock, flag);
ret = t4_arm_cq(&chp->cq,
(flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED);
spin_unlock_irqrestore(&chp->lock, flag);
if (ret && !(flags & IB_CQ_REPORT_MISSED_EVENTS))
ret = 0;
return ret;
}