mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 09:42:17 +07:00
97f2645f35
The use of config_enabled() against config options is ambiguous. In practical terms, config_enabled() is equivalent to IS_BUILTIN(), but the author might have used it for the meaning of IS_ENABLED(). Using IS_ENABLED(), IS_BUILTIN(), IS_MODULE() etc. makes the intention clearer. This commit replaces config_enabled() with IS_ENABLED() where possible. This commit is only touching bool config options. I noticed two cases where config_enabled() is used against a tristate option: - config_enabled(CONFIG_HWMON) [ drivers/net/wireless/ath/ath10k/thermal.c ] - config_enabled(CONFIG_BACKLIGHT_CLASS_DEVICE) [ drivers/gpu/drm/gma500/opregion.c ] I did not touch them because they should be converted to IS_BUILTIN() in order to keep the logic, but I was not sure it was the authors' intention. Link: http://lkml.kernel.org/r/1465215656-20569-1-git-send-email-yamada.masahiro@socionext.com Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Stas Sergeev <stsp@list.ru> Cc: Matt Redfearn <matt.redfearn@imgtec.com> Cc: Joshua Kinard <kumba@gentoo.org> Cc: Jiri Slaby <jslaby@suse.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Borislav Petkov <bp@suse.de> Cc: Markos Chandras <markos.chandras@imgtec.com> Cc: "Dmitry V. Levin" <ldv@altlinux.org> Cc: yu-cheng yu <yu-cheng.yu@intel.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Brian Gerst <brgerst@gmail.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Will Drewry <wad@chromium.org> Cc: Nikolay Martynov <mar.kolya@gmail.com> Cc: Huacai Chen <chenhc@lemote.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com> Cc: Rafal Milecki <zajec5@gmail.com> Cc: James Cowgill <James.Cowgill@imgtec.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Alex Smith <alex.smith@imgtec.com> Cc: Adam Buchbinder <adam.buchbinder@gmail.com> Cc: Qais Yousef <qais.yousef@imgtec.com> Cc: Jiang Liu <jiang.liu@linux.intel.com> Cc: Mikko Rapeli <mikko.rapeli@iki.fi> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Brian Norris <computersforpeace@gmail.com> Cc: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Cc: "Luis R. Rodriguez" <mcgrof@do-not-panic.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Roland McGrath <roland@hack.frob.com> Cc: Paul Burton <paul.burton@imgtec.com> Cc: Kalle Valo <kvalo@qca.qualcomm.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Tony Wu <tung7970@gmail.com> Cc: Huaitong Han <huaitong.han@intel.com> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Juergen Gross <jgross@suse.com> Cc: Jason Cooper <jason@lakedaemon.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrea Gelmini <andrea.gelmini@gelma.net> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Rabin Vincent <rabin@rab.in> Cc: "Maciej W. Rozycki" <macro@imgtec.com> Cc: David Daney <david.daney@cavium.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
381 lines
13 KiB
C
381 lines
13 KiB
C
/*
|
|
* Fence mechanism for dma-buf to allow for asynchronous dma access
|
|
*
|
|
* Copyright (C) 2012 Canonical Ltd
|
|
* Copyright (C) 2012 Texas Instruments
|
|
*
|
|
* Authors:
|
|
* Rob Clark <robdclark@gmail.com>
|
|
* Maarten Lankhorst <maarten.lankhorst@canonical.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#ifndef __LINUX_FENCE_H
|
|
#define __LINUX_FENCE_H
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/list.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/kref.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/rcupdate.h>
|
|
|
|
struct fence;
|
|
struct fence_ops;
|
|
struct fence_cb;
|
|
|
|
/**
|
|
* struct fence - software synchronization primitive
|
|
* @refcount: refcount for this fence
|
|
* @ops: fence_ops associated with this fence
|
|
* @rcu: used for releasing fence with kfree_rcu
|
|
* @cb_list: list of all callbacks to call
|
|
* @lock: spin_lock_irqsave used for locking
|
|
* @context: execution context this fence belongs to, returned by
|
|
* fence_context_alloc()
|
|
* @seqno: the sequence number of this fence inside the execution context,
|
|
* can be compared to decide which fence would be signaled later.
|
|
* @flags: A mask of FENCE_FLAG_* defined below
|
|
* @timestamp: Timestamp when the fence was signaled.
|
|
* @status: Optional, only valid if < 0, must be set before calling
|
|
* fence_signal, indicates that the fence has completed with an error.
|
|
* @child_list: list of children fences
|
|
* @active_list: list of active fences
|
|
*
|
|
* the flags member must be manipulated and read using the appropriate
|
|
* atomic ops (bit_*), so taking the spinlock will not be needed most
|
|
* of the time.
|
|
*
|
|
* FENCE_FLAG_SIGNALED_BIT - fence is already signaled
|
|
* FENCE_FLAG_ENABLE_SIGNAL_BIT - enable_signaling might have been called*
|
|
* FENCE_FLAG_USER_BITS - start of the unused bits, can be used by the
|
|
* implementer of the fence for its own purposes. Can be used in different
|
|
* ways by different fence implementers, so do not rely on this.
|
|
*
|
|
* *) Since atomic bitops are used, this is not guaranteed to be the case.
|
|
* Particularly, if the bit was set, but fence_signal was called right
|
|
* before this bit was set, it would have been able to set the
|
|
* FENCE_FLAG_SIGNALED_BIT, before enable_signaling was called.
|
|
* Adding a check for FENCE_FLAG_SIGNALED_BIT after setting
|
|
* FENCE_FLAG_ENABLE_SIGNAL_BIT closes this race, and makes sure that
|
|
* after fence_signal was called, any enable_signaling call will have either
|
|
* been completed, or never called at all.
|
|
*/
|
|
struct fence {
|
|
struct kref refcount;
|
|
const struct fence_ops *ops;
|
|
struct rcu_head rcu;
|
|
struct list_head cb_list;
|
|
spinlock_t *lock;
|
|
u64 context;
|
|
unsigned seqno;
|
|
unsigned long flags;
|
|
ktime_t timestamp;
|
|
int status;
|
|
};
|
|
|
|
enum fence_flag_bits {
|
|
FENCE_FLAG_SIGNALED_BIT,
|
|
FENCE_FLAG_ENABLE_SIGNAL_BIT,
|
|
FENCE_FLAG_USER_BITS, /* must always be last member */
|
|
};
|
|
|
|
typedef void (*fence_func_t)(struct fence *fence, struct fence_cb *cb);
|
|
|
|
/**
|
|
* struct fence_cb - callback for fence_add_callback
|
|
* @node: used by fence_add_callback to append this struct to fence::cb_list
|
|
* @func: fence_func_t to call
|
|
*
|
|
* This struct will be initialized by fence_add_callback, additional
|
|
* data can be passed along by embedding fence_cb in another struct.
|
|
*/
|
|
struct fence_cb {
|
|
struct list_head node;
|
|
fence_func_t func;
|
|
};
|
|
|
|
/**
|
|
* struct fence_ops - operations implemented for fence
|
|
* @get_driver_name: returns the driver name.
|
|
* @get_timeline_name: return the name of the context this fence belongs to.
|
|
* @enable_signaling: enable software signaling of fence.
|
|
* @signaled: [optional] peek whether the fence is signaled, can be null.
|
|
* @wait: custom wait implementation, or fence_default_wait.
|
|
* @release: [optional] called on destruction of fence, can be null
|
|
* @fill_driver_data: [optional] callback to fill in free-form debug info
|
|
* Returns amount of bytes filled, or -errno.
|
|
* @fence_value_str: [optional] fills in the value of the fence as a string
|
|
* @timeline_value_str: [optional] fills in the current value of the timeline
|
|
* as a string
|
|
*
|
|
* Notes on enable_signaling:
|
|
* For fence implementations that have the capability for hw->hw
|
|
* signaling, they can implement this op to enable the necessary
|
|
* irqs, or insert commands into cmdstream, etc. This is called
|
|
* in the first wait() or add_callback() path to let the fence
|
|
* implementation know that there is another driver waiting on
|
|
* the signal (ie. hw->sw case).
|
|
*
|
|
* This function can be called called from atomic context, but not
|
|
* from irq context, so normal spinlocks can be used.
|
|
*
|
|
* A return value of false indicates the fence already passed,
|
|
* or some failure occurred that made it impossible to enable
|
|
* signaling. True indicates successful enabling.
|
|
*
|
|
* fence->status may be set in enable_signaling, but only when false is
|
|
* returned.
|
|
*
|
|
* Calling fence_signal before enable_signaling is called allows
|
|
* for a tiny race window in which enable_signaling is called during,
|
|
* before, or after fence_signal. To fight this, it is recommended
|
|
* that before enable_signaling returns true an extra reference is
|
|
* taken on the fence, to be released when the fence is signaled.
|
|
* This will mean fence_signal will still be called twice, but
|
|
* the second time will be a noop since it was already signaled.
|
|
*
|
|
* Notes on signaled:
|
|
* May set fence->status if returning true.
|
|
*
|
|
* Notes on wait:
|
|
* Must not be NULL, set to fence_default_wait for default implementation.
|
|
* the fence_default_wait implementation should work for any fence, as long
|
|
* as enable_signaling works correctly.
|
|
*
|
|
* Must return -ERESTARTSYS if the wait is intr = true and the wait was
|
|
* interrupted, and remaining jiffies if fence has signaled, or 0 if wait
|
|
* timed out. Can also return other error values on custom implementations,
|
|
* which should be treated as if the fence is signaled. For example a hardware
|
|
* lockup could be reported like that.
|
|
*
|
|
* Notes on release:
|
|
* Can be NULL, this function allows additional commands to run on
|
|
* destruction of the fence. Can be called from irq context.
|
|
* If pointer is set to NULL, kfree will get called instead.
|
|
*/
|
|
|
|
struct fence_ops {
|
|
const char * (*get_driver_name)(struct fence *fence);
|
|
const char * (*get_timeline_name)(struct fence *fence);
|
|
bool (*enable_signaling)(struct fence *fence);
|
|
bool (*signaled)(struct fence *fence);
|
|
signed long (*wait)(struct fence *fence, bool intr, signed long timeout);
|
|
void (*release)(struct fence *fence);
|
|
|
|
int (*fill_driver_data)(struct fence *fence, void *data, int size);
|
|
void (*fence_value_str)(struct fence *fence, char *str, int size);
|
|
void (*timeline_value_str)(struct fence *fence, char *str, int size);
|
|
};
|
|
|
|
void fence_init(struct fence *fence, const struct fence_ops *ops,
|
|
spinlock_t *lock, u64 context, unsigned seqno);
|
|
|
|
void fence_release(struct kref *kref);
|
|
void fence_free(struct fence *fence);
|
|
|
|
/**
|
|
* fence_get - increases refcount of the fence
|
|
* @fence: [in] fence to increase refcount of
|
|
*
|
|
* Returns the same fence, with refcount increased by 1.
|
|
*/
|
|
static inline struct fence *fence_get(struct fence *fence)
|
|
{
|
|
if (fence)
|
|
kref_get(&fence->refcount);
|
|
return fence;
|
|
}
|
|
|
|
/**
|
|
* fence_get_rcu - get a fence from a reservation_object_list with rcu read lock
|
|
* @fence: [in] fence to increase refcount of
|
|
*
|
|
* Function returns NULL if no refcount could be obtained, or the fence.
|
|
*/
|
|
static inline struct fence *fence_get_rcu(struct fence *fence)
|
|
{
|
|
if (kref_get_unless_zero(&fence->refcount))
|
|
return fence;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* fence_put - decreases refcount of the fence
|
|
* @fence: [in] fence to reduce refcount of
|
|
*/
|
|
static inline void fence_put(struct fence *fence)
|
|
{
|
|
if (fence)
|
|
kref_put(&fence->refcount, fence_release);
|
|
}
|
|
|
|
int fence_signal(struct fence *fence);
|
|
int fence_signal_locked(struct fence *fence);
|
|
signed long fence_default_wait(struct fence *fence, bool intr, signed long timeout);
|
|
int fence_add_callback(struct fence *fence, struct fence_cb *cb,
|
|
fence_func_t func);
|
|
bool fence_remove_callback(struct fence *fence, struct fence_cb *cb);
|
|
void fence_enable_sw_signaling(struct fence *fence);
|
|
|
|
/**
|
|
* fence_is_signaled_locked - Return an indication if the fence is signaled yet.
|
|
* @fence: [in] the fence to check
|
|
*
|
|
* Returns true if the fence was already signaled, false if not. Since this
|
|
* function doesn't enable signaling, it is not guaranteed to ever return
|
|
* true if fence_add_callback, fence_wait or fence_enable_sw_signaling
|
|
* haven't been called before.
|
|
*
|
|
* This function requires fence->lock to be held.
|
|
*/
|
|
static inline bool
|
|
fence_is_signaled_locked(struct fence *fence)
|
|
{
|
|
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
|
|
return true;
|
|
|
|
if (fence->ops->signaled && fence->ops->signaled(fence)) {
|
|
fence_signal_locked(fence);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* fence_is_signaled - Return an indication if the fence is signaled yet.
|
|
* @fence: [in] the fence to check
|
|
*
|
|
* Returns true if the fence was already signaled, false if not. Since this
|
|
* function doesn't enable signaling, it is not guaranteed to ever return
|
|
* true if fence_add_callback, fence_wait or fence_enable_sw_signaling
|
|
* haven't been called before.
|
|
*
|
|
* It's recommended for seqno fences to call fence_signal when the
|
|
* operation is complete, it makes it possible to prevent issues from
|
|
* wraparound between time of issue and time of use by checking the return
|
|
* value of this function before calling hardware-specific wait instructions.
|
|
*/
|
|
static inline bool
|
|
fence_is_signaled(struct fence *fence)
|
|
{
|
|
if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
|
|
return true;
|
|
|
|
if (fence->ops->signaled && fence->ops->signaled(fence)) {
|
|
fence_signal(fence);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* fence_is_later - return if f1 is chronologically later than f2
|
|
* @f1: [in] the first fence from the same context
|
|
* @f2: [in] the second fence from the same context
|
|
*
|
|
* Returns true if f1 is chronologically later than f2. Both fences must be
|
|
* from the same context, since a seqno is not re-used across contexts.
|
|
*/
|
|
static inline bool fence_is_later(struct fence *f1, struct fence *f2)
|
|
{
|
|
if (WARN_ON(f1->context != f2->context))
|
|
return false;
|
|
|
|
return (int)(f1->seqno - f2->seqno) > 0;
|
|
}
|
|
|
|
/**
|
|
* fence_later - return the chronologically later fence
|
|
* @f1: [in] the first fence from the same context
|
|
* @f2: [in] the second fence from the same context
|
|
*
|
|
* Returns NULL if both fences are signaled, otherwise the fence that would be
|
|
* signaled last. Both fences must be from the same context, since a seqno is
|
|
* not re-used across contexts.
|
|
*/
|
|
static inline struct fence *fence_later(struct fence *f1, struct fence *f2)
|
|
{
|
|
if (WARN_ON(f1->context != f2->context))
|
|
return NULL;
|
|
|
|
/*
|
|
* can't check just FENCE_FLAG_SIGNALED_BIT here, it may never have been
|
|
* set if enable_signaling wasn't called, and enabling that here is
|
|
* overkill.
|
|
*/
|
|
if (fence_is_later(f1, f2))
|
|
return fence_is_signaled(f1) ? NULL : f1;
|
|
else
|
|
return fence_is_signaled(f2) ? NULL : f2;
|
|
}
|
|
|
|
signed long fence_wait_timeout(struct fence *, bool intr, signed long timeout);
|
|
signed long fence_wait_any_timeout(struct fence **fences, uint32_t count,
|
|
bool intr, signed long timeout);
|
|
|
|
/**
|
|
* fence_wait - sleep until the fence gets signaled
|
|
* @fence: [in] the fence to wait on
|
|
* @intr: [in] if true, do an interruptible wait
|
|
*
|
|
* This function will return -ERESTARTSYS if interrupted by a signal,
|
|
* or 0 if the fence was signaled. Other error values may be
|
|
* returned on custom implementations.
|
|
*
|
|
* Performs a synchronous wait on this fence. It is assumed the caller
|
|
* directly or indirectly holds a reference to the fence, otherwise the
|
|
* fence might be freed before return, resulting in undefined behavior.
|
|
*/
|
|
static inline signed long fence_wait(struct fence *fence, bool intr)
|
|
{
|
|
signed long ret;
|
|
|
|
/* Since fence_wait_timeout cannot timeout with
|
|
* MAX_SCHEDULE_TIMEOUT, only valid return values are
|
|
* -ERESTARTSYS and MAX_SCHEDULE_TIMEOUT.
|
|
*/
|
|
ret = fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT);
|
|
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
u64 fence_context_alloc(unsigned num);
|
|
|
|
#define FENCE_TRACE(f, fmt, args...) \
|
|
do { \
|
|
struct fence *__ff = (f); \
|
|
if (IS_ENABLED(CONFIG_FENCE_TRACE)) \
|
|
pr_info("f %llu#%u: " fmt, \
|
|
__ff->context, __ff->seqno, ##args); \
|
|
} while (0)
|
|
|
|
#define FENCE_WARN(f, fmt, args...) \
|
|
do { \
|
|
struct fence *__ff = (f); \
|
|
pr_warn("f %llu#%u: " fmt, __ff->context, __ff->seqno, \
|
|
##args); \
|
|
} while (0)
|
|
|
|
#define FENCE_ERR(f, fmt, args...) \
|
|
do { \
|
|
struct fence *__ff = (f); \
|
|
pr_err("f %llu#%u: " fmt, __ff->context, __ff->seqno, \
|
|
##args); \
|
|
} while (0)
|
|
|
|
#endif /* __LINUX_FENCE_H */
|